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Comenius University, Bratislava

September 10, 2009

Seminars at Czech Technical University, Fall 2009
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Stochastic character of assets (stocks, indices, ...)

Financial derivatives as tool for protecting volatile portfolios
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Stochastic character of stock prices

Figure: Time evolution of stock prices General Motors and IBM in 2001.
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Stochastic character of stock prices

Figure: Time evolution of stock prices Microsoft and IBM in 2007, 2008.
Volume of transaction.

D. Ševčovič Analytical and numerical methods of financial-derivative pricing



Stochastic character of indices

Figure: Time evolution of Dow–Jones index in precrisis periods 2000
and 2007-8.
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Financial derivatives as a tool for protecting volatile

portfolios

Forward
is an agreement between writer (issuer) and holder
representing the right and at the same time obligation to
purchase assets at the specified time of maturity of a forward

Pricing forwards is relatively simple once we know the interest rate
r measuring the rate of the decrease of the value of money

Vf = E exp(−rT )

where E is the contracted expiration value of a forward at
expiration time T , Vf is the present value of a forward at the time
when contract is signed
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Financial derivatives as a tool for protecting volatile

portfolios

Option (call option)
is an agreement between writer (issuer) and holder
representing the right BUT NOT the obligation to purchase
assets at the prescribed exercise price E at the specified time
of maturity T in the future

Pricing option is more involved

Vc = function of E ,T , r , ..., ???

where E is the contracted expiration value of a forward at
expiration time T , Vc is the present value of a call option at the
time when contract is signed

D. Ševčovič Analytical and numerical methods of financial-derivative pricing



Stochastic character of options

Figure: Prices of call and put options with different exercise (strike)
prices E for Microsoft from 26. 11. 2008.
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Stochastic character of options
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Figure: Top: Stock prices of IBM from 22. 5. 2002. Bottom: Bid and Ask
prices of call option for IBM stocks and their arithmetic average value
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Financial derivatives as a tool for protecting volatile

portfolios

A natural question arises:
Although the time evolution of the asset price St as well as its
derivative (option) Vt is stochastic (volatile, unpredictable)
CAN WE FIND A FUNCTIONAL RELATIONSHIP

Vt = V (St , t)

relating the actual stock price St at time t and the price of its
derivative (like e.g. an option) Vt?
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Financial derivatives as a tool for protecting volatile

portfolios

This was a long standing problem in financial mathematics
until 1972. The answer is YES due to pioneering work of
M.Scholes, F.Black and R.Merton

Figure: M. S. Scholes a R. C. Merton shortly after they were awarded the
Price of the Swedish Bank for Economy in the memory of A. Nobel in
1997.
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Financial derivatives as a tool for protecting volatile

portfolios

The Black–Scholes formula

V = V (S , t;T ,E , r , σ)

where S = St is the spot (actual) price of an asset, V = Vt is
a the spot price of the option (call or put) at time 0 ≤ t ≤ T .
Here T is the time of maturity, E is the exercise price, r > 0
is the interest rate of a secure bond, σ > 0 is the volatility of
underlying stochastic process of the asset price St .
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Stochastic differential calculus, Itō’s lemma, Itō’s integral
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Stochastic differential calculus, Itō’s lemma

Stochastic process is t - parametric system of random
variables {X (t), t ∈ I}, where I is an interval or discrete set of
indices

Stochastic process {X (t), t ∈ I} is a Markov process with the
property: given a value X (s), the subsequent values X (t) for

t > s may depend on X (s) but not on preceding values X (u)
for u < s.

If t ≥ s then for conditional probabilities we have:

P(X (t) < x |X (s)) = P(X (t) < x |X (s),X (u))

for any u ≤ s.
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Stochastic differential calculus, Itō’s lemma

a stochastic process {X (t), t ≥ 0} is called Brownian motion
i) all increments X (t + ∆) − X (t) are normally distributed with

mean value µ∆ and dispersion (or variance) σ2∆,
ii) for any division of times t0 = 0 < t1 < t2 < t3 < ... < tn the

increments X (t1) − X (t0), X (t2) − X (t1), ..., X (tn) − X (tn−1)
are independent random variables

iii) X (0) = 0.

