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Abstract. In this lecture notes we are concerned with evolution of plane
curves satisfying a geometric equation v = β(k, x, ν) where v is the normal
velocity of an evolving family of planar closed curves. We assume the normal
velocity to be a function of the curvature k, tangential angle ν and the position
vector x of a plane curve Γ. We follow the direct approach and we analyze the
so-called intrinsic heat equation governing the motion of plane curves obeying
such a geometric equation. We show how to reduce the geometric problem to
a solution of fully nonlinear parabolic equation for important geometric quan-
tities. Using a theory of fully nonlinear parabolic equations we present results
on local in time existence of classical solutions. We also present an approach
based on level set representation of curves evolved by the curvature. We recall
basic ideas from the theory of viscosity solutions for the level set equation.
We discuss numerical approximation schemes for computing curvature driven
flows and we present various examples of application of theoretical results in
practical problems.
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Preface

The lecture notes on Qualitative and quantitative aspects of curvature driven
flows of plane curves are based on the series of lectures given by the author in
the fall of 2006 during his stay at the Nečas Center for Mathematical Modeling at
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known results in this field to PhD students and young researchers of NCMM.

The main purpose of these notes is to present theoretical and practical topics in
the field of curvature driven flows of planar curves and interfaces. There are many
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between presentation of subtle mathematical and technical details and ability of
the material to give a comprehensive overview of possible applications in this field.
This is often a hard task but I tried to find this balance.

I am deeply indebted to Karol Mikula for long and fruitful collaboration on
the problems of curvature driven flows of curves. A lot of the material presented
in these lecture notes has been jointly published with him. I want to acknowledge
a recent collaboration with V. Srikrishnan who brought to my attention important
problems arising in tracking of moving boundaries. I also wish to thank Josef
Málek from NCMM of Charles University in Prague for giving me a possibility to
visit NCMM and present series of lectures and for his permanent encouragement
to prepare these lecture notes.

Daniel Ševčovič
Bratislava, July 2007.
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CHAPTER 1

Introduction

In this lecture notes we are concerned with evolution of plane curves satisfying
a geometric equation

(1.1) v = β(k, x, ν)

where v is the normal velocity of an evolving family of planar closed curves. We
assume the normal velocity to be a function of the curvature k, tangent angle ν
and the position vector x of a plane curve Γ.

Geometric equations of the form (1.1) can be often found in variety of applied
problems like e.g. the material science, dynamics of phase boundaries in thermo-
mechanics, in modeling of flame front propagation, in combustion, in computations
of first arrival times of seismic waves, in computational geometry, robotics, semi-
conductors industry, etc. They also have a special conceptual importance in image
processing and computer vision theories. A typical case in which the normal ve-
locity v may depend on the position vector x can be found in image segmentation
[CKS97, KKO+96]. For a comprehensive overview of other important applica-
tions of the geometric Eq. (1.1) we refer to recent books by Sethian, Sapiro and
Osher and Fedkiw [Set96, Sap01, OF03].

1.1. Mathematical models leading to curvature driven flows of planar

curves

1.1.1. Interface dynamics. If a solid phase occupies a subset Ωs(t) ⊂ Ω and
a liquid phase - a subset Ωl(t) ⊂ Ω, Ω ⊂ R

2, at a time t, then the phase interface
is the set Γt = ∂Ωs(t) ∩ ∂Ωl(t) which is assumed to be a closed smooth embedded
curve. The sharp-interface description of the solidification process is then described
by the Stefan problem with a surface tension

ρc∂tU = λ∆U in Ωs(t) and Ωl(t),

[λ∂nU ]
l
s = −Lv on Γt,(1.2)

δe

σ
(U − U∗) = −δ2(ν)k + δ1(ν)v on Γt,(1.3)

subject to initial and boundary conditions for the temperature field U and initial
position of the interface Γ (see e.g. [Ben01]). The constants ρ, c, λ represent
material characteristics (density, specific heat and thermal conductivity), L is the
latent heat per unit volume, U∗ is a melting point and v is the normal velocity
of an interface. Discontinuity in the heat flux on the interface Γt is described by
the Stefan condition (1.2). The relationship (1.3) is referred to as the Gibbs –
Thomson law on the interface Γt, where δe is difference in entropy per unit volume
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2 1. INTRODUCTION

between liquid and solid phases, σ is a constant surface tension, δ1 is a coefficient
of attachment kinetics and dimensionless function δ2 describes anisotropy of the
interface. One can see that the Gibbs–Thomson condition can be viewed as a
geometric equation having the form (1.1). In this application the normal velocity
v = β(k, x, ν) has a special form

β = β(k, ν) = δ(ν)k + F

In the theory of phase interfaces separating solid and liquid phases, the geo-
metric equation (1.1) with β(k, x, ν) = δ(ν)k + F corresponds to the so-called
Gibbs–Thomson law governing the crystal growth in an undercooled liquid [Gur93,

BM98]. In the series of papers [AG89, AG94, AG96]. Angenent and Gurtin
studied motion of phase interfaces. They proposed to study the equation of the
form

µ(ν, v)v = h(ν)k − g

where µ is the kinetic coefficient and quantities h, g arise from constitutive de-
scription of the phase boundary. The dependence of the normal velocity v on the
curvature k is related to surface tension effects on the interface, whereas the depen-
dence on ν (orientation of interface) introduces anisotropic effects into the model.
In general, the kinetic coefficient µ may also depend on the velocity v itself giving
rise to a nonlinear dependence of the function v = β(k, ν) on k and ν. If the mo-
tion of an interface is very slow, then β(k, x, ν) is linear in k (cf. [AG89]) and (1.1)
corresponds to the classical mean curvature flow studied extensively from both the
mathematical (see, e.g., [GH86, AL86, Ang90a, Gra87]) and numerical point
of view (see, e.g., [Dzi94, Dec97, MK96, NPV93, OS88]).

In the series of papers [AG89, AG96], Angenent and Gurtin studied perfect
conductors where the problem can be reduced to a single equation on the interface.
Following their approach and assuming a constant kinetic coefficient one obtains
the equation

v = β(k, ν) ≡ δ(ν)k + F

describing the interface dynamics. It is often referred to as the anisotropic curve
shortening equation with a constant driving force F (energy difference between bulk
phases) and a given anisotropy function δ.

1.1.2. Image segmentation. A similar equation to (1.1) arises from the the-
ory of image segmentation in which detection of object boundaries in the analyzed
image plays an important role. A given black and white image can be represented
by its intensity function I : R2 → [0, 255]. The aim is to detect edges of the image,
i.e. closed planar curves on which the gradient ∇I is large (see [KM95]). The
idea behind the so-called active contour models is to construct an evolving family
of plane curves converging to an edge (see [KWT87]). One can construct a family
of curves evolved by the normal velocity v = β(k, x, ν) of the form

β(k, x, ν) = δ(x, ν)k + c(x, ν)

where c(x, ν) is a driving force and δ(x, ν) > 0 is a smoothing coefficient. These
functions depend on the position vector x as well as orientation angle ν of a curve.
Evolution starts from an initial curve which is a suitable approximation of the edge
and then it converges to the edge provided that δ, c are suitable chosen functions.
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In the context of level set methods, edge detection techniques based on this idea
were first discussed by Caselles et al. and Malladi et al. in [CCCD93, MSV95].
Later on, they have been revisited and improved in [CKS97, CKSS97, KKO+96].

1.1.3. Geodesic curvature driven flow of curves on a surface. Another
interesting application of the geometric equation (1.1) arises from the differential
geometry. The purpose is to investigate evolution of curves on a given surface
driven by the geodesic curvature and prescribed external force. We restrict our
attention to the case when the normal velocity V is a linear function of the geodesic
curvature Kg and external force F , i.e. V = Kg + F and the surface M in R

3

can be represented by a smooth graph. The idea how to analyze a flow of curves
on a surface M consists in vertical projection of surface curves into the plane.
This allows for reducing the problem to the analysis of evolution of planar curves
instead of surface ones. Although the geometric equation V = Kg + F is simple
the description of the normal velocity v of the family of projected planar curves is
rather involved. Nevertheless, it can be written in the form of equation (1.1). The
precise form of the function β can be found in the last section.

1.2. Methodology

Our methodology how to solve (1.1) is based on the so-called direct approach in-
vestigated by Dziuk, Deckelnick, Gage and Hamilton, Grayson, Mikula and Ševčovič
and other authors (see e.g. [Dec97, Dzi94, Dzi99, GH86, Gra87, MK96,

Mik97, MS99, MS01, MS04a, MS04b] and references therein). The main idea
is to use the so-called Lagrangean description of motion and to represent the flow of
planar curves by a position vector x which is a solution to the geometric equation

∂tx = β ~N + α~T

where ~N, ~T are the unit inward normal and tangent vectors, resp. It turns out
that one can construct a closed system of parabolic-ordinary differential equations
for relevant geometric quantities: the curvature, tangential angle, local length and
position vector. Other well-known techniques, like e.g. level-set method due to Os-
her and Sethian [Set96, OF03] or phase-field approximations (see e.g. Caginalp,
Nochetto et al., Beneš [Cag90, NPV93, Ben01]) treat the geometric equation
(1.1) by means of a solution to a higher dimensional parabolic problem. In compar-
ison to these methods, in the direct approach one space dimensional evolutionary
problems are solved only. Notice that the direct approach for solving (1.1) can be
accompanied by a proper choice of tangential velocity α significantly improving and
stabilizing numerical computations as it was documented by many authors (see e.g.
[Dec97, HLS94, HKS98, Kim97, MS99, MS01, MS04a, MS04b]).

1.3. Numerical techniques

Analytical methods for mathematical treatment of (1.1) are strongly related
to numerical techniques for computing curve evolutions. In the direct approach
one seeks for a parameterization of the evolving family of curves. By solving
the so-called intrinsic heat equation one can directly find a position vector of a
curve (see e.g. [Dzi91, Dzi94, Dzi99, MS99, MS01, MS04a]). There are
also other direct methods based on solution of a porous medium–like equation
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for curvature of a curve [MK96, Mik97], a crystalline curvature approximation
[Gir95, GK94, UY00], special finite difference schemes [Kim94, Kim97], and a
method based on erosion of polygons in the affine invariant scale case [Moi98]. By
contrast to the direct approach, level set methods are based on introducing an aux-
iliary function whose zero level sets represent an evolving family of planar curves
undergoing the geometric equation (1.1) (see, e.g., [OS88, Set90, Set96, Set98,

HMS98]). The other indirect method is based on the phase-field formulations
(see, e.g., [Cag90, NPV93, EPS96, BM98]). The level set approach handles
implicitly the curvature-driven motion, passing the problem to higher dimensional
space. One can deal with splitting and/or merging of evolving curves in a robust
way. However, from the computational point of view, level set methods are much
more expensive than methods based on the direct approach.



CHAPTER 2

Preliminaries

The purpose of this section is to review basic facts and results concerning a
curvature driven flow of planar curves. We will focus our attention on the so-called
Langrangean description of a moving curve in which we follow an evolution of point
positions of a curve. This is also referred to as a direct approach in the context of
curvature driven flows of planar curves ([AL86, Dzi91, Dzi94, Dec97, MK96,

MS99, MS01]).
First we recall some basic facts and elements of differential geometry. Then

we derive a system of equations for important geometric quantities like e.g. a
curvature, local length and tangential angle. With help of these equations we shall
be able to derive equations describing evolution of the total length, enclosed area
of an evolving curve and transport of a scalar function quantity.

2.1. Notations and elements of differential geometry

An embedded regular plane curve (a Jordan curve) Γ is a closed C1 smooth one
dimensional nonselfintersecting curve in the plane R

2. It can be parameterized by
a smooth function x : S1 → R

2. It means that Γ = Img(x) := {x(u), u ∈ S1} and
g = |∂ux| > 0. Taking into account the periodic boundary conditions at u = 0, 1
we can hereafter identify the unit circle S1 with the interval [0, 1]. The unit arc-
length parameterization of a curve Γ = Img(x) is denoted by s and it satisfies
|∂sx(s)| = 1 for any s. Furthermore, the arc-length parameterization is related to
the original parameterization u via the equality ds = g du. Notice that the interval
of values of the arc-length parameter depends on the curve Γ. More precisely,
s ∈ [0, L(Γ)] where L(Γ)] is the length of the curve Γ. Since s is the arc-length

parameterization the tangent vector ~T of a curve Γ is given by ~T = ∂sx = g−1∂ux.

We choose orientation of the unit inward normal vector ~N in such a way that

det(~T , ~N) = 1 where det(~a,~b) is the determinant of the 2 × 2 matrix with column

vectors ~a,~b. Notice that 1 = |~T |2 = (~T .~T ). Therefore, 0 = ∂s(~T .~T ) = 2(~T .∂s
~T ).

Here a.b denotes the standard Euclidean scalar product in R
2. Thus the direction

of the normal vector ~N must be proportional to ∂s
~T . It means that there is a

real number k ∈ R such that ~N = k∂s
~T . Similarly, as 1 = | ~N |2 = ( ~N. ~N) we have

0 = ∂s( ~N. ~N) = 2( ~N.∂s
~N) and so ∂s

~N is collinear to the vector ~T . Since ( ~N.~T ) = 0

we have 0 = ∂s( ~N.~T ) = (∂s
~N.~T ) + ( ~N.∂s

~T ). Therefore, ∂s
~N = −k~T . In summary,

for the arc-length derivative of the unit tangent and normal vectors to a curve Γ
we have

(2.1) ∂s
~T = k ~N, ∂s

~N = −k~T

5
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Figure 1. Description of a planar curve Γ enclosing a domain Ω,

its signed curvature k, unit inward normal ~N and tangent vector
~T , position vector x.

where the scalar quantity k ∈ R is called a curvature of the curve Γ at a point x(s).
Equations (2.1) are referred to as Frenét formulae. The quantity k obeying (2.1)
is indeed a curvature in the sense that it is a reciprocal value of the radius of an
oscullating circle having C2 smooth contact with Γ point at a point x(s). Since

∂s
~T = ∂2

sx we obtain a formula for the signed curvature

(2.2) k = det(∂sx, ∂
2
sx) = g−3 det(∂ux, ∂

2
ux) .

Notice that, according to our notation, the curvature k is positive on the convex
side of a curve Γ whereas it is negative on its concave part (see Fig. 1). By ν we

denote the tangent angle to Γ, i.e. ν = arg(~T ) and ~T = (cos ν, sin ν). Then, by
Frenét’s formulae, we have

k(− sin ν, cos ν) = k ~N = ∂s
~T = ∂sν(− sin ν, cos ν)

and therefore

∂sν = k .

For an embedded planar curve Γ, its tangential angle ν varies from 0 to 2π and so

we have 2π = ν(1) − ν(0) =
∫ 1

0 ∂uν du =
∫ 1

0 kg du =
∫

Γ k ds and hence the total
curvature of an embedded curve satisfies the following equality:

(2.3)

∫

Γ

kds = 2π .

