On modelling the formation of negative ice crystals produced by freezing of internal melt figures

Shigetoshi YAZAKI (CTU in Prague / Univ. of Miyazaki)

joint work with Tetsuya ISHIWATA (Univ. of L'Aquila / Gifu Univ.)

30/5/2007 16:40 Seminar of the Necas Center for Mathematical Modeling

the usual ice crystals:

negative ice crystals:

Where? How? Model?

wv = water vapor

Internal melting

$$\downarrow \downarrow \downarrow \downarrow \downarrow$$

 $\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \\ \bullet & \bullet \end{array} \qquad \begin{array}{c} \times & \times \\ \times & \times \\ \times & \times \end{array}$

a block of ice \Rightarrow internal melting \Rightarrow formation of (without melting six petals the exterior portions)

Tyndall figures

45°

c-axis

Ivndall figure

45°

wv = water vapor saturatedat that temperature 90°

water

O WV

Tyndall (1858) found this phenomenon at a glacier.

Properties of ice

Polycrystalline Ice

<u>Lattice structure of ice</u> \Rightarrow c-axis: main axis basal plane = a regular hexagon

When the Tyndall figure is refrozen all pics

t = 0min.

t = 3min.

t = 11min.

t = 17min.

 $t = 28 \min$.

t = 1hr 21min.

Remark

Negative crystal

hexagonal disk

McConnel found these disks in the ice of Davos lake (1889). Nakaya (1956) investigated its properties precisely. He called the hexagon vapor figure.

Observatin of the process " \Rightarrow "

Circle to Hexagon:

Nakaya's observation:

Stepped structure of the ice surface

Assumption and our model

Modeling the process " \Rightarrow " in the previous page

- Ω : negative crystal (bdd in \mathbb{R}^2)
- 1) $\partial \Omega = \text{moving curve}$
- 2) temperature = a constant T:

(Ω is filled with water vapor <u>saturated</u> at T)

3) c-axis of the ice $\perp \mathbb{R}^2$

Our model a grad. flow of the interfacial energy: an Area-Preserving CCF equation

GOAL

Circle to Hexagon:

 $\begin{array}{c} \mbox{Goal 1: ess. adm. hexagon} \rightarrow \mbox{hexagon} (numerically) \\ \hline \end{tabular} \end{array}$

Goal 2: APCCF follows Nakaya's observation, i.e.

Thm.: almost convex hexagon

converges to

Curve-shortening / Area-preserving flow

average)

- V: the normal velocity
- **n**: the outward unit normal vector
- K: the curvature

• Mullins('56), Brakke('78), Gage, Hamilton('86), Grayson('87), …

 \leftarrow Curve-shortening flow

movie

$$V = \overline{K} - K \quad (\overline{K}:$$

... Gage('86), Mayer, Simonett(2000), ...

 $\bigcirc \bigcirc \bigcirc \bigcirc \leftarrow \begin{cases} Curve-shortening and \\ Area-preserving flow \end{cases}$

Anisotropy / Weighted curvature $K_{\gamma}(\boldsymbol{n})$ $K = \operatorname{grad} \mathcal{L} \cdot \boldsymbol{n},$ total length: $\mathcal{L} = \int_{\Gamma} ds$ $V = \overline{K} - K$ $\Leftarrow \operatorname{grad} \mathcal{L}$ flow subject to $\mathcal{A} \equiv const.$

 $\begin{array}{l} \mathsf{Interfacial \ energy} \ \gamma(\boldsymbol{n}) \\ \Leftarrow \ \mathsf{anisotropy} \end{array}$

 $K_{\gamma}(\boldsymbol{n}) = \operatorname{grad} \mathcal{E} \cdot \boldsymbol{n},$

total energy: $\mathcal{E} = \int_{\Gamma} \gamma(\boldsymbol{n}) \, ds$

$$V = \overline{K}_{\gamma} - K_{\gamma}(\boldsymbol{n})$$

 $\Leftarrow \operatorname{grad} \mathcal{E} \text{ flow subject to } \mathcal{A} \equiv const.$

Question

If γ is not smooth,

what might happen to $\operatorname{grad} \mathcal{E}$?