Brownian motion {W (t), t ≥ 0} with the mean µ = 0 and
dispersion σ2 = 1 is called Wiener process

Figure: Norbert Wiener (1884-1964) and Robert Brown (1773-1858).
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Stochastic differential calculus, Itō’s lemma

Additive (semigroup) property of Brownian motion
{X (t), t ≥ 0}

let 0 = t0 < t1 < ... < tn = t be any division of the interval [0, t].
Then

X (t) − X (0) =

n
∑

i=1

Xi − Xi−1,

Therefore the mean value E and variance Var of the left and right
hand side have to be equal.

E (X (t) − X (0)) = µ(t − 0) = µt .

On the other side we have due to linearity of the mean value
operator

E

(

n
∑

i=1

Xi − Xi−1

)

=
n
∑

i=1

E (Xi − Xi−1) =
n
∑

i=1

µ(ti − ti−1) = µt

In order to verify the equality we had to require that increments Xi − Xi−1 have
the mean value E(Xi − Xi−1) = µ(ti − ti−1)
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Stochastic differential calculus, Itō’s lemma

Additive (semigroup) property of Brownian motion
{X (t), t ≥ 0}

For dispersions of the random variables X (t) − X (0) and
∑n

i=1(X (ti ) − X (ti−1)) we have

Var(X (t) − X (0)) = σ2(t − 0) = σ2t .

Recall that for random independent variables A,B it holds:
Var(A + B) = Var(A) + Var(B). Hence, assuming independence
of increments Xi − Xi−1 for different i = 1, 2, ..., n we have

Var

(

n
∑

i=1

X (ti) − X (ti−1)

)

=

n
∑

i=1

Var(X (ti )−X (ti−1)) =

n
∑

i=1

σ2(ti−ti−1)

In order to verify the equality we had to require that increments X (ti )−X (ti−1)
have the dispersion (variance) V (X (ti ) − X (ti−1)) = σ2(ti − ti−1)
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Stochastic differential calculus, Itō’s lemma

In summary:

The Brownian motion {X (t), t ≥ 0} has the following
stochastic distribution:

X (t) ∼ N(µt, σ2t)

where N(mean, variance) stands for normal random variable
with given mean and variance

The Wiener process {W (t), t ≥ 0} (here µ = 0, σ2 = 1) has
the following stochastic distribution:

W (t) ∼ N(0, t)

Moreover dW (t) := W (t + dt) − W (t) ∼ N(0, dt), i.e.

dW (t) := W (t + dt) − W (t) = Φ
√

dt

where Φ ∼ N(0, 1).
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Stochastic differential calculus, Itō’s lemma
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Figure: Two randomly generated samples of a Wiener process.
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Figure: Five random realizations of a Wiener process alltogether.
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Stochastic differential calculus, Itō’s lemma

Since W (t) ∼ N(0, t) we have Var(W (t)) = t.
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Figure: Time dependence of the variance Var(W (t)) of 1000 random
realizations of a Wiener process.
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Stochastic differential calculus, Itō’s lemma

Relation between Brownian and Wiener process:

For a Brownian motion {X (t), t ≥ 0} with parameters µ and
σ we have by definition
dX (t) = X (t + dt) − X (t) ∼ N(µdt, σ2dt) Therefore, if we
construct the process

W (t) =
X (t) − µt

σ

we have

dW (t) = W (t + dt) − W (t) =
dX (t) − µdt

σ
∼ N(0, dt)

i.e. {W (t), t ≥ 0} is a Wiener process

Since X (t) = µt + σW (t) we may therefore write a
Stochastic differential equation

dX (t) = µdt + σdW (t) ,
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Stochastic differential calculus, Itō’s lemma

Geometric Brownian motion

If {X (t), t ≥ 0} is a Brownian motion with parameters µ and σ we
define a new stochastic process {Y (t), t ≥ 0} by taking

Y (t) = y0 exp(X (t))

where y0 is a given constant. The process {Y (t), t ≥ 0} is called
Geometric Brownian motion.