We remind ourselves that the above equality can be generalized to the case when a
closed nonselfintersecting smooth curve Γ belongs to an orientable two dimensional
surface M. According to the Gauss-Bonnet formula we have

∫

int(Γ)

Kdx+

∫

Γ

k ds = 2π χ(M)

where K is the Gaussian curvature of am orientable two dimensional surface M
and χ(M) is the Euler characteristics of the surface M. In a trivial case when
M = R

2 we have K ≡ 0 and χ(M) = 1 and so the equality (2.3) is a consequence
of the Gauss-Bonnet formula.
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2.2. Governing equations

In these lecture notes we shall assume that the normal velocity v of an evolving
family of plane curves Γt, t ≥ 0, is equal to a function β of the curvature k, tangential
angle ν and position vector x ∈ Γt,

v = β(x, k, ν) .

(see (1.1). Hereafter, we shall suppose that the function β(k, x, ν) is a smooth
function which is increasing in the k variable, i.e.

β′
k(k, x, ν) > 0 .

An idea behind the direct approach consists of representation of a family of embed-
ded curves Γt by the position vector x ∈ R

2, i.e.

Γt = Img(x(., t)) = {x(u, t), u ∈ [0, 1]}

where x is a solution to the geometric equation

(2.4) ∂tx = β ~N + α~T

where β = β(x, k, ν), ~N = (− sin ν, cos ν) and ~T = (cos ν, sin ν) are the unit in-

ward normal and tangent vectors, respectively. For the normal velocity v = ∂tx. ~N
we have v = β(x, k, ν). Notice that the presence of arbirary tangential velocity
functional α has no impact on the shape of evolving curves.

The goal of this section is to derive a system of PDEs governing the evolution of
the curvature k of Γt = Img(x(., t)), t ∈ [0, T ), and some other geometric quantities
where the family of regular plane curves where x = x(u, t) is a solution to the
position vector equation (2.4). These equations will be used in order to derive a
priori estimates of solutions. Notice that such an equation for the curvature is
well known for the case when α = 0, and it reads as follows: ∂tk = ∂2

sβ + k2β
(cf. [GH86, AG89]). Here we present a brief sketch of the derivation of the
corresponding equations for the case of a nontrivial tangential velocity α.

Let us denote ~p = ∂ux. Since u ∈ [0, 1] is a fixed domain parameter we
commutation relation ∂t∂u = ∂u∂t. Then, by using Frenét’s formulae, we obtain

∂t~p = |∂ux|((∂sβ + αk) ~N + (−βk + ∂sα)~T ),

~p . ∂t~p = |∂ux| ~T . ∂t~p = |∂ux|
2(−βk + ∂sα),(2.5)

det(~p, ∂t~p) = |∂ux| det(~T , ∂t~p) = |∂ux|
2 (∂sβ + αk),

det(∂t~p, ∂u~p) = −|∂ux|∂u|∂ux|(∂sβ + |∂ux|
3 (−βk + ∂sα),

because ∂u~p = ∂2
ux = ∂u(|∂ux| ~T ) = ∂u|∂ux| ~T + k|∂ux|2 ~N . Since ∂u det(~p, ∂t~p) =

det(∂u~p, ∂t~p)+det(~p, ∂u∂t~p), we have det(~p, ∂u∂t~p) = ∂u det(~p, ∂t~p)+det(∂t~p, ∂u~p).
As k = det(~p, ∂u~p) |~p|

−3 (see (2.2)), we obtain

∂tk = −3|p|−5(~p . ∂t~p) det(~p, ∂u~p) + |~p|−3 (det(∂t~p, ∂u~p) + det(~p, ∂u∂t~p))

= −3k|~p|−2(~p . ∂t~p) + 2|~p|−3 det(∂t~p, ∂u~p) + |~p|−3∂u det(~p, ∂t~p).

Finally, by applying identities (2.5), we end up with the second-order nonlinear
parabolic equation for the curvature:

(2.6) ∂tk = ∂2
sβ + α∂sk + k2β .
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The identities (2.5) can be used in order to derive an evolutionary equation for
the local length |∂ux|. Indeed, ∂t|∂ux| = (∂ux . ∂u∂tx)/|∂ux| = (~p . ∂t~p)/|∂ux|. By
(2.5) we have the

(2.7) ∂t|∂ux| = −|∂ux| kβ + ∂uα

where (u, t) ∈ QT = [0, 1]× [0, T ). In other words, ∂tds = (−kβ+ ∂sα)ds. It yields
the commutation relation

(2.8) ∂t∂s − ∂s∂t = (kβ − ∂sα)∂s.

Next we derive equations for the time derivative of the unit tangent vector ~T and
tangent angle ν. Using the above commutation relation and Frenét formulae we
obtain

∂t
~T = ∂t∂sx = ∂s∂tx+ (kβ − ∂sα)∂sx ,

= ∂s(β ~N + α~T ) + (kβ − ∂sα)~T ,

= (∂sβ + αk) ~N .

Since ~T = (cos ν, sin ν) and ~N = (− sin ν, cos ν) we conclude that ∂tν = ∂sβ + αk.
Summarizing, we end up with evolutionary equations for the unit tangent and

normal vectors ~T , ~N and the tangent angle ν

∂t
~T = (∂sβ + αk) ~N ,

∂t
~N = −(∂sβ + αk)~T ,(2.9)

∂tν = ∂sβ + αk .

Since ∂sν = k and ∂sβ = β′
k∂sk + β′

νk + ∇xβ.~T we obtain the following closed
system of parabolic-ordinary differential equations:

∂tk = ∂2
sβ + α∂sk + k2β ,(2.10)

∂tν = β′
k∂

2
sν + (α+ β′

ν)∂sν + ∇xβ.~T ,(2.11)

∂tg = −gkβ + ∂uα ,(2.12)

∂tx = β ~N + α~T ,(2.13)

where (u, t) ∈ QT = [0, 1] × (0, T ), ds = g du and ~T = ∂sx = (cos ν, sin ν), ~N =
~T⊥ = (− sin ν, cos ν). The functional α may depend on the variables k, ν, g, x. A
solution (k, ν, g, x) to (2.10) – (2.13) is subject to initial conditions

k(., 0) = k0 , ν(., 0) = ν0 , g(., 0) = g0 , x(., 0) = x0(.) ,

and periodic boundary conditions at u = 0, 1 except of the tangent angle ν for which

we require that the tangent vector ~T (u, t) = (cos(ν(u, t)), sin(ν(u, t))) is 1-periodic
in the u variable, i.e. ν(1, t) = ν(0, t) + 2π. Notice that the initial conditions for
k0, ν0, g0 and x0 (the curvature, tangent angle, local length element and position
vector of the initial curve Γ0) must satisfy the following compatibility constraints:

g0 = |∂ux0| > 0 , k0 = g−3
0 ∂ux0 ∧ ∂

2
ux0 , ∂uν0 = g0k0 .
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2.3. First integrals for geometric quantities

The aim of this section is to derive basic identities for various geometric quan-
tities like e.g. the length of a closed curve and the area enclosed by a Jordan curve
in the plane. These identities (first integrals) will be used later in the analysis of
the governing system of equations.

2.3.1. The total length equation. By integrating (2.7) over the interval
[0, 1] and taking into account that α satisfies periodic boundary conditions, we
obtain the total length equation

(2.14)
d

dt
Lt +

∫

Γt

kβds = 0,

where Lt = L(Γt) is the total length of the curve Γt, Lt =
∫

Γt ds =
∫ 1

0 |∂ux(u, t)| du.
If kβ ≥ 0, then the evolution of planar curves parameterized by a solution of (1.1)
represents a curve shortening flow, i.e., Lt2 ≤ Lt1 ≤ L0 for any 0 ≤ t1 ≤ t2 ≤ T .
The condition kβ ≥ 0 is obviously satisfied in the case β(k, ν) = γ(ν)|k|m−1k, where
m > 0 and γ is a nonnegative anisotropy function. In particular, the Euclidean
curvature driven flow (β = k) is curve shortening flow.

2.3.2. The area equation. Let us denote by A = At the area of the domain
Ωt enclosed by a Jordan curve Γt. Then by using Green’s formula we obtain, for
P = −x2/2, Q = x1/2,

At =

∫∫

Ωt

dx =

∫∫

Ωt

∂Q

∂x1
−
∂P

∂x2
dx =

∮

Γt

Pdx1 +Qdx2 =
1

2

∮

Γt

−x2dx1 + x1dx2 .

Since dxi = ∂uxidu, u ∈ [0, 1], we have

At =
1

2

∫ 1

0

det(x, ∂ux) du .

Clearly, integration of the derivative of a quantity along a closed curve yields zero.

Therefore 0 =
∫ 1

0 ∂u det(x, ∂tx)du =
∫ 1

0 det(∂ux, ∂tx) + det(x, ∂u∂tx)du, and so
∫ 1

0
det(x, ∂u∂tx)du =

∫ 1

0
det(∂tx, ∂ux)du because det(∂ux, ∂tx) = − det(∂tx, ∂ux).

As ∂tx = β ~N + α~T , ∂uxdu = ~Tds and d
dt
At = 1

2

∫ 1

0
2 det(∂tx, ∂ux)du we can

conclude that

(2.15)
d

dt
At +

∫

Γt

βds = 0.

Remark. In the case when a curve is evolved according to the curvature, i.e.

β = k, then it follows from (2.3) and (2.15) that d
dt
At = −2π and so

At = A0 − 2πt .

It means that the curve Γt ceases to exists for t = Tmax = A0

2π , i.e. the lifespan of
curve evolution with β = k is finite.
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Figure 2. A closed curve evolving by the curvature becomes con-
vex in finite time and then it converges to a point.

2.3.3. Brakke’s motion by curvature. The above first integrals can be
generalized for computation of the time derivative of the quantity

∫

Γt φ(x, t) ds

where φ ∈ C∞
0 (R2, [0, T )) is a compactly supported test function. It represents a

total value of a transported quantity represented by a scalar function φ. Since the
value of the geometric quantity

∫

Γt φ(x, t) ds is independent of a particular choice

of a tangential velocity α we may take α = 0 for simplicity. Since ∂tx = β ~N and
∂tds = ∂tgdu = −kβgdu = −kβds we obtain

d

dt

∫

Γt

φ(x, t) ds =

∫

Γt

∂tφ(x, t) + ∇xφ.∂tx− kβφds

=

∫

Γt

∂tφ(x, t) + β∇xφ. ~N − kβφds .(2.16)

The above integral identity (2.16) can be used in description of a more general
flow of rectifiable subsets of R

2 with a distributional notion of a curvature which
is refereed to as varifold. Let Γt, t ∈ [0, T ), be a flow of one dimensional countably
rectifiable subsets of the plane R

2. Brakke in [Bra78, Section 3.3] introduced a
notion of a mean curvature flow (i.e. β = k) as a solution to the following integral
inequality

(2.17)
d

dt

∫

Γt

φ(x, t) dH1(x) ≤

∫

Γt

(

∂tφ(x, t) + k∇xφ. ~N − k2φ
)

dH1(x)

for any smooth test function φ ∈ C∞
0 (R2, [0, T )). Here we have denoted by d

dt
the

upper derivative and H1(x) the one dimensional Hausdorff measure.

2.4. Gage-Hamilton and Grayson’s theorems

Assume that a smooth, closed, and embedded curve is evolved along its normal
vector at a normal velocity proportional to its curvature, i.e. β = k. This curve
evolution is known as the Euclidean curve shortening flow, and is depicted in Fig. 2.
Since the curvature is positive on the convex side and it is negative on the concave
side one may expect that the evolving curve becomes more convex and less concave
as time t increases. Finally, it becomes convex shape and it shrinks to a circular
point in finite time. This natural observation has been rigorously proved by M.
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Figure 3. Motion by the curvature. Numerically computed evo-
lution of various initial curves.

Grayson in [Gra87]. He used already known result due to Gage and Hamilton.
They considered evolution of convex curves in the plane and proved that evolved
curves shrink to a circular point in finite time.

Theorem 2.1 (Gage and Hamilton [GH86]). Any smooth closed convex curve
embedded in R

2 evolved by the curvature converges to a point in finite time with
asymptotic circular shape.

What Grayson added to this proof was the statement that any embedded
smooth planar curve (not necessarily convex) when evolving according to the curva-
ture becomes convex in finite time, stays embedded and then it shrinks to a circular
point in finite time.

Theorem 2.2 (Grayson [Gra87]). Any smooth closed curve embedded in R
2

evolve by the curvature becomes convex in finite time and then it converges to a
point in finite time with asymptotical circular shape.

Figure 3 shows computational results of curvature driven evolution of two initial
planar curve evolved with the normal velocity β = k.

Although we will not go into the details of proofs of the above theorems it is
worthwile to note that the proof of Grayson’s theorem consists of several steps.
First one needs to prove that an embedded initial curve Γ0 when evolved according
to the curvature stays embedded for t > 0, i.e. selfintersections cannot occur
for t > 0. Then it is necessary to prove that eventual concave parts of a curve
decrease they length. To this end, one can construct a partition a curve into its
convex and concave part and show that concave parts are vanishing when time
increases. The curve eventually becomes convex. Then Grayson applied previous
result due to Gage and Hamilton. Their result says that any initial convex curve
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asymptotically approaches a circle when t→ Tmax where Tmax is finite. To interpret
their result in the language of parabolic partial differential equations we notice that
the solution to (2.10) with β = k remains positive provided that the initial value
k0 was nonnegative. This is a direct consequence of the maximum principle for
parabolic equations. Indeed, let us denote by y(t) = minΓt k(., t). With regard
to the envelope theorem we may assume that there exists s(t) such that y(t) =
k(s(t), t). As ∂2

sk ≥ 0 and ∂sk = 0 at s = s(t) we obtain from (2.10) that y′(t) ≥
y3(t). Solving this ordinary differential inequality with positive initial condition
y(0) = minΓ0 k0 > 0 we obtain minΓt k(., t) = y(t) > 0 for 0 < t < Tmax. Thus Γt

remains convex provided Γ0 was convex. The proof of the asymptotic circular profile
is more complicated. However, it can be very well understood when considering
selfsimilarly rescaled dependent and independent variables in equation (2.10). In
these new variables, the statement of Gage and Hamilton theorem is equivalent to
the proof of asymptotical stability of the constant unit solution.

In the proof of Grayson’s theorem one can find another nice application of
the parabolic comparison principle. Namely, if one wants to prove embeddednes
property of an evolved curve Γt it is convenient to inspect the following distance
function between arbitrary two points x(s1, t), x(s2, t) of a curve Γt:

f(s1, s2, t) = |x(s1, t) − x(s2, t)|
2

where s1, s2 ∈ [0, L(Γt)] and t > 0. Assume that x = x(s, t) satisfies (2.4). Without
loss of generality we may assume α = 0 as α does not change the shape of the curve.
Hence the embeddednes property is independent of α. Without loss of generality we
therefore may choose α = 0. Let us compute partial derivatives of f with respect
to its variables. With help of Frenét formulae we obtain

∂tf = 2((x(s1, t) − x(s2, t)).(∂tx(s1, t) − ∂tx(s2, t)))

= 2((x(s1, t) − x(s2, t)).(k(s1, t) ~N(s1, t) − k(s2, t) ~N(s2, t)))

∂s1f = 2((x(s1, t) − x(s2, t)). ~T (s1, t))

∂s2f = −2((x(s1, t) − x(s2, t)). ~T (s2, t))

∂2
s1
f = 2(~T (s1, t). ~T (s1, t)) + 2k(s1, t)((x(s1, t) − x(s2, t)). ~N (s1, t))

∂2
s2
f = 2(~T (s1, t). ~T (s1, t)) − 2k(s2, t)((x(s1, t) − x(s2, t). ~N(s2, t)) .