Frank diagram \mathcal{F}_{γ} / Wulff shape \mathcal{W}_{γ}

Frank diagram $\mathcal{F}_{\gamma} = \{ \boldsymbol{n}/\gamma(\boldsymbol{n}) \}$

⇐ Frank ('63), Meijering ('63)

Wulff shape $\mathcal{W}_{\gamma} = \{ \boldsymbol{x} \in \mathbb{R}^2 \, | \, \boldsymbol{x} \cdot \boldsymbol{n} \leq \gamma(\boldsymbol{n}) \} \Leftarrow$ the answer of

 \ll Wulff problem (on the equilibrium shape of crystals) \gg

What is the shape which has the least \mathcal{E} of the curve for the fixed enclosed area?

Crystalline energy

 γ is called crystalline energy

Weighted curvature flow $V = -K_{\gamma}(\boldsymbol{n})$

 γ : crystalline $\Rightarrow \gamma$: non-differentiable $\Rightarrow K_{\gamma}(\boldsymbol{n})$: not defined

Strategy by Taylor, and Angenent and Gurtin

$$\Gamma: y = u(x, t) \quad \Rightarrow \mathcal{E} = \int_{\Gamma} \gamma \, ds = \int_{0}^{1} g(u_x) \, dx$$

 \star Taylor and Angenent and Gurtin (in 1990 \pm 1)

restrict Γ to an admissible class!

Admissible polygonal curve

Class of curves

admissible polygonal curves
 ⇐ Taylor ('90), Angenent, Gurtin ('89)
 ess. adm. polygonal curves
 ⇐ Hontani, Giga, Giga, Deguchi (2005)

Area-preserving CCF

- Weighted curv. = grad_{Γ} $\mathcal{E} = K_{\gamma}(\boldsymbol{n}) = w_{\gamma}(\boldsymbol{n})K$
- Crystalline curv. = grad_{\mathcal{P}} $\mathcal{E} = K_{\gamma}(\boldsymbol{n}_i) = w_{\gamma}(\boldsymbol{n}_i)K_i$
- * Case $\gamma \equiv 1$ and $\mathcal{W}_{\gamma} = a$ regular polygon:

the usual curvature

 $K = \pm 1/r$

the crystalline curvature

 \boldsymbol{n}_i

$$K_i = \pm 1/r_i$$

 r_i

$$V_i = \overline{K}_{\gamma} - K_{\gamma}(\boldsymbol{n}_i)$$

 $\Leftarrow \operatorname{grad}_{\mathcal{P}} \mathcal{E} \text{ flow subject to } \mathcal{A} \equiv const.$

Problem (a sys. of ODEs): $\mathcal{P}(t) \rightarrow ? (t \rightarrow T \leq \infty)$

For a given (ess.) adm. curve \mathcal{P}_0 find a family of (ess.) adm. curves $\{P(t)\}_{0 \le t \le T}$ satisfying

$$\begin{cases} \dot{d}_{i}(t) = -(\cot \vartheta_{i} + \cot \vartheta_{i+1})V_{i} + \frac{V_{i-1}}{\sin \vartheta_{i}} + \frac{V_{i+1}}{\sin \vartheta_{i+1}} (\forall i); \\ \mathcal{P}(0) = \mathcal{P}_{0}. \qquad \qquad (\cos \vartheta_{i} = \langle \boldsymbol{n}_{i}, \boldsymbol{n}_{i-1} \rangle) \end{cases}$$

Case \mathcal{P}_0 : admissible convex polygon

Isotropic case) $\gamma(\mathbf{n}_i) \equiv \gamma_* \ (const.)$ Theorem (Yazaki (2002)): $\mathcal{P}(t) \to \mathcal{W}_{\gamma_*}$ as $t \to \infty$.

Anisotropic case) $\gamma(n_i) \not\equiv const.$ Theorem (Yazaki (2004)): $\mathcal{P}(t) \to \mathcal{W}_{\gamma}$ as $t \to \infty$.