Statistical properties of the Geometric Brownian motion

let us take for simplicity y0 = 1. Then

W (t) =
lnY (t) − µt

σ

is a Wiener process with W (t) ∼ N(0, t), i.e. we know its
distribution function

D. Ševčovič Analytical and numerical methods of financial-derivative pricing



Stochastic differential calculus, Itō’s lemma

Statistical properties of the Geometric Brownian motion

Then for the distribution function G (y , t) = P(Y (t) < y) it holds:
G (y , t) = 0 for y ≤ 0 (since Y (t) is a positive random variable)
and for y > 0

G (y , t) = P(Y (t) < y) = P

(

W (t) <
−µt + ln y

σ

)

=
1√
2πt

∫
−µt+ln y

σ

−∞
e−ξ2/2tdξ
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Stochastic differential calculus, Itō’s lemma

Statistical properties of the Geometric Brownian motion

Since E (Y (t)) =
∫∞
−∞ yg(y , t) dy and

E (Y (t)2) =
∫∞
−∞ y2g(y , t) dy , where g(y , t) = ∂

∂y
G (y , t), we can

calculate

E (Y (t)) =

∫ ∞

−∞
yg(y , t) dy =

∫ ∞

0
yg(y , t) dy

=
1√
2πt

∫ ∞

0
ye

− (−µt+ln y)2

2σ2t
1

σy
dy

(ξ = (−µt + ln y)/(σ
√

t))

=
eµt

√
2π

∫ ∞

−∞
e−

ξ2

2
+σ

√
tξ dξ =

eµt+ σ2

2
t

√
2π

∫ ∞

−∞
e−

(ξ−σ
√

t)2

2 dξ

= eµt+ σ2

2
t .
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Stochastic differential calculus, Itō’s lemma

Naive (and also wrong) formal calculation

Since Y (t) = exp(X (t)) where dX (t) = µdt + σdW (t) we have

dY (t) = (exp(X (t)))′dX (t) = exp(X (t))dX (t)

and therefore

dY (t) = µY (t)dt + σY (t)dW (t)

Hence by taking the mean value operator operator E (.) (it is a
linear operator) we obtain

dE (Y (t)) = E (dY (t)) = µE (Y (t))dt+σE (Y (t)dW (t)) = µE (Y (t))dt

as Y (t) and dW (t) are independent. Solving the differential
equation d

dt
E (Y (t)) = µE (Y (t)) yields

E (Y (t)) = exp(µt)

BUT according to our previous calculus E (Y (t)) = exp(µt + σ2

2 t).
Where is the mistake?

D. Ševčovič Analytical and numerical methods of financial-derivative pricing



Stochastic differential calculus, Itō’s lemma

The answer is based on Itō’s lemma

We cannot omit stochastic character of the process
{X (t), t ≥ 0} when taking the differential of the
COMPOSITE function exp(X (t)) !!!

Itō lemma

Let f (x , t) be a C 2 smooth function of x , t variables. Suppose that
the process {x(t), t ≥ 0} satisfies SDE:

dx = µ(x , t)dt + σ(x , t)dW ,

Then the first differential of the process f = f (x(t), t) is given by

df =
∂f

∂x
dx +

(

∂f

∂t
+

1

2
σ2(x , t)

∂2f

∂x2

)

dt ,
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Stochastic differential calculus, Itō’s lemma

Figure: Kiyoshi Itō (1915–2008).

According to Wikipedia Itō’s lemma is the most famous
lemma in the world
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Stochastic differential calculus, Itō’s lemma

Meaning of the stochastic differential equation

dx = µ(x , t)dt + σ(x , t)dW ,

in the sense of Itō.

Take a time discretization 0 < t1 < t2 < ... < tn. The above
SDE is meant in the sense of a limit when the norm
ν = maxi |ti+1 − ti | → 0 of explicit in time discretization:

x(ti+1)−x(ti) = µ(x(ti ), ti )(ti+1−ti)+σ(x(ti ), ti )(W (ti+1)−W (ti))

Random variables x(ti ) and W (ti+1)− W (ti) are independent
so does σ(x(ti ), ti ) and W (ti+1) − W (ti ). Hence

E (σ(x(ti ), ti )(W (ti+1) − W (ti))) = 0

D. Ševčovič Analytical and numerical methods of financial-derivative pricing



Stochastic differential calculus, Itō’s lemma

Intuitive (and not rigorous) proof of Itō’s lemma by Taylor series
expansion of f = f (x , t) of th 2nd order

df =
∂f

∂t
dt+

∂f

∂x
dx+

1

2

(

∂2f

∂x2
(dx)2 + 2

∂2f

∂x∂t
dx dt +

∂2f

∂t2
(dt)2

)

+h.o.t.