Hence
∂tf = ∆f − 4

where ∆ is the Laplacian operator with respect to variables s1, s2. Using a clever
application of a suitable barrier function (a circle) and comparison principle for
the above parabolic equation Grayson proved that f(s1, s2, t) ≥ δ > 0 whenever
|s1 − s2| ≥ ǫ > 0 where ǫ, δ > 0 are sufficiently small. But this is equivalent to the
statement that the curve Γt is embedded. Notice that the above ”trick” works only
for the case β = k and this is why it is still an open question whether embedded
initial curve remains embedded when it is evolved by a general normal velocity
β = β(k).

2.4.1. Asymptotic profile of shrinking curves for other normal ve-

locities. There are some partial results in this direction. If β = k1/3 then the
corresponding flow of planar curves is called affine space scale flow. It has been
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Figure 4. An initial ellipse evolved with the normal velocity β = k1/3.

Figure 5. An example of evolution of planar curves evolved by
the normal velocity β = k1/3.

studied and analyzed by Angenent, Shapiro and Tannenbaum in [AST98] and
[ST94]. In this case the limiting profile of a shrinking family of curves is an el-
lipse. Selfsimilar property of shrinking ellipses in the case β = k1/3 has been also
addressed in [MS99]. In Fig. 4 we present a computational result of evolution of
shrinking ellipses. Fig. 5 depicts evolution of the same initial curve as in Fig. 3 (left)
but now the curve is evolved with β = k1/3. Finally. Fig. 6 shows computational
results of curvature driven evolution of an initial spiral-like curve. Notice that the
normal velocity of form β(k) = kω has been investigated by Ushijima and Yazaki in
[UY00] in the context of crystaline curvature numerical approximation of the flow.
It can be shown that ω = 1/3, 1/8, 1/15, ..., 1/(n2− 1), ..., are bifurcation values for
which one can prove the existence of branches of selfsimilar solutions of evolving
curves shrinking to a point as a rounded polygon with n faces.
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Figure 6. The sequence of evolving spirals for β = k1/3.



CHAPTER 3

Qualitative behavior of solutions

In this chapter we focus our attention on qualitative behavior of curvature
driven flows of planar curves. We present techniques how to prove local in time
existence of a smooth family of curves evolved with the normal velocity given by
a general function β = β(k, x, ν) depending on the curvature k, position vector x
as well as the tangential angle ν. The main idea is to transform the geometric
problem into the language of a time depending solution to an evolutionary partial
differential equation like e.g. (2.10)–(2.13). First we present an approach due
to Angenent describing evolution of an initial curve by a fully nonlinear parabolic
equation for the distance function measuring the normal distance of the initial curve
Γ0 the evolved curve Γt for small values of t > 0. The second approach presented
in this chapter is based on solution to the system of nonlinear parabolic-ordinary
differential equations (2.10)–(2.13) also proposed by Angenent and Gurtin [AG89,

AG94] and further analyzed and applied by Mikula and Ševčovič in the series of
papers [MS01, MS04a, MS04b]. Both approaches are based on the solution to a
certain fully nonlinear parabolic equation or system of equations. To provide a local
existence and continuation result we have apply the theory of nonlinear analytic
semiflows due to Da Prato and Grisvard, Lunardi [DPG75, DPG79, Lun82] and
Angenent [Ang90a, Ang90b].

3.1. Local existence of smooth solutions

The idea of the proof of a local existence of an evolving family of closed embed-
ded curves is to transform the geometric problem into a solution to a fully nonlinear
parabolic equation for the distance φ(u, t) of a point x(u, t) ∈ Γt from its initial
value position x0(u) = x(u, 0) ∈ Γ0. This idea is due to Angenent [Ang90b] who
derived the fully nonlinear parabolic equation for φ and proved local existence of
smooth solutions by method of abstract nonlinear evolutionary equations in Banach
spaces [Ang90b].

3.1.1. Local representation of an embedded curve. Let Γ0 = Img(x0)
be a smooth initial Jordan curve embedded in R

2. Because of its smoothness and
embeddednes one can construct a local parameterization of any smooth curve Γt =
Img(x(., t)) lying in the thin tubular neighborhood along Γ0, i.e. distH(Γt,Γ0) < ε
where distH is the Hausdorff set distance function. This is why there exists a small
number 0 < ε ≪ 1 and a smooth immersion function σ : S1 × (−ε, ε) → R

2 such
that

• x0(u) = σ(u, 0) for any u ∈ S1

15
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Figure 1. Description of a local parameterization of an embedded
curve Γt in the neighborhood of the initial curve Γ0.

• for any u ∈ S1 there exists a unique φ = φ(u, t) ∈ (−ε, ε) such that
σ(u, φ(u, t)) = x(u, t).

• the implicitly defined function φ = φ(u, t) is smooth in its variables pro-
vided the function x = x(u, t) is smooth.

It is easy to verify that the function σ(u, φ) = x0(u) + φ ~N0(u) is the immersion

having the above properties. Here ~N0(u) is the unit inward vector to the curve Γ0

at the point x0(u) (see Fig. 1).
Now we can evaluate ∂tx, ∂ux, ∂

2
ux and |∂ux| as follows:

∂tx = σ′
φ∂tφ ,

∂ux = σ′
u + σ′

φ∂uφ ,

∂2
ux = σ′′

uu + 2σ′′
uφ∂uφ+ σ′′

φφ(∂uφ)2 + σ′
φ∂

2
uφ ,

g = |∂ux| =
(

|σ′
u|

2 + 2(σ′
u.σ

′
φ)∂uφ+ |σ′

φ|
2(∂uφ)2

)
1
2 .

Hence we can express the curvature k = det(∂ux, ∂
2
ux)/|∂ux|3 as follows:

g3k = det(∂ux, ∂
2
ux) = ∂2

uφ∂uφdet(σ′
φ, σ

′
φ) + ∂2

uφdet(σ′
u, σ

′
φ)

+ (∂uφ)2
[

det(σ′
u, σ

′′
φφ) + ∂uφdet(σ′

φ, σ
′′
φφ)
]

+ 2∂uφdet(σ′
u, σ

′′
uφ)

+ 2(∂uφ)2 det(σ′
φ, σ

′′
uφ) + det(σ′

u, σ
′′
uu) + ∂uφdet(σ′

φ, σ
′′
uu) .

Clearly, det(σ′
φ, σ

′
φ) = 0. Since σ′

φ = ~N0 and σ′
u = ∂ux

0 + φ∂u
~N0 = g0(1 − k0φ)~T 0

we have det(σ′
u, σ

′
φ) = g0(1 − k0φ) and (σ′

u.σ
′
φ) = 0. Therefore the local length

g = |∂ux| and the curvature k can be expressed as

g = |∂ux| =
(

(g0(1 − k0φ))2 + (∂uφ)2
)

1
2 ,

k =
g0(1 − k0φ)

g3
∂2

uφ+R(u, φ, ∂uφ)

where R(u, φ, ∂uφ) is a smooth function.
We proceed with evaluation of the time derivative ∂tx. Since ∂ux = σ′

u +σ′
φ∂uφ

we have ~T = 1
g (σ′

u +σ′
φ∂uφ). The vectors ~N and ~T are perpendicular to each other.

Thus

∂tx. ~N = det(∂tx, ~T ) =
1

g
det(σ′

u, σ
′
φ)∂tφ =

g0(1 − k0φ)

g
∂tφ



3.1. LOCAL EXISTENCE OF SMOOTH SOLUTIONS 17

because det(σ′
φ, σ

′
φ) = 0. Hence, a family of embedded curves Γt, t ∈ [0, T ), evolves

according to the normal velocity

β = µk + c

if and only if the function φ = φ(u, t) is a solution to the nonlinear parabolic
equation

∂tφ =
µ

g2
∂2

uφ+
g

g0(1 − k0φ)
(µR(u, φ, ∂uφ) + c)

where

g =
(

|g0|2(1 − k0φ)2 + (∂uφ)2
)

1
2 .

In a general case when the normal velocity β = β(k, x, ~N) is a function of curvature

k, position vector x and the inward unit normal vector ~N , φ is a solution to a fully
nonlinear parabolic equation of the form:

(3.1) ∂tφ = F (∂2
uφ, ∂uφ, φ, u), u ∈ S1, t ∈ (0, T ) .

The right-hand side function F = F (q, p, φ, u) is C1 is a smooth function of its
variables and

∂F

∂q
=
β′

k

g2
> 0

and so equation (3.1) is a nonlinear strictly parabolic equation. Equation (3.1) is
subject to an initial condition

(3.2) φ(u, 0) = φ0(u) ≡ 0 , u ∈ S1 .

3.1.2. Nonlinear analytic semiflows. In this section we recall basic facts
from the theory of nonlinear analytic semiflows which can be used in order to
prove local in time existence of a smooth solutions to the fully nonlinear parabolic
equation (3.1) subject to the initial condition (3.2). The theory has been developed
by S. Angenent in [Ang90b] and A. Lunardi in [Lun82].

Equation (3.1) can be rewritten as an abstract evolutionary equation

(3.3) ∂tφ = F(φ)

subject to the initial condition

(3.4) φ(0) = φ0 ∈ E1

where F is a C1 smooth mapping between two Banach spaces E1, E0, i.e. F ∈
C1(E1, E0). For example, if we take

E0 = h̺(S1), E1 = h2+̺(S1) ,

where hk+̺(S1), k = 0, 1, ..., is a little Hölder space, i.e. the closure of C∞(S1) in
the topology of the Hölder space Ck+σ(S1) (see [Ang90b]), then the mapping F
defined as in the right-hand side of (3.1) is indeed a C1 mapping from E1 into E0.
Its Frechét derivative dF(φ0) is being given by the linear operator

dF(φ0)φ = a0∂2
uφ+ b0∂uφ+ c0φ

where

a0 = F ′
q(∂

2
uφ

0, ∂uφ
0, φ0, u) =

β′
k

(g0)2
, b0 = F ′

p(∂
2
uφ

0, ∂uφ
0, φ0, u),

c0 = F ′
φ(∂2

uφ
0, ∂uφ

0, φ0, u) .
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Suppose that the initial curve Γ0 = Img(x0) is sufficiently smooth, x0 ∈
(

h2+̺(S1)
)2

and regular, i.e. g0(u) = |∂ux
0(u)| > 0 for any u ∈ S1. Then a0 ∈ h1+̺(S1). A

standard result from the theory of analytic semigroups (c.f. [Hen81]) enables us to
conclude that the principal part A := a0∂2

u of the linearization dF(φ0) is a generator
of a analytic semigroup exp(tA), t ≥ 0, in the Banach space E0 = h̺(S1).

3.1.2.1. Maximal regularity theory. In order to proceed with the proof of local
in time existence of a classical solution to the abstract nonlinear equation (3.3) we
have to recall a notion of a maximal regularity pair of Banach spaces.

Assume that (E1, E0) is a pair of Banach spaces with E1 densely included into
E0. By L(E1, E0) we shall denote the Banach space of all linear bounded operators
from E1 into E0. An operator A ∈ L(E1, E0) can be considered as an unbounded
operator in the Banach space E0 with a dense domain D(A) = E1. By Hol(E1, E0)
we shall denote a subset of L(E1, E0) consisting of all generators A of an analytic
semigroup exp(tA), t ≥ 0, of linear operators in the Banach space E0 (c.f. [Hen81]).

The next lemma is a standard perturbation result concerning the class of gen-
erators of analytic semigroups.

Lemma 3.1. [Paz83, Theorem 2.1] The set Hol(E1, E0) is an open subset of
the Banach space L(E1, E0).

The next result is also related to the perturbation theory for the class of gen-
erators of analytic semigroups.

Definition 3.2. We say that the linear bounded operator B : E1 → E0 has a
relative zero norm if for any ε > 0 there is a constant kε > 0 such that

‖Bx‖E0 ≤ ε‖x‖E1 + kε‖x‖E0

for any x ∈ E1.

As an example of such an operator we may consider an operator B ∈ L(E1, E0)
satisfying the following inequality of Gagliardo-Nirenberg type:

‖Bx‖E0 ≤ C‖x‖λ
E1

‖x‖1−λ
E0

for any x ∈ E1 where λ ∈ (0, 1). Then using Young’s inequality

ab ≤
ap

p
+
bq

q
,

1

p
+

1

q
= 1 ,

with p = 1/λ and q = 1/(1− λ). it is easy to verify that B has zero relative norm.

Lemma 3.3. [Paz83, Section 2.1] The set Hol(E1, E0) is closed with respect to
perturbations by linear operators with zero relative norm, i.e. if A ∈ Hol(E1, E0)
and B ∈ L(E1, E0) has zero relative norm then A+B ∈ Hol(E1, E0).

Neither the theory of C0 semigroups (c.f. Pazy [Paz83]) nor the theory of an-
alytic semigroups (c.f. Henry [Hen81]) are able to handle fully nonlinear parabolic
equations. This is mainly due to the method of integral equation which is suitable
for semilinear equations only. The second reason why these methods cannot provide
a local existence result is due to the fact that semigroup theories are working with
function spaces which are fractional powers of the domain of a generator of an ana-
lytic semigroup (see [Hen81]). Therefore we need a more robust theory capable of
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handling fully nonlinear parabolic equations. This theory is due to Angenent and
Lunardi [Ang90a, Lun82] and it is based on abstract results by Da Prato and
Grisvard [DPG75, DPG79]. The basic idea is the linearization technique where
one can linearize the fully nonlinear equation at the initial condition φ0. Then one
sets up a linearized semilinear equation with the right hand side which is of the
second order with respect to deviation from the initial condition. In what follows,
we shall present key steps of this method. First we need to introduce the maxi-
mal regularity class which will enable us to construct an inversion operator to a
nonhomogeneous semilinear equation.

Let E = (E1, E0) be a pair of Banach spaces for which E1 is densely included
in E0. Let us define the following function spaces

X = C([0, 1], E0), Y = C([0, 1], E1) ∩ C
1([0, 1], E0) .

We shall identify ∂t with the bounded differentiation operator from Y to X defined
by (∂tφ)(t) = φ′(t). For a given linear bounded operator A ∈ L(E1, E0) we define
the extended operator A : Y → X × E1 defined by Aφ = (∂tφ − Aφ, φ(0)). Next
we define a class M1(E) as follows:

M1(E) = {A ∈ Hol(E), A is an isomorphism between Y and X × E1} .

It means that the class M1(E) consist of all generators of analytic semigroups A
such that the initial value problem for the semilinear evolution equation

∂tφ−Aφ = f(t), φ(0) = φ0,

has a unique solution φ ∈ Y for any right-hand side f ∈ X and the initial condition
φ0 ∈ E1 (c.f. [Ang90a]). For such an operator A we obtain boundedness of the
inverse of the operator φ 7→ (∂t − A)φ mapping the Banach space Y (0) = {φ ∈
Y, φ(0) = 0} onto the Banach space X , i.e.

‖(∂t −A)−1‖L(X,Y (0)) ≤ C <∞ .