Open problems:

 $T < \infty \text{ holds? for } \forall \mathcal{P}_0: \text{ ess. adm. convex polygon} \\ \left(\begin{array}{c} \bullet \text{ If YES } \Rightarrow \text{ extension is possible:} \\ \mathcal{P}_0 \rightarrow \mathcal{P}(T_1) \rightarrow \mathcal{P}(T_2) \rightarrow \cdots \rightarrow \mathcal{P}(T_m): \text{ adm.} \\ \text{ Note: YES in the case } V_i = g(\boldsymbol{n}_i, K_{\gamma}(\boldsymbol{n}_i), \overline{K_{\gamma}}) \\ \bullet \text{ If } \exists \mathcal{P}_0 \text{ s.t. } T = \infty \Rightarrow \mathcal{P}(t) \rightarrow \mathcal{W}_{\gamma} \text{ as } t \rightarrow \infty? \end{array} \right)$

Case \mathcal{P}_0 : adm. almost convex polygon

Ass. 1: anisotropic symmetry $\gamma(\boldsymbol{n}_i) = \gamma(-\boldsymbol{n}_i)$ Ass. 2: \mathcal{P}_0 satisfies $K_{\gamma}(\boldsymbol{n}_i) \ge 0$ for all i.

APCCF: application to negative crystal

 $m{n}$: outward normal convex to $-m{n}$ $K_{\gamma}(m{n}) > 0$: positive crystalline curv.

n: outward normal concave to -n $K_{\gamma}(n) < 0$: negative crystalline curv.

Anisotropy of negative crystal

 \mathcal{W}_{γ} -ess. admissible polygon \mathcal{P} :

 \mathcal{W}^*_{γ} -ess. admissible negative polygon \mathcal{P}^* :

$$egin{aligned} \mathcal{W}^*_\gamma &= igcap_{j=1}^J \left\{ oldsymbol{x} \in \mathbb{R}^2; \ oldsymbol{x} \cdot (-oldsymbol{
u}_j) \leq \gamma(oldsymbol{
u}_j)
ight\} \end{aligned}$$

Remark: $\mathcal{W}^*_{\gamma} = \pi$ -rot. of \mathcal{W}_{γ}

Simulation $\mathcal{P}^* \to \mathcal{W}^*_{\gamma}$

the initial polygons are N-sided regular polygons:

 \mathcal{W}_{γ} 's are 6- or 4-sided polygons:

Conclusion F5 Omin. 5min. F5 2.5min. 39min. F5 F5 Aim | to track the motion of negative crystal Ω Ass. 1: temperature is a constant T<u>Ass.</u> 2: Ω is filled with water vapor saturated at T Our model APCCF $V_i = K_{\gamma} - K_{\gamma}(\boldsymbol{n}_i)$ \mathcal{W}_{γ} -adm. almost convex $\mathcal{P} \to \mathcal{W}_{\gamma}$ Theorem: Application: \mathcal{W}^*_{γ} -adm. almost convex $\mathcal{P}^* \to \mathcal{W}^*_{\gamma}$ <u>Simulation</u>: \mathcal{W}^*_{γ} -ess. adm. $\mathcal{P}^* \to \mathcal{W}^*_{\gamma}$ **Future research** to remove the Ass. 1. $\Rightarrow \Omega$ is filled with super- or sub-saturated water vapor, depending on the position.

There exist $\gamma_1 \neq \gamma_2$ s.t. $\mathcal{W}_{\gamma_1} = \mathcal{W}_{\gamma_2}$:

Numerical scheme

ODEs:

$$\dot{d}_i(t) = -(\cot\vartheta_i + \cot\vartheta_{i+1})V_i + \frac{V_{i-1}}{\sin\vartheta_i} + \frac{V_{i+1}}{\sin\vartheta_{i+1}} \ (\forall i)$$

• (1)
$$\dot{\mathcal{E}}(t) \leq 0$$
; (2) $\dot{\mathcal{A}}(t) = 0$.

Numerical scheme:

$$\left(\left(D_{\tau}f\right)^{m} = \frac{f^{m+1} - f^{m}}{\tau_{m}} \right)$$

$$(D_{\tau}d_i)^m = -(\cot\vartheta_i + \cot\vartheta_{i+1})V_i^{m+\mu} + \frac{V_{i-1}^{m+\mu}}{\sin\vartheta_i} + \frac{V_{i+1}^{m+\mu}}{\sin\vartheta_{i+1}}$$

• $\mu \in (0, 1]$: implicit scheme \Rightarrow solved by iteration

• (1) $(D_{\tau}\mathcal{F})^m \leq 0 \; (\forall \mu);$ (2) $(D_{\tau}\mathcal{A})^m = 0 \; (\mu = 1/2).$