Recall that dw = Φ
√

dt, where Φ ≈ N(0, 1),

(dx)2 = σ2(dw)2+2µσdw dt+µ2(dt)2 ≈ σ2dt+O((dt)3/2)+O((dt)2) .

because E (Φ2) = 1 (dispersion is 1).
Analogously, the term dx dt = O((dt)3/2) + O((dt)2) and thus
differential df in the lower order terms dt and dx can be expressed:

df =
∂f

∂x
dx +

(

∂f

∂t
+

1

2
σ2(x , t)

∂2f

∂x2

)

dt .
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Stochastic differential calculus, Itō’s lemma

Example: Geometric Brownian motion

Y (t) = exp(X (t)) where dX (t) = µdt + σdW (t)
Here f (x , t) ≡ ex and Y (t) = f (X (t), t). Therefore

dY (t) = df =
∂f

∂x
dx +

(

∂f

∂t
+

1

2
σ2 ∂2f

∂x2

)

dt .

= eX (t)dX (t)+
1

2
σ2eX (t)dt = (µ+

1

2
σ2)Y (t)dt+σY (t)dW (t)

As a consequence, we have for the mean value E (Y (t))

dE (Y (t)) = (µ +
1

2
σ2)E (Y (t))dt

and so E (Y (t)) = eµt+ 1
2
σ2t
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Stochastic differential calculus, Itō’s lemma

Example: Dispersion of the Geometric Brownian motion

Y (t) = exp(X (t)) where dX (t) = µdt + σdW (t)

Compute E (Y (t)2). Solution: set f (x , t) ≡ (ex)2 = e2x .Then

dY (t)2 = df =
∂f

∂x
dx +

(

∂f

∂t
+

1

2
σ2 ∂2f

∂x2

)

dt .

= 2e2X (t)dX (t)+
1

2
σ24e2X (t)dt = 2(µ+σ2)Y (t)2dt+2σY (t)2dW (t)

As a consequence, we have for the mean value E (Y (t)2)

dE (Y (t)2) = 2(µ + σ2)E (Y (t)2)dt

and so E (Y (t)2) = e2µt+2σ2t . Hence

D(Y (t)) = E (Y (t)2) − (E (Y (t))2 = e2µt+2σ2t(1 − e−σ2t)
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Itō’s lemma and Fokker–Planck equation

Suppose that a process {x(t), t ≥ 0} follows a SDE (It0̄’s
process)

dx = µ(x , t)dt + σ(x , t)dW ,

where µ a drift function and σ is a volatility of the process.

Denote by

G = G (x , t) = P(x(t) < x | x(0) = x0)

probability distribution function of the process {x(t), t ≥ 0}
starting almost surely from the initial condition x0

Then the cummulative distribution function G can be
computed from its density function g = ∂G/∂x where g(x , t)
is a solution to the Fokker–Planck equation:

∂g

∂t
=

1

2

∂2

∂x2

(

σ2g
)

− ∂

∂x
(µg) , g(x , 0) = δ(x − x0).
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Itō’s lemma and Fokker–Planck equation

Here δ(x − x0) is the Dirac function with support at x0. It means:

δ(x − x0) =

{

0 ak x 6= x0,
+∞ ak x = x0

a

∫ ∞

−∞
δ(x − x0)dx = 1.

In our case at the origin t = 0 we have

G (x , 0) =

∫ x

−∞
δ(ξ − x0)dξ =

{

0 ak x < x0,
1 ak x ≥ x0,

so the process {x(t), t ≥ 0} at t = 0 is almost surely equal to x0.
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Itō’s lemma and Fokker–Planck equation

Intuitive proof of the Fokker-Planck equation:

Let V = V (x , t) be any smooth function with compact
support, i.e. V ∈ C∞

0 (R × (0,T ))

By Itō’s lemma we have

dV =

(

∂V

∂t
+

σ2

2

∂2V

∂x2
+ µ

∂V

∂x

)

dt + σ
∂V

∂x
dW .

Let Et be the mean value operator with respect to the random
variable having the density function g(., t), i.e.