The class M1(E) is refereed to as maximal regularity class for the pair of Banach
spaces E = (E1, E0).

An analogous perturbation result to Lemma 3.3 has been proved by Angenent.

Lemma 3.4. [Ang90a, Lemma 2.5] The set M1(E1, E0) is closed with respect
to perturbations by linear operators with zero relative norm.

Using properties of the class M1(E) we are able to state the main result on
the local existence of a smooth solution to the abstract fully nonlinear evolutionary
problem (3.3)–(3.4).

Theorem 3.5. [Ang90a, Theorem 2.7] Assume that F is a C1 mapping from
some open subset O ⊂ E1 of the Banach space E1 into the Banach space E0. If
the Frechét derivative A = dF(φ) belongs to M1(E) for any φ ∈ O and the initial
condition φ0 belongs to O then the abstract fully nonlinear evolutionary problem
(3.3)–(3.4) has a unique solution φ ∈ C1([0, T ], E0) ∩ C([0, T ], E1) on some small
time interval [0, T ], T > 0.

Proof. The proof is based on the Banach fixed point theorem. Without loss
of generality (by shifting the solution φ(t) 7→ φ0 + φ(t)) we may assume φ0 = 0.
Taylor’s series expansion of F at φ = 0 yields F(φ) = F0 + Aφ + R(φ) where
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F0 ∈ E0, A ∈ M1(E) and the remainder function R is quadratically small, i.e.
‖R(φ)‖E0 = O(‖φ‖2

E1
) for small ‖φ‖E1. Problem (3.3)–(3.4) is therefore equivalent

to the fixed point problem

φ = (∂t −A)−1(R(φ) + F0)

on the Banach space Y
(0)
T = {φ ∈ C1([0, T ], E0) ∩ C([0, T ], E1), φ(0) = 0}. Using

boundedness of the operator (∂t−A)−1 and taking T > 0 sufficiently one can prove
that the right hand side of the above equation is a contraction mapping on the

space Y
(0)
T proving thus the statement of theorem. �

3.1.2.2. Application of the abstract result for the fully nonlinear parabolic equa-
tion for the distance function. Now we are in a position to apply the abstract result
contained in Theorem 3.5 to the fully nonlinear parabolic equation (3.1) for the dis-
tance function φ subject to a zero initial condition φ0 = 0. Notice that one has
to carefully choose function spaces to work with. Baillon in [Bai80] showed that,
if we exclude the trivial case E1 = E0, the class M1(E1, E0) is nonempty only if
the Banach space E0 contains a closed subspace isomorphic to the sequence space
(c0). As a consequence of this criterion we conclude that M1(E1, E0) is empty for
any reflexive Banach space E0. Therefore the space E0 cannot be reflexive. On
the other hand, one needs to prove that the linearization A = dF(φ) : E1 → E0

generates an analytic semigroup in E0. Therefore it is convenient to work with
little Hölder spaces satisfying these structural assumptions.

Applying the abstract result from Theorem 3.5 we are able to state the following
theorem which is a special case of a more general result by Angenent [Ang90b,
Theorem 3.1] to evolution of planar curves.

Theorem 3.6. [Ang90b, Theorem 3.1] Assume that the normal velocity β =
β(k, ν) is a C1,1 smooth function such that β′

k > 0 for all k ∈ R and ν ∈ [0, 2π].
Let Γ0 be an embedded smooth curve with Hölder continuous curvature. Then there
exists a unique maximal solution Γt, t ∈ [0, Tmax), consisting of curves evolving with
the normal velocity equal to β(k, ν).

Remark. Verification of nonemptyness of the set M1(E1, E0) might be difficult
for a particular choice of Banach pair (E1, E0). There is however a general con-
struction of the Banach pair (E1, E0) such that a given linear operator A belongs
to M1(E1, E0). Let F = (F1, F0) be a Banach pair. Assume that A ∈ Hol(F1, F0).
We define the Banach space F2 = {φ ∈ F1, Aφ ∈ F1} equipped with the graph
norm ‖φ‖F2 = ‖φ‖F1 + ‖Aφ‖F1 . For a fixed σ ∈ (0, 1) we introduce the continuous
interpolation spaces E0 = Fσ = (F1, F0)σ and E1 = F1+σ = (F2, F1)σ. Then, by
result due to Da Prato and Grisvard [DPG75, DPG79] we have A ∈ M1(E1, E0).

3.1.3. Local existence, uniqueness and continuation of classical so-

lutions. In this section we present another approach for the proof a of a local
existence of a classical solution. Now we put our attention to a solution of the
system of parabolic-ordinary differential equations (2.10) – (2.13). Let a regular
smooth initial curve Γ0 = Img(x0) be given. Recall that a family of planar curves
Γt = Img(x(., t)), t ∈ [0, T ), satisfying (1.1) can be represented by a solution
x = x(u, t) to the position vector equation (2.4). Notice that β = β(x, k, ν) de-
pends on x, k, ν and this is why we have to provide and analyze a closed system of
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equations for the variables k, ν as well as the local length g = |∂ux| and position
vector x. In the case of a nontrivial tangential velocity functional α the system of
parabolic–ordinary governing equations has the following form:

∂tk = ∂2
sβ + α∂sk + k2β ,(3.5)

∂tν = β′
k∂

2
sν + (α+ β′

ν)∂sν + ∇xβ.~T ,(3.6)

∂tg = −gkβ + ∂uα ,(3.7)

∂tx = β ~N + α~T(3.8)

where (u, t) ∈ QT = [0, 1] × (0, T ), ds = g du, ~T = ∂sx = (cos ν, sin ν), ~N = ~T⊥ =
(− sin ν, cos ν), β = β(x, k, ν). A solution (k, ν, g, x) to (3.5) – (3.8) is subject to
initial conditions

k(., 0) = k0 , ν(., 0) = ν0 , g(., 0) = g0 , x(., 0) = x0(.)

and periodic boundary conditions at u = 0, 1 except of ν for which we require the
boundary condition ν(1, t) ≡ ν(0, t) mod(2π). The initial conditions for k0, ν0, g0
and x0 have to satisfy natural compatibility constraints: g0 = |∂ux0| > 0 , k0 =
g−3
0 ∂ux0 ∧ ∂2

ux0 , ∂uν0 = g0k0 following from the equation k = ∂sx ∧ ∂2
sx and

Frenét’s formulae applied to the initial curve Γ0 = Img(x0). Notice that the system
of governing equations consists of coupled parabolic-ordinary differential equations.

Since α enters the governing equations a solution k, ν, g, x to (3.5) – (3.8) does
depend on α. On the other hand, the family of planar curves Γt = Img(x(., t)), t ∈
[0, T ), is independent of a particular choice of the tangential velocity α as it does not
change the shape of a curve. The tangential velocity α can be therefore considered
as a free parameter to be suitably determined later. For example, in the Euclidean
curve shortening equation β = k we can write equation (2.4) in the form ∂tx =
∂2

sx = g−1∂u(g−1∂ux) + αg−1∂ux where g = |∂ux|. Epstein and Gage [EG87]
showed how this degenerate parabolic equation (g need not be smooth enough) can
be turned into the strictly parabolic equation ∂tx = ∂2

sx = g−2∂2
ux) by choosing

the tangential term α in the form α = g−1∂u(g−1)∂ux. This trick is known as ”De
Turck’s trick” named after De Turck (see [DeT83]) who use this approach to prove
short time existence for the Ricci flow. Numerical aspects of this ”trick” has been
discussed by Dziuk and Deckelnick in [Dzi94, Dzi99, Dec97]. In general, we allow
the tangential velocity functional α appearing in (3.5) – (3.8) to be dependent on
k, ν, g, x in various ways including nonlocal dependence, in particular (see the next
section for details).

Let us denote Φ = (k, ν, g, x). Let 0 < ̺ < 1 be fixed. By Ek we denote the
following scale of Banach spaces (manifolds)

(3.9) Ek = h2k+̺ × h2k+̺
∗ × h1+̺ × (h2+̺)2

where k = 0, 1/2, 1, and h2k+̺ = h2k+̺(S1) is the ”little” Hölder space (see

[Ang90a]). By h2k+̺
∗ (S1) we have denoted the Banach manifold h2k+̺

∗ (S1) =

{ν : R → R , ~N = (− sin ν, cos ν) ∈ (h2k+̺(S1))2}. 1

1Alternatively, one may consider the normal velocity β depending directly on the unit inward

normal vector ~N belonging to the linear vector space (h2k+̺(S1))2, i.e. β = β(k, x, ~N).
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Concerning the tangential velocity α we shall make a general regularity as-
sumption:

(3.10) α ∈ C1(O 1
2
, h2+̺(S1))

for any bounded open subset O 1
2
⊂ E 1

2
such that g > 0 for any (k, ν, g, x) ∈ O 1

2
.

In the rest of this section we recall a general result on local existence and unique-
ness a classical solution of the governing system of equations (3.5) – (3.8). The nor-
mal velocity β depending on k, x, ν belongs to a wide class of normal velocities for
which local existence of classical solutions has been shown in [MS04a, MS04b].
This result is based on the abstract theory of nonlinear analytic semigroups de-
veloped by Angenent in [Ang90a] an it utilizes the so-called maximal regularity
theory for abstract parabolic equations.

Theorem 3.7. ([MS04a, Theorem 3.1] Assume Φ0 = (k0, ν0, g0, x0) ∈ E1

where k0 is the curvature, ν0 is the tangential vector, g0 = |∂ux0| > 0 is the local
length element of an initial regular closed curve Γ0 = Img(x0) and the Banach space
Ek is defined as in (3.9). Assume β = β(x, k, ν) is a C4 smooth and 2π-periodic
function in the ν variable such that minΓ0 β

′
k(x0, k0, ν0) > 0 and α satisfies (3.10).

Then there exists a unique solution Φ = (k, ν, g, x) ∈ C([0, T ], E1)∩C
1([0, T ], E0) of

the governing system of equations (3.5) – (3.8) defined on some small time interval
[0, T ] , T > 0. Moreover, if Φ is a maximal solution defined on [0, Tmax) then we
have either Tmax = +∞ or lim inft→T−

max
minΓt β′

k(x, k, ν) = 0 or Tmax < +∞ and

maxΓt |k| → ∞ as t→ Tmax.

Proof. Since ∂sν = k and ∂sβ = β′
k∂sk+β′

νk+∇xβ.~T the curvature equation
(3.5) can be rewritten in the divergent form

∂tk = ∂s(β
′
k∂sk) + ∂s(β

′
νk) + k∇xβ. ~N + ∂s(∇xβ.~T ) + α∂sk + k2β .

Let us take an open bounded subset O 1
2
⊂ E 1

2
such that O1 = O 1

2
∩E1 is an open

subset of E1 and Φ0 ∈ O1, g > 0, and β′
k(x, k, ν) > 0 for any (k, ν, g, x) ∈ O1.

The linearization of f at a point Φ̄ = (k̄, ν̄, ḡ, x̄) ∈ O1 has the form df(Φ̄) =
dΦF (Φ̄, ᾱ) + dαF (Φ̄, ᾱ) dΦα(Φ̄) where ᾱ = α(Φ̄) and

dΦF (Φ̄, ᾱ) = ∂uD̄∂u + B̄∂u + C̄ , dαF (Φ̄, ᾱ) =
(

ḡ−1∂uk̄ , k̄ , ∂u , ~̄T
)

D̄ = diag(D̄11, D̄22, 0, 0, 0), D̄11 = D̄22 = ḡ−2β′
k(x̄, k̄, ν̄) ∈ C1+̺(S1) and B̄, C̄ are

5 × 5 matrices with C̺(S1) smooth coefficients. Moreover, B̄ij = 0 for i = 3, 4, 5
and C̄3j ∈ C1+̺, C̄ij ∈ C2+̺ for i = 4, 5 and all j. The linear operator A1 defined
by A1Φ = ∂u(D̄∂uΦ), D(A1) = E1 ⊂ E0 is a generator of an analytic semigroup
on E0 and, moreover, A1 ∈ M1(E0, E1) (see [Ang90a, Ang90b]). Notice that
dαF (Φ̄, ᾱ) belongs to L(C2+̺(S1), E 1

2
) and this is why we can write dΦf(Φ̄) as a

sum A1 + A2 where A2 ∈ L(E 1
2
, E0). By Gagliardo–Nirenberg inequality we have

‖A2Φ‖E0 ≤ C‖Φ‖E 1
2

≤ C‖Φ‖
1/2
E0

‖Φ‖
1/2
E1

and so the linear operator A2 is a relatively

bounded linear perturbation of A1 with zero relative bound (cf. [Ang90a]). With
regard to Lemma 3.4 (see also [Ang90a, Lemma 2.5]) the class M1 is closed with
respect to such perturbations. Thus dΦf(Φ̄) ∈ M1(E0, E1). The proof of the short
time existence of a solution Φ now follows from Theorem 3.5 (see also [Ang90a,
Theorem 2.7]).
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Finally, we will show that the maximal curvature becomes unbounded as t →
Tmax in the case lim inf t→T−

max
minΓt β′

k > 0 and Tmax < +∞. Suppose to the

contrary that maxΓt |k| ≤ M < ∞ for any t ∈ [0, Tmax). According to [Ang90b,
Theorem 3.1] there exists a unique maximal solution Γ : [0, T ′

max) → Ω(R2) satis-
fying the geometric equation (1.1). Recall that Ω(R2) is the space of C1 regular
Jordan curves in the plane (cf. [Ang90b]). Moreover, Γt is a C∞ smooth curve for
any t ∈ (0, T ′

max) and the maximum of the absolute value of the curvature tends to
infinity as t → T ′

max. Thus Tmax < T ′
max and therefore the curvature and subse-

quently ν remain bounded in C2+̺′

norm on the interval [0, Tmax] for any ̺′ ∈ (̺, 1).
Applying the compactness argument one sees that the limit limt→Tmax

Φ(., t) exists
and remains bounded in the space E1 and one can continue the solution Φ beyond
Tmax, a contradiction. �

Remark. In a general case where the normal velocity may depend on the position
vector x, the maximal time of existence of a solution can be either finite or infinite.
Indeed, as an example one can consider the unit ball B = {|x| < 1} and function
δ(x) = (|x| − 1)γ for x 6∈ B, γ > 0. Suppose that Γ0 = {|x| = R0} is a circle with a
radius R0 > 1 and the family Γt, t ∈ [0, T ), evolves according to the normal velocity
function β(x, k) = δ(x)k. Then, it is an easy calculus to verify that the family Γt

approaches the boundary ∂B = {|x| = 1} in a finite time Tmax <∞ provided that
0 < γ < 1 whereas Tmax = +∞ in the case γ = 1.





CHAPTER 4

Level set methods for curvature driven flows of

planar curves

By contrast to the direct approach, level set methods are based on introduc-
ing an auxiliary shape function whose zero level sets represent a family of pla-
nar curves which is evolved according to the geometric equation (1.1) (see e.g.
[OS88, Set90, Set96, Set98]). The level set approach handles implicitly the
curvature-driven motion, passing the problem to higher dimensional space. One
can deal with splitting and/or merging of evolving curves in a robust way. However,
from the computational point of view, level set methods are much more computa-
tionaly expensive than methods based on the direct approach. The purpose of this
chapter is to present basic ideas and results concerning the level set approach in
curvature driven flows of planar curves.