Et(V (., t)) =

∫

R

V (x , t) g(x , t) dx
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Itō’s lemma and Fokker–Planck equation

Then

dEt(V (., t)) = Et(dV (., t)) = Et

(

∂V

∂t
+

σ2

2

∂2V

∂x2
+ µ

∂V

∂x

)

dt.

because random variables σ(., t)∂V
∂x

(., t) and dW (t) are
independent and therefore

Et

(

σ(., t)
∂V

∂x
(., t)dW (t)

)

= 0
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Itō’s lemma and Fokker–Planck equation

Since V ∈ C∞
0 we have V (x , 0) = V (x ,T ) = 0 and

V (x , t) = 0 for |x | > R , where R > 0 is sufficiently large.

By integration by parts we obtain

0 =

∫ T

0

d

dt
Et(V (., t))dt =

∫ T

0
Et

(

∂V

∂t
+

σ2

2

∂2V

∂x2
+ µ

∂V

∂x

)

dt

=

∫ T

0

∫

R

(

∂V

∂t
+

σ2

2

∂2V

∂x2
+ µ

∂V

∂x

)

g(x , t) dxdt

=

∫ T

0

∫

R

V (x , t)

(

−∂g

∂t
+

1

2

∂2

∂x2

(

σ2g
)

− ∂

∂x
(µg)

)

dx dt.

Since V ∈ C∞
0 (R × (0,T )) is an arbitrary function we obtain

the Fokker–Planck equation for the density g = g(x , t):

−∂g

∂t
+

1

2

∂2

∂x2

(

σ2g
)

− ∂

∂x
(µg) = 0
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Itō’s lemma and Fokker–Planck equation

Example: dx = dW and x(0) = 0 a.s.
It means x(t) is a Wiener process

The Fokker–Planck (diffusion) equation reads as follows:

∂g

∂t
− 1

2

∂2g

∂x2
= 0

Its solution (normalized to be a probabilistic density)

g(x , t) =
1√
2πt

e−
x2

2t

is indeed a density function of the random variable
W (t) ∼ N(0, t)
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Itō’s lemma and Fokker–Planck equation

Example: dr = κ(θ − r)dt + σdW and and r(0) = r0.
This is a so called Ornstein-Uhlenbeck mean reversion process
used in the modelling of short rate interest rate stochastic
processes

The Fokker–Planck equation reads as follows:

∂f

∂t
=

σ2

2

∂2f

∂r2
− ∂

∂r
(κ(θ − r)f )

Its solution (normalized to be a probabilistic density)

f (r , t) =
1

√

2πσ̄2
t

e
− (r−r̄t )2

2σ̄2
t

is the density function for the normal random variable
r(t) ∼ N(r̄t , σ̄

2
t ) satisfying the above SDE. Here

r̄t = θ(1 − e−κt) + r0e
−κt , σ̄2

t =
σ2

2κ
(1 − e−2κt).

D. Ševčovič Analytical and numerical methods of financial-derivative pricing



Itō’s lemma and Fokker–Planck equation

Simulation of the process r(t) satisfying dr = κ(θ − r)dt + σdW and and

r(0) = r0 = 0.08. Here θ = 0.04.

Time steps of the evolution of the density function f (r , t) for various times t.

The process r(t) started from r0 = 0.02. The limiting value θ = 0.04
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Shift of the density function f (r , t)
is due to the drift in the F-P equation

∂f

∂t
=

σ2

2

∂2f

∂r2
−

∂

∂r
(κ(θ − r)f )
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Multidimensional Itō’s lemma

Multidiemnsional stochastic processes

dxi = µi (~x , t)dt +

n
∑

k=1

σik(~x , t)dwk ,

where ~w = (w1,w2, ...,wn)T is a vector of Wiener processes
having mutually independent increments

E (dwi dwj) = 0 for i 6= j , E ((dwi )
2) = dt .

It can be rewritten in a vector form

d~x = ~µ(~x , t)dt + K (~x , t)d ~w ,

where ~x = (x1, x2, ..., xn)
T and K is an n × n mattrix

K (~x , t) = (σij(~x , t))i ,j=1,...,n.
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Multidimensional Itō’s lemma

Expanding a smooth function
f = f (~x , t) = f (x1, x2, ..., xn, t) : R

n × [0,T ] → R into 2nd
order Taylor series yields:

df =
∂f

∂t
dt + ∇x f .d~x

+
1

2

(

(d~x)T∇2
x f d~x + 2∇x f

∂f

∂t
d~x dt +

∂2f

∂t2
(dt)2

)

+ h.o.t.