Other indirect method is based on the phase-field formulations. In these lecture
notes we however do not go into details of these methods and interested reader is
referred to extensive literature in this topic (see e.g. [Cag90, EPS96, BM98] and
references therein).

4.1. Level set representation of Jordan curves in the plane

In the level set method the evolving family of planar curves Γt, t ≥ 0, is rep-
resented by the zero level set of the so-called shape function φ : Ω × [0, T ] → R

where Ω ⊂ R
2 is a simply connected domain containing the whole family of evolv-

ing curves Γt, t ∈ [0, T ]. We adopt a notation according to which the interior
of a curve is described as: int(Γt) = {x ∈ R

2, φ(x, t) < 0} and, consequently,

Figure 1. Description of the level set representation of a planar
embedded curve by a shape function φ : R

2 × [0, T ) → R.
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Figure 2. Description of the representation of planar embedded
curves by level sets of two functions φ : R

2 → R. The level set
functions (left) and their level cross-section (right).

ext(Γt) = {x ∈ R
2, φ(x, t) > 0} and Γt = {x ∈ R

2, φ(x, t) = 0} (see Fig. 1). With

this convection, the unit inward normal vector ~N can be expressed as

~N = −∇φ/|∇φ| .

In order to express the signed curvature k of the curve Γt we make use of the
identity φ(x(s, t), t) = 0. Differentiating this identity with respect to the arc-

length parameter s we obtain 0 = ∇φ.∂sx = ∇φ.~T . Differentiating the latter

identity with respect to s again and using the Frenét formula ∂s
~T = k ~N we obtain

0 = k(∇φ. ~N) + ~T⊥∇2φ~T . Since ~N = −∇φ/|∇φ| we have

(4.1) k =
1

|∇φ|
~T T∇2φ~T .

It is a long but straightforward computation to verify the identity

|∇φ|div

(

∇φ

|∇φ|

)

= ~T⊥∇2φ~T .

Hence the signed curvature k is given by the formula

k = div

(

∇φ

|∇φ|

)

.
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In other words, the curvature k is just the minus the divergence of the normal

vector ~N = ∇φ/|∇φ|, i.e. k = −div ~N .
Let us differentiate the equation φ(x(s, t), t) = 0 with respect to time. We

obtain ∂tφ + ∇φ.∂tx = 0. Since the normal velocity of x is β = ∂tx. ~N and ~N =
−∇φ/|∇φ| we obtain

∂tφ = |∇φ|β .

Combining the above identities for ∂tφ, ~N, and k we conclude that the geometric
equation (1.1) can be reformulated in terms of the evolution of the shape function
φ = φ(x, t) satisfying the following fully nonlinear parabolic equation:

(4.2) ∂tφ = |∇φ|β (div (∇φ/|∇φ|) , x,−∇φ/|∇φ|) , x ∈ Ω, t ∈ (0, T ) .

Here we assume that the normal velocity β may depend on the curvature k, the
position vector x and the tangent angle ν expressed through the unit inward normal

vector ~N , i.e. β = β(k, x, ~N). Since the behavior of the shape function φ in a far
distance from the set of evolving curves Γt, t ∈ [0, T ], does not influence their evo-
lution, it is usual in the context of the level set equation to prescribe homogeneous
Neumann boundary conditions at the boundary ∂Ω of the computational domain
Ω, i.e.

(4.3) φ(x, t) = 0 for x ∈ ∂Ω .

The initial condition for the level set shape function φ can be constructed as a
signed distance function measuring the signed distance of a point x ∈ R

2 and the
initial curve Γ0, i.e.

(4.4) φ(x, 0) = dist(x,Γ0)

where dist(x,Γ0) is a signed distance function defined as

dist(x,Γ0) = inf
y∈Γ0

|x− y|, for x ∈ ext(Γ0) ,

dist(x,Γ0) = − inf
y∈Γ0

|x− y|, for x ∈ int(Γ0) ,

dist(x,Γ0) = 0, for x ∈ Γ0 .

If we assume that the normal velocity of an evolving curve Γt is an affine in the k
variable, i.e.

β = µk + f

where µ = µ(x, ~N ) is a coefficient describing dependence of the velocity speed on
the position vector x and the orientation of the curve Γt expressed through the unit

inward normal vector ~N and f = f(x, ~N) is an external forcing term.

(4.5) ∂tφ = µ |∇φ| div

(

∇φ

|∇φ|

)

+ f |∇φ|, x ∈ Ω, t ∈ (0, T ) .

4.1.1. A-priori bounds for the total variation of the shape function.

In this section we derive an important a-priori bound for the total variation of
the shape function satisfying the level set equation (4.2). The total variation (or
the W 1,1 Sobolev norm) of the function φ(., t) is defined as

∫

Ω
|∇φ(x, t)| dx where
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Ω ⊂ R
2 is a simply connected domain such that int(Γt) ⊂ Ω for any t ∈ [0, T ].

Differentiating the total variation of φ(., t) with respect to time we obtain

d

dt

∫

Ω

|∇φ| dx =

∫

Ω

1

|∇φ|
(∇φ.∂t∇φ) dx =

∫

Ω

∇φ

|∇φ|
.∇∂tφdx

= −

∫

Ω

div

(

∇φ

|∇φ|

)

.∂tφdx = −

∫

Ω

kβ|∇φ| dx

and so

(4.6)
d

dt

∫

Ω

|∇φ| dx+

∫

Ω

kβ|∇φ| dx = 0

where k is expressed as in (4.1) and β = β (div (∇φ/|∇φ|) , x,−∇φ/|∇φ|). With
help of the co-area integration theorem, the identity (4.6) can be viewed as a level
set analogy to the total length equation (2.14).

In the case of the Euclidean curvature driven flow when curves are evolved
in the normal direction by the curvature (i.e. β = k) we have

∫

Ω kβ|∇φ| dx =
∫

Ω
k2|∇φ| dx > 0 and this is why

d

dt

∫

Ω

|∇φ| dx < 0 for any t ∈ (0, T ) ,

implying thus the estimate

(4.7) φ ∈ L∞((0, T ),W 1,1(Ω)) .

The same property can be easily proved by using Gronwall’s lemma for a more

general form of the normal velocity when β = µk + f where µ = µ(x, ~N ) >

0, f = f(x, ~N) are globally bounded functions. We presented this estimate because
the same estimates can be proved for the gradient flow in the theory of minimal
surfaces. Notice that the estimate (4.7) is weaker than the L2–energy estimate
φ ∈ L∞((0, T ),W 1,2(Ω)) which can be easily shown for nondegenerate parabolic
equation of the form ∂tφ = ∆φ, dφ/dn = 0 on ∂Ω, by multiplying the equation
with the test function φ and integrating over the domain Ω.

4.2. Viscosity solutions to the level set equation

In this section we briefly describe a concept of viscosity solutions to the level
set equation (4.2). We follow the book by Cao (c.f. [Cao03]). For the sake of
simplicity of notation we shall consider the normal velocity β of the form β = β(k).
Hence equation (4.2) has a simplified form

(4.8) ∂tφ = |∇φ|β (div (∇φ/|∇φ|)) .

The concept of viscosity solutions has been introduced by Crandall and Lions in
[CL83]. It has been generalized to second order PDEs by Jensen [Jen88] (see also
[IS95, FS93]). The proof of the existence and uniqueness of a viscosity solution to
(4.8) is a consequence of the maximum principle for viscosity solutions (uniqueness
part). Existence part can be proven by the method of sub and supersolutions known
as the so-called Perron’s method.
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Following [Cao03] we first explain the basic idea behind the definition of a
viscosity solution. We begin with a simple linear parabolic equation

(4.9) ∂tφ = ∆φ .

Let ψ be any C2 smooth function such that φ−ψ < 0 except of some point (x̄, t̄) in
which φ(x̄, t̄) = ψ(x̄, t̄), i.e. (x̄, t̄) is a strict local maximum of the function φ − ψ.
Clearly, ∇φ(x̄, t̄)−∇ψ(x̄, t̄) = 0, ∂tφ(x̄, t̄)−∂tψ(x̄, t̄) = 0, and ∆(φ(x̄, t̄)−ψ(x̄, t̄)) ≤
0. Hence

(4.10) ∂tψ ≤ ∆ψ at (x̄, t̄) .

We say that φ is a subsolution to (4.9) if the inequality (4.10) hold whenever φ−ψ
has a strict maximum at (x̄, t̄). Analogously, we say that φ is a supersolution to
(4.9) if the reverse inequality ∂tψ ≥ ∆ψ holds at a point (x̄, t̄) in which the function
φ − ψ attains a strict minimum. It is important to realize, that such a definition
of a sub and supersolution does not explicitly require smoothness of the function
φ. It has been introduced by Crandall and Lions in [CL83]. Moreover, the above
concept of sub and supersolutions can be extended to the case when the second
order differential operator contains discontinuities. For the Euclidean motion by
mean curvature (i.e. β(k) = k) the existence and uniqueness of a viscosity solution
to (4.8) has been established by Evans and Spruck [ES91] and by Chen, Giga and
Goto [CGG91] for the case β(k) is sublinear at ±∞. Finally, Barles, Souganidis
and Ishii introduced a concept of a viscosity solution for (4.8) in the case of arbitrary
continuous and nondecreasing function β(k) and they also proved the existence and
uniqueness of a viscosity solution in [IS95, BS91]. Moreover, Souganidis extended
a notion of a viscosity solution for the case when the elliptic operator is undefined
in a set of critical points of φ.

Following Souganidis et al. (c.f. [IS95, BS91]), the class A(β) of admissible
test functions consists of those C2 compactly supported functions ψ : R

2× [0,∞) →
R having the property: if (x̄, t̄) is a critical point of ψ, i.e. ∇ψ(x̄, t̄) = 0 then there
exists a neighborhood Bδ(x̄, t̄) with a radius δ > 0, a function f ∈ F(β), and
ω ∈ C((0,∞)) satisfying limr→0 ω(r)/r = 0 such that

|ψ(y, s)−ψ(x̄, t̄)−∂tψ(x̄, t̄)(s−t̄)| ≤ f(|y−x̄|)+ω(|s−t̄|), for any (y, s) ∈ Bδ(x̄, t̄) .

The class F(β) consists of those C2 functions f such that f(0) = f ′(0) = f ′′(0) =
0, f ′′(r) > 0 for r > 0 and limr→0 f

′(|r|)β(1/r) = 0.
The idea behind a relatively complicated definition of the set of admissible

function is simple. It consists in the requirement that test functions must be enough
flat to absorb singularities of the function β at their critical points. With this
concept of the set of admissible test functions we are in a position to introduce a
notion of a viscosity sub and super solution to the level set equation (4.8).

Definition 4.1. [Cao03, Definition 4.3.2] We say that a bounded function
φ : R

2 × R → R is a viscosity subsolution to (4.8) if for all admissible functions
ψ ∈ A(β), if φ∗ − ψ admits a strict maximum at a point (x̄, t̄) then

∂tψ(x̄, t̄) ≤ |∇ψ(x̄, t̄)|β (div (∇ψ(x̄, t̄)/|∇ψ(x̄, t̄)|)) , if ∇ψ(x̄, t̄) 6= 0,

∂tψ(x̄, t̄) ≤ 0, if ∇ψ(x̄, t̄) = 0 .
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We say that a bounded function φ : R
2 × R → R is a viscosity supersolution to

(4.8) if for all admissible functions ψ ∈ A(β), if φ∗ −ψ admits a strict minimum at
a point (x̄, t̄) then

∂tψ(x̄, t̄) ≥ |∇ψ(x̄, t̄)|β (div (∇ψ(x̄, t̄)/|∇ψ(x̄, t̄)|)) , if ∇ψ(x̄, t̄) 6= 0,

∂tψ(x̄, t̄) ≥ 0, if ∇ψ(x̄, t̄) = 0 .

We say that φ is a viscosity solution if it both viscosity sub and supersolution.
Here we have denoted by φ∗ and φ∗ the upper and lower semicontinuous en-

velope of the function φ, i.e. φ∗(x, t) = lim sup(y,s)→(x,t) φ(y, s) and φ∗(x, t) =

lim inf(y,s)→(x,t) φ(y, s).

Theorem 4.2. [IS95],[Cao03, Theorem 4.3.2] Let φ0 ∈ BUC(R2). Assume
the function β : R → R is nondecreasing and continuous. Then there exists a unique
viscosity solution φ = φ(x, t) to

∂tφ = |∇φ|β (div (∇φ/|∇φ|)) , x ∈ R
2, t ∈ (0, T )

φ(x, 0) = φ0(x), x ∈ R
2

Proof. The proof of this theorem is rather complicated and relies on several
results from the theory of viscosity solutions. The hardest part is the proof of
the uniqueness of a viscosity solution. It is based on the comparison (maximum)
principle (see e.g. [Cao03, Theorem 4.3.1]) for viscosity sub and supersolutions to
(4.8). It uses a clever result in this field which referred to as the Theorem on Sums
proved by Ishii (see [Cao03, Lemma 4.3.1] for details). The proof of existence is
again due to Ishii and is based on the Perron method of sub and supersolutions.
First one has to prove that, for a set S of uniformly bounded viscosity subsolutions
to (4.8), their supremum

ψ̄(x, t) = sup{ψ(x, t), ψ ∈ S}

is also a viscosity subsolution. If there are bounded viscosity sub and supersolutions
ψ, ψ̄ to (4.8) such that ψ ≤ ψ̄ then it can be shown that

φ(x, t) = sup{ψ(x, t), ψ is a viscosity subsolution, ψ ≤ ψ ≤ ψ̄}

is a viscosity solution to (4.8) (c.f. [Cao03, Propositions 4.3.3, 4.3.4]). Finally, one
has to construct suitable viscosity sub and supersolutions ψ, ψ̄ satisfying ψ ≤ φ0 ≤

ψ̄ for an initial condition φ0 belonging to the space BUC of all bounded uniformly
continuous functions in R

2. The statement of the Theorem then follows. �

4.3. Numerical methods

Although these lecture notes are not particularly concerned with numerical
methods for level set methods we present results obtained by a comprehensive
Matlab toolbox ToolboxLS-1.1 which can be used for numerical approximation of
level set methods in two or three spatial dimensions. It has been developed by
Ian Mitchell and its latest version can be freely downloaded from his web page
www.cs.ubc.ca/~mitchell.
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Figure 3. Two examples of level set functions φ(., t) (left) and
their zero level set (right) plotted at some positive time t > 0.

4.3.1. Examples from Mitchell’s Level set Matlab toolbox. In Fig. 3
we present an output of Mitchell’s ToolboxLS-1.0 for two different level set function
evolution (left) for some time t > 0. On the right side we can see corresponding
zero level sets.

The Matlab toolbox can be used for tracking evolution of two dimensional
embedded surfaces in R

3. In Fig. 4 we present evolution of a two dimensional
dumb-bell like surface which is evolved by the mean curvature. Since the mean
curvature for a two dimensional surface is a sum of two principal cross-sectional
curvatures one can conclude that the mean curvature at the bottle-neck of the
surface is positive because of the dominating principal curvature of the section
plane perpendicular to the axis of a rotational symmetry of the dumb-bell. Thus
the flow of a surface tends to shrink the bottle-neck. Notice that this is purely three
dimensional feature and can not be observed in two dimensions. Furthermore, we
can see from Fig. 4 that dumb-bell’s bottle-neck shrinks to a pinching point in a
finite time. After that time evolution continues in two separate sphere–like surfaces
which shrink to two points in finite time. This observation enables us to conclude
that a three dimensional generalization of Grayson’s theorem (see Section 2) is false.

Another intuitive explanation for the failure of the Grayson theorem in three di-
mensions comes from the description of the mean curvature flow of two dimensional
embedded surfaces in R

3. According to Huisken [Hui90] the mean curvature H of
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Figure 4. Time evolution of a dumb-bell initial surface driven by
the mean curvature.

the surface is a solution to the following system of nonlinear parabolic equations

∂tH = ∆MH + |A|2H ,

∂t|A|
2 = ∆M|A|2 − 2|∇MA|2 + 2|A|4

where |A|2 is the second trace (Frobenius norm) of the second fundamental form
of the embedded manifold M. Here ∆M is the Laplace-Beltrami operator with
respect to the surface M. The above system of equations is a two dimensional
generalization of the simple one dimensional parabolic equation ∂tk = ∂2

sk + k3

describing the Euclidean flow of planar curves evolved by the curvature. Now,
one can interpret Grayson’s theorem for embedded curves in terms of nonincrease
of nodal points of the curvature k. This result is known in the case of a scalar
reaction diffusion equation and is refererred to as Sturm’s theorem or Nonincrease
of lap number theorem due to Matano. However, in the case of a system of two
dimensional equations for the mean curvature H and the second trace |A|2 one
cannot expect similar result which is known to be an intrinsic property of scalar
parabolic equations and cannot be extended for systems of parabolic equations.



CHAPTER 5

Numerical methods for the direct approach

In this part we suggest a fully discrete numerical scheme for the direction
approach for solving the geometric equation (1.1). It is based on numerical ap-
proximation of a solution to the system of governing equations (2.10)–(2.13). The
numerical scheme is semi-implicit in time, i.e. all nonlinearities are treated from
the previous time step and linear terms are discretized at the current time level.
Then we solve tridiagonal systems in every time step in a fast and simple way.
We emphasize the role of tangential redistribution. The direct approach for solving
(1.1) can be accompanied by a suitable choice of a tangential velocity α significantly
improving and stabilizing numerical computations as it was documented by many
authors (see e.g. [Dec97, HLS94, HKS98, MS99, MS01, MS04a, MS04b]).
We show that stability constraint for our semi-implicit scheme with tangential re-
distribution is related to an integral average of kβ along the curve and not to
pointwise values of kβ. The pointwise influence of this term would lead to severe
time step restriction in a neighborhood of corners while our approach benefits from
an overall smoothness of the curve. Thus the method allows the choosing of larger
time steps without loss of stability.

We remind ourselves that other popular techniques, like e.g. level-set method
due to Osher and Sethian [Set96, OF03] or phase-field approximations (see e.g.
Caginalp, Elliott et al. or Beneš [Cag90, EPS96, Ben01, BM98]) treat the
geometric equation (1.1) by means of a solution to a higher dimensional parabolic
problem. In comparison to these methods, in the direct approach one space dimen-
sional evolutionary problems are solved only.

5.1. A role of the choice of a suitable tangential velocity

The main purpose of this section is to discuss various possible choices of a
tangential velocity functional α appearing in the system of governing equations
(2.10)–(2.13). In this system α can be viewed still as a free parameter which has to
be determined in an appropriate way. Recall that k, ν, g, x do depend on α but the
family Γt = Img(x(., t)), t ∈ [0, T ), itself is independent of a particular choice of α.

To motivate further discussion, we recall some of computational examples in
which the usual choice α = 0 fails and may lead to serious numerical instabilities
like e.g. formation of so-called swallow tails. In Figures 1 and 2 we computed the
mean curvature flow of two initial curves (bold faced curves). We chose α = 0 in the
experiment shown in Fig. 1. It should be obvious that numerically computed grid
points merge in some parts of the curve Γt preventing thus numerical approximation
of Γt, t ∈ [0, T ), to be continued beyond some time T which is still far away from
the maximal time of existence Tmax. These examples also showed that a suitable

33
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Figure 1. Merging of numerically computed grid points in the
case of the vanishing tangential velocity functional α = 0.

grid points redistribution governed by a nontrivial tangential velocity functional α
is needed in order to compute the solution on its maximal time of existence.

The idea behind construction of a suitable tangential velocity functional α is
rather simple and consists in the analysis of the quantity θ defined as follows:

θ = ln(g/L)

where g = |∂ux| is a local length and L is a total length of a curve Γ = Img(x). The
quantity θ can be viewed as the logarithm of the relative local length g/L. Taking
into account equations (2.12) and (2.14) we have

(5.1) ∂tθ + kβ − 〈kβ〉Γ = ∂sα .

By an appropriate choice of ∂sα in the right hand side of (5.1) appropriately we
can therefore control behavior of θ. Equation (5.1) can be also viewed as a kind of
a constitutive relation determining redistribution of grid point along a curve.

5.1.1. Non-locally dependent tangential velocity functional. We first
analyze the case when ∂sα (and so does α) depends on other geometric quantities
k, β and g in a nonlocal way. The simplest possible choice of ∂sα is:

(5.2) ∂sα = kβ − 〈kβ〉Γ

yielding ∂tθ = 0 in (5.1). Consequently,

g(u, t)

Lt
=
g(u, 0)

L0
for any u ∈ S1, t ∈ [0, Tmax) .

Notice that α can be uniquely computed from (5.2) under the additional renormal-
ization constraint: α(0, t) = 0. In the sequel, tangential redistribution driven by a
solution α to (5.2) will be refereed to as a parameterization preserving relative local
length. It has been first discovered and utilized by Hou et al. in [HLS94, HKS98]
and independently by Mikula and Ševčovič in [MS99, MS01, MS04a, MS04b].

A general choice of α is based on the following setup:

(5.3) ∂sα = kβ − 〈kβ〉Γ +
(

e−θ − 1
)

ω(t)
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Figure 2. Impact of suitably chosen tangential velocity functional
α on enhancement of spatial grids redistribution.

where ω ∈ L1
loc([0, Tmax)). If we additionally suppose

(5.4)

∫ Tmax

0

ω(τ) dτ = +∞

then, after insertion of (5.3) into (5.1) and solving the ODE ∂tθ =
(

e−θ − 1
)

ω(t),
we obtain θ(u, t) → 0 as t→ Tmax and hence

g(u, t)

Lt
→ 1 as t→ Tmax uniformly w.r. to u ∈ S1.

In this case redistribution of grid points along a curve becomes uniform as t ap-
proaches the maximal time of existence Tmax. We will refer to the parameterization
based on (5.3) to as an asymptotically uniform parameterization. The impact of a
tangential velocity functional defined as in (5.2) on enhancement of redistribution
of grid points can be observed from two examples shown in Fig. 2 computed by
Mikula and Ševčovič in [MS01].

Asymptotically uniform redistribution of grid points is of a particular interest
in the case when the family {Γt, t ∈ [0, T )} shrinks to a point as t → Tmax, i.e.
limt→Tmax

Lt = 0. Then one can choose ω(t) = κ2〈kβ〉Γt
where κ2 > 0 is a

positive constant. By (2.14),
∫ t

0 ω(τ) dτ = −κ2

∫ t

0 lnLτdτ = κ2(lnL0 − lnLt) →
+∞ as t → Tmax. On the other hand, if the length Lt is away from zero and
Tmax = +∞ one can choose ω(t) = κ1, where κ1 > 0 is a positive constant in order
to meet the assumption (5.4).

Summarizing, in both types of grid points redistributions discussed above, a
suitable choice of the tangential velocity functional α is given by a solution to

(5.5) ∂sα = kβ − 〈kβ〉Γ + (L/g − 1)ω , α(0) = 0 ,

where ω = κ1 + κ2〈kβ〉Γ and κ1, κ2 ≥ 0 are given constants.
If we insert tangential velocity functional α computed from (5.5) into (2.10)–

(2.13) and make use of the identity α∂sk = ∂s(αk) − k∂sα then the system of
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governing equations can be rewritten as follows:

∂tk = ∂2
sβ + ∂s(αk) + k〈kβ〉Γ + (1 − L/g)kω ,(5.6)

∂tν = β′
k∂

2
sν + (α+ β′

ν)∂sν + ∇xβ.~T ,(5.7)

∂tg = −g〈kβ〉Γ + (L − g)ω ,(5.8)

∂tx = β ~N + α~T .(5.9)

It is worth to note that the strong reaction term k2β in (2.10) has been replaced
by the averaged term k〈kβ〉Γ in (5.6). A similar phenomenon can be observed in
(5.8). This is very important feature as it allows for construction of an efficient and
stable numerical scheme.

5.1.2. Locally dependent tangential velocity functional. Another pos-
sibility for grid points redistribution along evolved curves is based on a tangential
velocity functional defined locally. If we take α = ∂sθ, i.e. ∂sα = ∂2

sθ then the
constitutive equation (5.1) reads as follows: ∂tθ + kβ − 〈kβ〉Γ = ∂2

sθ. Since this
equation has a parabolic nature one can expect that variations in θ are decreaing
during evolution and θ tends to a constant value along the curve Γ due to the
diffusion process. The advantage of the particular choice

(5.10) α = ∂sθ = ∂s ln(g/L) = ∂s ln g

has been already observed by Deckelnick in [Dec97]. He analyzed the mean curva-
ture flow of planar curves (i.e. β = k) by means of a solution to the intrinsic heat
equation

∂tx =
∂2

ux

|∂ux|2
, u ∈ S1, t ∈ (0, T ),

describing evolution of the position vector x of a curve Γt = Img(x(., t)). By using

Frenét’s formulae we obtain ∂tx = k ~N + α~T where α = ∂s ln g = ∂s ln(g/L) = ∂sθ.
Inserting the tangential velocity functional α = ∂sθ = ∂s(ln g) into (2.10)–

(2.13) we obtain the following system of governing equations:

∂tk = ∂2
sβ + α∂sk + k2β,(5.11)

∂tν = β′
k∂

2
sν + (α+ β′

ν)∂sν + ∇xβ.~T ,(5.12)

∂tg = −gkβ + g∂2
s(ln g),(5.13)

∂tx = β ~N + α~T .(5.14)

Notice that equation (5.13) is a nonlinear parabolic equation whereas (5.8) is a
nonlocal ODE for the local length g.

5.2. Flowing finite volume approximation scheme

The aim of this part is to review numerical methods for solving the system
of equations (2.10)–(2.13). We begin with a simpler case in which we assume the
normal velocity to be an affine function of the curvature with coefficients depending
on the tangent angle only. Next we consider a slightly generalized form of the normal
velocity in which coefficients may also depend on the position vector x.
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5.2.0.1. Normal velocity depending on the tangent angle. First, we consider a
simpler case in which the normal velocity β has the following form:

(5.15) β = β(k, ν) = γ(ν)k + F

with a given anisotropy function γ(ν) > 0 and a constant driving force F . The
system of governing equations is accompanied by the tangential velocity α given by

(5.16) ∂sα = kβ −
1

L

∫

Γ

kβds− ω(1 −
L

g
)

where L is the total length of the curve Γ and ω is a relaxation function discussed
in Section 5.1.1. Since there is no explicit dependence of flow on spatial position
x the governing equations are simpler and the evolving curve Γt is given (uniquely
up to a translation) by reconstruction

(5.17) x(u, .) =

∫ u

0

g ~Tdu =

∫ s

0

~T s..

Before performing temporal and spatial discretization we insert (5.16) into (2.10)
and (2.12) to obtain

∂tk = ∂2
sβ + ∂s(αk) + k〈kβ〉 + kω(1 −

L

g
),(5.18)

∂tν = β′
k∂

2
sν + (α+ β′

ν)∂sν ,(5.19)

∂tg = −g〈kβ〉 − ω(g − L).(5.20)

From the numerical discretization point of view, critical terms in Eqs. (2.10) –
(2.12) are represented by the reaction term k2β in (2.10) and the decay term kβ in
(2.12). In Eqs. (5.18) – (5.20) these critical terms were replaced by the averaged
value of kβ along the curve, thus computation of a local element length in the
neighborhood of point with a high curvature is more stable.

In our computational method a solution of the evolution Eq. (1.1) is represented

by discrete plane points xj
i , i = 0, ..., n, j = 0, ...,m, where index i represents space

discretization and index j a discrete time stepping. Since we only consider closed
initial curves the periodicity condition x0

0 = x0
n is required at the beginning. If

we take a uniform division of the time interval [0, T ] with a time step τ = T/m
and a uniform division of the fixed parameterization interval [0, 1] with a step

h = 1/n, a point xj
i corresponds to x(ih, jτ). Difference equations will be given

for discrete quantities kj
i , ν

j
i , rj

i , i = 1, ..., n, j = 1, ...,m representing piecewise
constant approximations of the curvature, tangent angle and element length for the

segment
[

xj
i−1, x

j
i

]

and for αj
i representing tangential velocity of the flowing node

xj−1
i . Then, at the j-th discrete time level, j = 1, ...,m, approximation of a curve

is given by a discrete version of the reconstruction formula (5.17)

(5.21) xj
i = xj

0 +

i
∑

l=1

rj
l (cos(νj

l ), sin(νj
l )), i = 1, ..., n.

In order to construct a discretization scheme for solving (5.18) – (5.20) we consider

time dependent functions ki(t), νi(t), ri(t), xi(t), αi(t); k
j
i , ν

j
i , rj

i , x
j
i , α

j
i , described

above, represent their values at time levels t = jτ . Let us denote B = 1
L

∫

Γ
kβds.
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We integrate Eqs. (5.16) and (5.18) – (5.20) at any time t over the so-called
flowing control volume [xi−1, xi]. Using the Newton-Leibniz formula and constant
approximation of the quantities inside flowing control volumes, at any time t we
get

αi − αi−1 = rikiβ(ki, νi) − riB − ω

(

ri −
L

n

)

.

By taking discrete time stepping, for values of the tangential velocity αj
i we obtain

(5.22) αj
i = αj

i−1 + rj−1
i kj−1

i β(kj−1
i , νj−1

i ) − rj−1
i Bj−1 − ω(rj−1

i −M j−1),

i = 1, ..., n, with αj
0 = 0 (xj

0 is moving only in the normal direction) where

M j−1 =
1

n
Lj−1, Lj−1 =

n
∑

l=1

rj−1
l , Bj−1 =

1

Lj−1

n
∑

l=1

rj−1
l kj−1

l β(kj−1
l , νj−1

l )

and ω = κ1 + κ2B
j−1, with input redistribution parameters κ1, κ2. Using similar

approach as above, Eq. (5.20) gives us

dri
dt

+ riB + riω = ω
L

n
.

By taking a backward time difference we obtain an update for local lengths

(5.23) rj
i =

rj−1
i + τωM j−1

1 + τ(Bj−1 + ω)
, i = 1, ..., n, rj

0 = rj
n, rj

n+1 = rj
1.