The term (d~x)T∇2
x f d~x =

∑n
i ,j=1

∂2f
∂xi∂xj

dxi dxj can be

expanded using the relation between processes xi and xj

dxi dxj =
n
∑

k,l=1

σikσjldwk dwl + O((dt)3/2) + O((dt)2)

≈ (

n
∑

k=1

σikσjk)dt + O((dt)3/2) + O((dt)2)
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Multidimensional Itō’s lemma

The multidimensional Itō’s lemma gives the SDE for the
composite function f = f (~x , t) in the form:

df =

(

∂f

∂t
+

1

2
K : ∇2

x f K

)

dt + ∇x fd~x

where

K : ∇2
x fK =

n
∑

i ,j=1

∂2f

∂xi∂xj

n
∑

k=1

σikσjk
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Multidimensional Itō’s lemma and Fokker-Planck equation

For the joint density function g(x1, x2, ..., xn, t) for the
probability

g(x1, x2, ..., xn, t) = P(x1(t) = x1, x2(t) = x2, ..., xn(t) = xn, t)

conditioned to the initial condition state
x1(0) = x0

1 , x2(0) = x0
2 , ..., xn(0) = x0

n we obtain by following
the same procedure of as in the scalar case that:

∂g

∂t
+ div(~µg) =

1

2

n
∑

i ,j=1

∂2

∂xi∂xj

(

n
∑

k=1

σikσjk g

)

g(~x , 0) = δ(~x − ~x0)

Fokker–Planck equation in the multidimensional case
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Multidimensional Itō’s lemma and Fokker-Planck equation

Example: Multidimensional Fokker–Planck equation for a
system of uncorrelated SDE’s

dx1 = µ1(~x , t)dt + σ̄1dw1

dx2 = µ2(~x , t)dt + σ̄2dw2

...
...

...

dxn = µn(~x , t)dt + σ̄ndwn

with mutually independent increments of Wiener processes

E (dwi dwj) = 0 for i 6= j , E ((dwi )
2) = dt .

The Fokker–Planck equations reads as follows:

∂g

∂t
+ div(~µg) =

1

2

n
∑

i=1

∂2

∂x2
i

(

σ̄2
i g
)

Scalar parabolic reaction–diffusion equation for g
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Black–Scholes model for pricing financial derivatives

Derivation of the Black–Scholes partial differential equation

the case of Call (or Put) option

Call option is an agreement (contract) between the writer
(issuer) and the holder of an option. It representing the right
BUT NOT the obligation to purchase assets at the prescribed
exercise price E at the specified time of maturity t = T in the
future.

The question is: What is the price of such an option (option
premium) at the time t = 0 of contracting. In other words,
how much should the holder of the option pay the writer for
such a derivative security
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Black–Scholes model for pricing financial derivatives

Denote

S - the underlying asset price

V - the price of a financial derivative (a Call option)

T - expiration time (time of maturity) of the option contract

S 0 50 100 150 200 250 300 350

83

83.2

83.4

83.6

83.8

84

84.2

V 0 50 100 150 200 250 300 350
13.5

13.75

14

14.25

14.5

14.75

15

15.25

Stock prices of IBM (2002/5/2) Bid and Ask prices of a Call option

Idea

Look for the price V as a function of s and time t ∈ [0,T ],
i.e. V = V (S , t)
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Black–Scholes model for pricing financial derivatives

Assumption:

the underlying asset price follows geometric Brownian motion

dS = µSdt + σSdw

Simulations of a geometric Brownian motions with µ > 0 (left) and µ < 0 (right)

0 0.2 0.4 0.6 0.8 1
t

40

60

80

100

S
Ht
L
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t
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30

S
Ht
L

Real stock prices of IBM (2002/5/2)
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83

83.2

83.4

83.6

83.8

84

84.2
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Black–Scholes model for pricing financial derivatives

Assumption:

Fundamental economic balancies

conservation of the total portfolio in the book

SQS + VQV + B = 0

self-financing of the total portfolio in the book

SdQS + VdQV + δB = 0

where
QS is # of underlying assets with unit price S in the portfolio
QV is # of financial derivatives (options) with unit price V

B cash money in the portfolio (e.g. bonds, T-bills, etc.)

dQS the change in the number of assets
dQV the change in the number of options
δB the change in the cash due to buying/selling assets and options
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