Subsequently, new local lengths are used for approximation of intrinsic derivatives
in (5.18) – (5.19). Integrating the curvature Eq. (5.18) in flowing control volume
[xi−1, xi] we have

ri
dki

dt
= [∂sβ(k, ν)]xi

xi−1
+ [αk]xi

xi−1
+ ki(ri(B + ω) − ω

L

n
).

Now, by replacing the time derivative by time difference, approximating k in nodal
points by the average value of neighboring segments, and using semi-implicit ap-
proach we obtain a tridiagonal system with periodic boundary conditions imposed
for new discrete values of the curvature

(5.24) aj
ik

j
i−1 + bjik

j
i + cjik

j
i+1 = dj

i , i = 1, ..., n, kj
0 = kj

n, kj
n+1 = kj

1,

where

aj
i =

αj
i−1

2
−
γ(νj−1

i−1 )

qj
i−1

, cji = −
αj

i

2
−
γ(νj−1

i+1 )

qj
i

, dj
i =

rj
i

τ
kj−1

i ,

bji = rj
i

(

1

τ
− (Bj−1 + ω)

)

+ ωM j−1 −
αj

i

2
+
αj

i−1

2
+
γ(νj−1

i )

qj
i−1

+
γ(νj−1

i )

qj
i

where qj
i =

rj

i
+rj

i+1

2 , i = 1, ..., n. Finally, by integrating the tangent angle Eq.
(5.19) we get

ri
dνi

dt
= γ(νi) [∂sν]

xi

xi−1
+ [αν]

xi

xi−1
− νi(αi − αi−1) + γ′(νi)ki [ν]

xi

xi−1
.

Again, values of the tangent angle ν in nodal points are approximated by the
average of neighboring segments values, the time derivative is replaced by the time
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difference and using a semi-implicit approach we obtain tridiagonal system with
periodic boundary conditions for new values of the tangent angle

(5.25) Aj
i ν

j
i−1 +Bj

i ν
j
i + Cj

i ν
j
i+1 = Dj

i , i = 1, ..., n, νj
0 = νj

n, νj
n+1 = νj

1 ,

where

Aj
i =

αj
i−1

2
+
γ′(νj−1

i )kj
i

2
−
γ(νj−1

i )

qj
i−1

, Bj
i =

rj
i

τ
− (Aj

i + Cj
i ),

Cj
i = −

αj
i

2
−
γ′(νj−1

i )kj
i

2
−
γ(νj−1

i )

qj
i

, Dj
i =

rj
i

τ
νj−1

i .

The initial quantities for the algorithm are computed as follows:

Ri = (Ri1 , Ri2) = x0
i − x0

i−1, i = 1, ..., n, R0 = Rn, Rn+1 = R1,

r0i = |Ri|, i = 0, ..., n+ 1,(5.26)

k0
i = 1

2r0
i

sgn (det(Ri−1, Ri+1)) arccos
(

Ri+1.Ri−1

r0
i+1r0

i−1

)

,(5.27)

i = 1, ..., n, k0
0 = k0

n, k
0
n+1 = k0

1 ,

ν0
0 = arccos(Ri1/r

0
i ) if Ri2 ≥ 0, ν0

0 = 2π − arccos(Ri1/ri) if Ri2 < 0,

ν0
i = ν0

i−1 + r0i k
0
i , i = 1, ..., n+ 1.(5.28)

Remark (Solvability and stability of the scheme.) Let us first examine discrete
values of the tangent angle ν computed from (5.25). One can rewrite it into the
form

(5.29) νj
i +

τ

rj
i

Cj
i (νj

i+1 − νj
i ) +

τ

rj
i

Aj
i (ν

j
i−1 − νj

i ) = νj−1
i .

Let max
k

νj
k be attained at the i-th node. We can always take a fine enough resolution

of the curve, i.e. take small qj
i ≪ 1, i = 1, .., n, such that both Aj

i and Cj
i are

nonpositive and thus the second and third terms on the left hand side of (5.29) are

nonnegative. Then max
k

νj
k = νj

i ≤ νj−1
i ≤ max

k
νj−1

k . By a similar argument we can

derive an inequality for the minimum. In this way we have shown the L∞-stability
criterion, namely

min
k
ν0

k ≤ min
k
νj

k ≤ max
k

νj
k ≤ max

k
ν0

k, j = 1, ..,m.

Notice that in the continuous case the above comparison inequality is a consequence

of the parabolic maximum principle for equation (5.7) in which the term ∇xβ.~T is
vanishing as β does not explicitly depend on the position vector x.

Having guaranteed non-positivity of Aj
i and Cj

i we can conclude positivity and

diagonal dominance of the diagonal term Bj
i . In particular, it implies that the

tridiagonal matrix of the system (5.25) is an M -matrix and hence a solution to
(5.25) always exists and is unique.

In the same way, by taking qj
i small enough, we can prove nonpositivity of

the off-diagonal terms aj
i and cji in the system (5.24) for discrete curvature values.

Then the diagonal term bji is positive and dominant provided that τ(Bj−1 +ω) < 1.
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Again we have shown that the corresponding matrix is an M -matrix and therefore
there exists a unique solution to the system (5.24).

Another natural stability requirement of the scheme is related to the positivity
of local lengths rj

i during computations. It follows from (5.23) that the positivity

of rj
i is equivalent to the condition τ(Bj−1 + ω) > −1. Taking into account both

inequalities for the time step we end up with the following stability restriction on
the time step τ :

(5.30) τ ≤
1

|Bj−1 + ω|

related to Bj−1 (a discrete average value of kβ over a curve).

5.2.0.2. Normal velocity depending on the tangent angle and the position vector.
Next we consider a more general motion of the curves with explicit dependence of
the flow on position x and suggest numerical scheme for such a situation. We
consider (1.1) with a linear dependence of β on the curvature, i.e.

β(k, x, ν) = δ(x, ν)k + c(x, ν)

where δ(x, ν) > 0. By using Frenét’s formulae one can rewrite the position vector
Eq. (2.13) as an intrinsic convection-diffusion equation for the vector x and we get
the system

∂tk = ∂2
sβ + ∂s(αk) + k

1

L

∫

Γ

kβds+ kω(1 −
L

g
) ,(5.31)

∂tν = β′
k∂

2
sν + (α+ β′

ν)∂sν + ∇xβ.~T ,(5.32)

∂tg = −g
1

L

∫

Γ

kβds− ω(g − L) ,(5.33)

∂tx = δ(x, ν)∂2
sx+ α∂sx+ ~c(x, ν) ,(5.34)

where ~c(x, ν) = c(x, ν) ~N = (−c(x, ν) sin ν, c(x, ν) cos ν). In comparison to the
scheme given above, two new tridiagonal systems have to be solved at each time
level in order to update the curve position vector x. The curve position itself and
all geometric quantities entering the model are resolved from their own intrinsic
Eqs. (5.31) – (5.34). In order to construct a discretization scheme, Eqs. (5.31) –
(5.33) together with (5.16) are integrated over a flowing control volume [xi−1, xi].

We also construct a time dependent dual volumes
[

x̃j
i−1, x̃

j
i

]

, i = 1, .., n, j = 1, ..,m,

where x̃j
i =

xj

i−1+xj

i

2 over which the last Eq. (5.34) will be integrated. Then, for
values of the tangential velocity we obtain

αj
i = αj

i−1 + rj−1
i kj−1

i β(x̃j−1
i , kj−1

i , νj−1
i ) − rj−1

i Bj−1 − ω(rj−1
i −M j−1),

i = 1, ..., n, αj
0 = 0,(5.35)

with M j−1, Lj−1, ω given as above and

Bj−1 =
1

Lj−1

n
∑

l=1

rj−1
l kj−1

l β(x̃j−1
l , kj−1

l , νj−1
l ).
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Local lengths are updated by the formula:

(5.36) rj
i =

rj−1
i + τωM j−1

1 + τ(Bj−1 + ω)
, i = 1, ..., n, rj

0 = rj
n, rj

n+1 = rj
1.

The tridiagonal system for discrete values of the curvature reads as follows:

(5.37) aj
ik

j
i−1 + bjik

j
i + cjik

j
i+1 = dj

i , i = 1, ..., n, kj
0 = kj

n, kj
n+1 = kj

1,

where

aj
i =

αj
i−1

2
−
δ(x̃j−1

i−1 , ν
j−1
i−1 )

qj
i−1

, cji = −
αj

i

2
−
δ(x̃j−1

i+1 , ν
j−1
i+1 )

qj
i

,

bji = rj
i

(

1

τ
− (Bj−1 + ω)

)

+ ωM j−1 −
αj

i

2
+
αj

i−1

2
+
δ(x̃j−1

i , νj−1
i )

qj
i−1

+
δ(x̃j−1

i , νj−1
i )

qj
i

,

dj
i =

rj
i

τ
kj−1

i +
c(x̃j−1

i+1 , ν
j−1
i+1 ) − c(x̃j−1

i , νj−1
i )

qj
i

−
c(x̃j−1

i , νj−1
i ) − c(x̃j−1

i−1 , ν
j−1
i−1 )

qj
i−1

.

The tridiagonal system for new values of the tangent angle is given by

(5.38) Aj
i ν

j
i−1 +Bj

i ν
j
i + Cj

i ν
j
i+1 = Dj

i , i = 1, ..., n, νj
0 = νj

n, νj
n+1 = νj

1 ,

where

Aj
i =

αj
i−1 + β′

ν(x̃j−1
i , kj

i , ν
j−1
i )

2
−
δ(x̃j−1

i , νj−1
i )

qj
i−1

,

Cj
i = −

αj
i + β′

ν(x̃j−1
i , kj

i , ν
j−1
i )

2
−
δ(x̃j−1

i , νj−1
i )

qj
i

,

Bj
i =

rj
i

τ
− (Aj

i + Cj
i ), Dj

i =
rj
i

τ
νj−1

i + rj
i∇xβ(x̃j−1

i , νj−1
i , kj

i ).(cos(νj−1
i ), sin(νj−1

i )).

Finally, we end up with two tridiagonal systems for updating the position vector

(5.39) Aj
ix

j
i−1 + Bj

ix
j
i + Cj

i x
j
i+1 = Dj

i , i = 1, ..., n, xj
0 = xj

n, xj
n+1 = xj

1,

where

Aj
i = −

δ(x̃j−1
i , 1

2 (νj
i + νj

i+1))

rj
i

+
αj

i

2
, Cj

i = −
δ(x̃j−1

i , 1
2 (νj

i + νj
i+1))

rj
i+1

−
αj

i

2
,

Bj
i =

qj
i

τ
− (Aj

i + Cj
i ), Dj

i =
qj
i

τ
xj−1

i + qj
i~c(x

j−1
i ,

1

2
(νj

i + νj
i+1)).

The initial quantities for the algorithm are given by (5.26) – (5.28).





CHAPTER 6

Applications of curvature driven flows

6.1. Computation of curvature driven evolution of planar curves with

external force

In following figures we present numerical solutions computed by the scheme;
initial curves are plotted with a thick line and the numerical solution is given by
further solid lines with points representing the motion of some grid points dur-
ing the curve evolution. In Figure 1 we compare computations with and without
tangential redistribution for a large driving force F . As an initial curve we chose
x1(u) = cos(2πu), x2(u) = 2 sin(2πu) − 1.99 sin3(2πu), u ∈ [0, 1]. Without re-
distribution, the computations are collapsing soon because of the degeneracy in
local element lengths in parts of a curve with high curvature leading to a merg-
ing of the corresponding grid points. Using the redistribution the evolution can
be successfully handled. We used τ = 0.00001, 400 discrete grid points and we
plotted every 150th time step. In Figure 2 we have considered an initial curve
x1(u) = (1 − C cos2(2πu)) cos(2πu), x2(u) = (1 − C cos2(2πu)) sin(2πu), u ∈ [0, 1]
with C = 0.7. We took τ = 0.00001 and 800 (Figure 2 left) and 1600 (Figure 2
right) grid points for representation of a curve. In Figure 2 left we plot each 500th
time step, and in Figure 2 right each 100th step. It is natural that we have to
use small time steps in case of strong driving force. However, the time step is not
restricted by the point-wise values of the almost singular curvature in the corners
which would lead to an un-realistic time step restriction. According to (5.30), the
time step is restricted by the average value of kβ computed over the curve which
is much more weaker restriction because of the regularity of the curve outside the
corners. In Figure 3 we present experiments with three-fold anisotropy starting
with unit circle. We used τ = 0.001, 300 grid points and we plotted every 50th
time step (left) and every 750th time step (right). In all experiments we chose
redistribution parameters κ1 = κ2 = 10.

6.2. Flows of curves on a surface driven by the geodesic curvature

The purpose of this section is to analytically and numerically investigate a flow
of closed curves on a given graph surface driven by the geodesic curvature. We
show how such a flow can be reduced to a flow of vertically projected planar curves
governed by a solution of a fully nonlinear system of parabolic differential equations.
We present various computational examples of evolution of surface curves driven
by the geodesic curvature are presented in this part. The normal velocity V of the
evolving family of surface curves Gt, t ≥ 0, is proportional to the geodesic curvature

43
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Figure 1. Isotropic curvature driven motion, β(k, ν) = εk + F ,
with ε = 1, F = 10, without (left) and with (right) uniform tan-
gential redistribution of grid points.

Figure 2. Isotropic curvature driven motion of an initial non-
convex curve including uniform tangential redistribution of grid
points; β(k, ν) = εk + F , with ε = 1, F = −10 (left) and ε = 0.1,
F = −10 (right). Resolution of sharp corners in the case of a highly
dominant forcing term using the algorithm with redistribution is
possible.

Kg of Gt, i.e.

(6.1) V = δKg

where δ = δ(X, ~N ) > 0 is a smooth positive coefficient describing anisotropy de-

pending on the position X and the orientation of the unit inward normal vector ~N
to the curve on a surface.

The idea how to analyze and compute numerically such a flow is based on the
so-called direct approach method applied to a flow of vertically projected family of
planar curves. Vertical projection of surface curves on a simple surface M into the
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Figure 3. Anisotropic curvature driven motion of the initial unit
circle including uniform tangential redistribution of grid points;
β(k, ν) = γ(ν)k + F , with γ(ν) = 1 − 7

9 cos(3ν), F = 0 (left) and

γ(ν) = 1 − 7
9 cos(3ν), F = −1 (right).

Figure 4. Curve evolution governed by v = (1 − 8
9 cos(3ν))(x2

1 +

x2
2) k + (−x1,−x2).(− sin ν, cos ν) − 0.5.

plane R
2. It allows for reducing the problem to the analysis of evolution of planar

curves Γt : S1 → R
2, t ≥ 0 driven by the normal velocity v given as a nonlinear

function of the position vector x, tangent angle ν and as an affine function of the
curvature k of Γt, i.e.

(6.2) v = β(x, ν, k)

where β(x, ν, k) = a(x, ν)k + c(x, ν) and a(x, ν) > 0, c(x, ν) are bounded smooth
coefficients.

6.2.1. Planar projection of the flow on a graph surface. Throughout
this section we will always assume that a surface M = {(x, z)) ∈ R

3, z = φ(x), x ∈
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Ω} is a smooth graph of a function φ : Ω ⊂ R
2 → R defined in some domain

Ω ⊂ R
2. Hereafter, the symbol (x, z) stands for a vector (x1, x2, z) ∈ R

3 where
x = (x1, x2) ∈ R

2. In such a case any smooth closed curve G on the surface M
can be then represented by its vertical projection to the plane, i.e. G = {(x, z) ∈
R

3, x ∈ Γ, z = φ(x)} where Γ is a closed planar curve in R
2. Recall, that for a curve

G = {(x, φ(x)) ∈ R
3, x ∈ Γ} on a surface M = {(x1, x2, φ(x1, x2)) ∈ R

3, (x1, x2) ∈
Ω} the geodesic curvature Kg is given by

Kg =−
√

EG− F 2

(

x′′1x
′
2 − x′1x

′′
2 − Γ2

11x
′3
1 + Γ1

22x
′3
2

−(2Γ2
12 − Γ1

11)x
′2
1 x

′
2 + (2Γ1

12 − Γ2
22)x

′
1x

′2
2

)

where E,G, F are coefficients of the first fundamental form and Γk
ij are Christoffel

symbols of the second kind. Here (.)′ denotes the derivative with respect to the unit
speed parameterization of a curve on a surface. In terms of geometric quantities
related to a vertically projected planar curve we obtain, after some calculations,
that

(6.3) Kg =
1

(

1 + (∇φ.~T )2
)

3
2

(

(

1 + |∇φ|2
)

1
2 k +

~T T∇2φ ~T

(1 + |∇φ|2)
1
2

∇φ. ~N

)

(see [MS04b]). Moreover, the unit inward normal vector ~N ⊥ Tx(M) to a surface
curve G ⊂ M relative to M can be expressed as

~N =

(

(1 + (∇φ.~T )2) ~N − (∇φ.~T )(∇φ. ~N )~T , ∇φ. ~N
)

(

(1 + |∇φ|2)(1 + (∇φ.~T )2)
)

1
2

(see also [MS04b]). Hence for the normal velocity V of Gt = {(x, φ(x)), x ∈ Γt}
we have

V = ∂t(x, φ(x)). ~N = ( ~N,∇φ. ~N).β ~N =

(

1 + |∇φ|2

1 + (∇φ.~T )2

)
1
2

β

where β is the normal velocity of the vertically projected planar curve Γt having

the unit inward normal ~N and tangent vector ~T . Following the so-called direct
approach (see [Dec97, Dzi94, Dzi99, HLS94, Mik97, MS99, MS01, MS04a,

MS04b, MS06]) the evolution of planar curves Γt, t ≥ 0, can be described by a

solution x = x(., t) ∈ R
2 to the position vector equation ∂tx = β ~N + α~T where

β and α are normal and tangential velocities of Γt, resp. Assuming the family of
surface curves Gt satisfies (6.1) it has been shown in [MS04b] that the geometric
equation v = β(x, k, ν) for the normal velocity v of the vertically projected planar
curve Γt can be written in the following form:

(6.4) v = β(x, k, ν) ≡ a(x, ν) k − b(x, ν)∇φ(x). ~N

where a = a(x, ν) > 0 and b = b(x, ν) are smooth functions given by

(6.5) a(x, ν) =
δ

1 + (∇φ.~T )2
, b(x, ν) = −a(x, ν)

~T T∇2φ ~T

1 + |∇φ|2
,
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where δ(X, ~N ) > 0, X = (x, φ(x)), φ = φ(x), k is the curvature of Γt, and ~N =

(− sin ν, cos ν) and ~T = (cos ν, sin ν) are the unit inward normal and tangent vectors
to a curve Γt.

We can also consider a more general flow of curves on a given surface driven
by the normal velocity

(6.6) V = Kg + F

where F is the normal component of a given external force ~G, i.e. F = ~G. ~N . The

external vector field ~G is assumed to be perpendicular to the plane R
2 and it may

depend on the vertical coordinate z = φ(x) only, i.e.

~G(x) = −(0, 0, γ)

where γ = γ(z) = γ(φ(x)) is a given scalar ”gravity” functional.
Assuming the family of surface curves Gt satisfies (6.6) it has been shown in

[MS04b] that the geometric equation v = β(x, k, ν) for the normal velocity v of
the vertically projected planar curve Γt can be written in the following form:

v = β(x, k, ν) ≡ a(x, ν) k − b(x, ν)∇φ(x). ~N

where a = a(x, ν) > 0 and b = b(x, ν) are smooth functions given by

(6.7) a(x, ν) =
1

1 + (∇φ.~T )2
, b(x, ν) = a(x, ν)

(

γ(φ) −
~T T∇2φ ~T

1 + (∇φ.~T )2

)

,

In order to compute evolution of surface curves driven by the geodesic curva-
ture and external force we can use numerical approximation scheme developed in
Chapter 5 for the flow of vertically projected planar curves driven by the normal
velocity given as in (6.4).

The next couple of examples illustrate a geodesic flow V = Kg on a surface
with two humps. In Fig. 5 we show an example of an evolving family of surface
curves shrinking to a point in finite time. In this example the behavior of evolution
of surface curve is similar to that of planar curves for which Grayson’s theorem
holds. On the other hand, in Fig. 6 we present the case when the surface has two
sufficiently high humps preventing evolved curve to pass through them. As it can be
seen from Fig. 6 the evolving family of surface curves approaches a closed geodesic
curve Ḡ as t→ ∞.

The initial curve with large variations in the curvature is evolved according to

the normal velocity V = Kg + F where the external force F = ~G. ~N is the normal

projection of ~G = −(0, 0, γ) (see Fig. 7). In the numerical experiment we considered
a strong external force coefficient γ = 30. The evolving family of surface curves
approaches a stationary curve Γ̄ lying in the bottom of the sharp narrow valley.

In the examples shown in Fig. 8 we present numerical results of simulations
of a surface flow driven by the geodesic curvature and gravitational like external
force, V = Kg +F , on a wave-let surface given by the graph of the function φ(x) =
f(|x|) where f(r) = sin(r)/r and γ = 2. In the first example shown in Fig. 8
(left-up) we started from the initial surface curve having large variations in the
geodesic curvature. The evolving family converges to the stable stationary curve
Γ̄ = {x, |x| = r̄} with the second smallest stable radius. Vertical projection of the
evolving family to the plane driven by the normal velocity v = β(x, k, ν) is shown
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Figure 5. A geodesic flow V = Kg on a surface with two humps
having different heights.

in Fig. 8 (right-up). In Fig. 8 (left-bottom) we study a surface flow on the same
surface the same external force. The initial curve is however smaller compared to
that of the previous example. In this case the evolving family converges to the
stable stationary curve with the smallest stable radius.

6.3. Applications in the theory of image segmentation

6.3.1. Edge detection in static images. A similar equation to (1.1) arises
from the theory of image segmentation in which detection of object boundaries in
the analyzed image plays an important role. A given black and white image can
be represented by its intensity function I : R2 → [0, 255]. The aim is to detect
edges of the image, i.e. closed planar curves on which the gradient ∇I is large (see
[KM95]). The method of the so-called active contour models is to construct an
evolving family of plane curves converging to an edge (see [KWT87]).

One can construct a family of curves evolved by the normal velocity v =
β(k, x, ν) of the form

β(k, x, ν) = δ(x, ν)k + c(x, ν)

where c(x, ν) is a driving force and δ(x, ν) > 0 is a smoothing coefficient. These
functions depend on the position vector x as well as orientation angle ν of a curve.
Evolution starts from an initial curve whcih is a suitable approximation of the edge
and then it converges to the edge. If c > 0 then the driving force shrinks the curve
whereas the impact of c is reversed in the case c < 0. Let us consider an auxiliary
function φ(x) = h(|∇I(x)|) where h is a smooth edge detector function like e.g.
h(s) = 1/(1 + s2). The gradient −∇φ(x) has the important geometric property:
it points towards regions where the norm of the gradient ∇I is large (see Fig. 9

right). Let us therefore take c(x, ν) = −b(φ(x))∇φ(x). ~N and δ(x, ν) = a(φ(x))
where a, b > 0 are given smooth functions. Now, if an initial curve belongs to a
neighborhood of an edge of the image and it is evolved according to the geometric
equation

v = β(x, k, ν) ≡ a(φ(x))k − b(φ(x))∇φ. ~N
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Figure 6. A geodesic flow on a surface with two sufficiently high
humps (left-up) and its vertical projection to the plane (right-up).
The evolving family of surface curves approaches a closed geodesic
as t → ∞. The same phenomenon of evolution on a compact
manifold without boundary (below).

then it is driven towards this edge. In the context of level set methods, edge
detection techniques based on this idea were first discussed by Caselles et al. and
Malladi et al. in [CCCD93, MSV95] (see also [CKS97, CKSS97, KKO+96]).

We apply our computational method to the image segmentation problem. First
numerical experiment is shown in Fig. 10. We look for an edge in a 2D slice of a
real 3D echocardiography which was prefiltered by the method of [SMS99]. The
testing data set (the image function I) is a courtesy of Prof. Claudio Lamberti,
DEIS, University of Bologna. We have inserted an initial ellipse into the slice
close to an expected edge (Fig. 10 left). Then it was evolved according to the
normal velocity described above using the time stepping τ = 0.0001 and nonlocal
redistribution strategy from Chaper 5. with parameters κ1 = 20, κ2 = 1 until the
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Figure 7. A geodesic flow on a flat surface with a sharp narrow valley.

limiting curve has been formed (400 time steps). The final curve representing the
edge in the slice can be seen in Fig. 10 right.

Next we present results for the image segmentation problem computed by
means of a geodesic flow with external force discussed in Section 6.3. We con-
sider an artificial dumb-bell image.from Fig. 9. If we take φ(x) = 1/(1 + |∇I(x)|2)
then the surface M defined as a graph of φ has a sharp narrow valley corresponding
to points of the image in which the gradient |∇I(x)| is very large representing thus
an edge in the image. In contrast to the previous example shown in Fig. 10 we will
make use of the flow of curves on a surface M driven by the geodesic curvature and
strong ”gravitational-like” external force F . According to section 6.3 such a surface
flow can be represented by a family of vertically projected plane curves driven by
the normal velocity

v = a(x, ν)k − b(x, ν)∇φ(x). ~N

where coefficients a, b are defined as in (6.5) with strong external force coefficient
γ = 100. Results of computation are presented in Fig. 11.

6.3.2. Tracking moving boundaries. In this section we describe a model
for tracking boundaries in a sequence of moving images. Similarly as in the previous
section the model is based on curvature driven flow with an external force depending
on the position vector x.

Parametric active contours have been used extensively in computer vision for
different tasks like segmentation and tracking. However, all parametric contours
are known to suffer from the problem of frequent bunching and spacing out of curve
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Figure 8. A surface flow on a wavelet like surface (left) and its
vertical projection to the plane (right). Surface curves converge
to the stable stationary circular curve Γ̄ = {x, |x| = r̄} with the
smallest stable radius r̄ (bottom) and the second smallest radius
(up).

points locally during the curve evolution. In this part, we discuss a mathemati-
cal basis for selecting such a suitable tangential component for stabilization. We
demonstrate the usefulness of the proposed choice of a tangential velocity method
with a number of experiments. The results in this section can be found in a recent
papers by Srikrishnan et al. [SCDR07, SCDRS07].

The force at each point on the curve can be resolved into two components: along
the local tangent and normal denoted by α and β, respectively. This is written as:

(6.8)
∂x

∂t
= β ~N + α~T .
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Figure 9. An image intensity function I(x) (left-up) correspond-
ing to a ”dumb-bell” image (right-up). The the function φ
(bottom-left) and corresponding vector field −∇φ(x) (bottom-
right).

In this application, the normal velocity β has the form: β = µκ + f(x) where
f is a bounded function depending on the position of a curve point x. For the

purpose of tracking we use the function f(x) = log
(

ProbB(I(x))
ProbT (I(x))

)

and we smoothly

cut-off this function if either ProbB(I(x)) or ProbB(I(x)) are less than a prescribed
tolerance. Here ProbB(I(x)) stands for the probability that the point x belongs to
a background of the image represented by the image intensity function I whereas
ProbT (I(x)) represents the probability that the point x belongs to a target in the
image to be tracked. Both probabilities can be calculated from the image histogram
(see [SCDR07, SCDRS07] for details).

In this field of application of a curvature driven flow of planar curves represent-
ing tracked boundaries in moving images it is very important to propose a suitable
tangential redistribution of numerically computed grid points. Let us demonstrate
the importance of tangential velocity by the following motivational example. In
Fig. 12, we show two frames from a tracking sequence of a hand. Without any
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Figure 10. An initial ellipse is inserted into the 2D slice of a
prefiltered 3D echocardiography (left), the slice together with the
limiting curve representing the edge (right).

Figure 11. A geodesic flow on a flat surface with a sharp narrow
valley (left) and its vertical projection to the plane with density
plot of the image intensity function I(x) (right).

tangential velocity (i.e. α = 0) one can observe formation of small loops in the
right picture which is a very next frame to the initial left one. These loops blow up
and the curve becomes unstable within the next few frames.

In [SCDRS07] we proposed a suitable tangential velocity functional α capa-
ble of preventing evolved family of curves (image contours) from formation such
undesirable loops like in Fig. 12 (right). Using a tangential velocity satisfying

∂α

∂u
= K − g + gκβ.
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Figure 12. Illustration of curve degeneration. Left: The initial
curve in red. Right: Bunching of points (in red) starts due to
target motion leading to a loop formation.

Figure 13. Tracking results for the same sequence as in Fig. 12
using a nontrivial tangential redistribution.

where K = L(Γ) −
∫

Γ κβ ds we are able to significantly improve the results of
tracking boundaries in moving images. If we compare tracking results in Fig. 13
and those from Fig. 12 we can conclude that the presence of a nontrivial suitably
chosen tangential velocity α significantly improved tracking results.
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[Ben01] M. Beneš, Mathematical and computational aspects of solidification of pure sub-

stances., Acta Math. Univ. Comen., New Ser. 70 (2001), no. 1, 123–151.
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metric active contours, Proc. of IEEE Conference on Computer Vision and Pattern
Recognition, to appear, 2007.

[Set90] J. A. Sethian, Numerical algorithms for propagating interfaces: Hamilton-Jacobi

equations and conservation laws, J. Differential Geom. 31 (1990), no. 1, 131–161.
[Set96] J. Sethian, Level set methods, Cambridge Monographs on Applied and Computa-

tional Mathematics, vol. 3, Cambridge University Press, Cambridge, 1996, Evolving
interfaces in geometry, fluid mechanics, computer vision, and materials science.

[Set98] , Adaptive fast marching and level set methods for propagating interfaces, Acta
Math. Univ. Comenian. (N.S.) 67 (1998), no. 1, 3–15.

[SMS99] A. Sarti, K. Mikula, and F. Sgallari, Nonlinear multiscale analysis of three-

dimensional echocardiographi sequences, IEEE Trans. on Medical Imaging 18 (1999),
453–466.



58 BIBLIOGRAPHY

[ST94] G. Sapiro and A. Tannenbaum, On affine plane curve evolution, J. Funct. Anal. 119

(1994), no. 1, 79–120.
[UY00] T. Ushijima and S. Yazaki, Convergence of a crystalline algorithm for the motion of

a closed convex curve by a power of curvature V = Kα, SIAM J. Numer. Anal. 37

(2000), no. 2, 500–522.


