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@ Stochastic character of assets (stocks, indices, ...)

@ Financial derivatives as tool for protecting volatile portfolios
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Stochastic character of stock prices

G Daily = 2716701

Mﬁw :
! \M\Wﬁ

IBM Taily = 216701

0.

Figure: Time evolution of stock prices General Motors and IBM in 2001.
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Stochastic character of stock prices

Hicrosoft Corporation as of 25-Now-2008
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Figure: Time evolution of stock prices Microsoft and IBM in 2007, 2008.
Volume of transaction.
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Stochastic character of indices
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Figure: Time evolution of Dow—Jones index in precrisis periods 2000
and 2007-8.
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Financial derivatives as a tool for protecting volatile

portfolios

@ Forward
is an agreement between writer (issuer) and holder
representing the right and at the same time obligation to
purchase assets at the specified time of maturity of a forward

Pricing forwards is relatively simple once we know the interest rate
r measuring the rate of the decrease of the value of money

Vi = Eexp(—rT)

where E is the contracted expiration value of a forward at
expiration time T, Vf is the present value of a forward at the time
when contract is signed
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Financial derivatives as a tool for protecting volatile

portfolios

@ Option (call option)
is an agreement between writer (issuer) and holder
representing the right BUT NOT the obligation to purchase
assets at the prescribed exercise price E at the specified time
of maturity T in the future

Pricing option is more involved
V. = function of E, T,r,...,777

where E is the contracted expiration value of a forward at
expiration time T, V. is the present value of a call option at the
time when contract is signed
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Stochastic character of options

Microsoft Corporation (MSFT) atg:41am £1:20.12 +0.13 (0.65%)
Options

View By Expiration: Dee 08 | Jan 09 | Apr 09 | Jul 09 | Jan 10 | fan 11
Options Expiring Fri, Dec 19, 2008

calls Strike Puts

Ssymbol Last Change Bid Ask WVolume Openint Price symbol Last Change Bid Ask Volume Openint
MOFLEX 15.20 0.00 1510 1520 42 34 5.00 MOFXEX N/A  0.00 NA NA 0 0
MOFLBX 10.15 0.00 1010 1020 74 2,541 10.00 MOFXEX 0.03 0.00 0.02 004 97 3,473
MOFLMX 7.20 0.00 715 7.25 95 187 13.00 MOFXM.X 0.07 0.00 005 0.07 459 2,994
MOFINX 6.15 0.00 615 625 55 211 14.00 MOEXNX 0.10 0.00 007 010 204 2,147
MOFLCX 5.06 t0.11 520 530 1 1,348 15.00 MOFXCX 0.14 0.00 013 014 5 8,183
MOFLOX 4.35 0.00 425 435 263 368 16.00 MOFXO.X 0.20 +0.02 019 021 2 337
MOFLOX 3.40 0.00 330 340 122 4,157 17.00 MOFX0.X 0.32 40.02 0.33 034 1 8,395
MOFLS.X 1.83 40.05 189 192 36 7,567 19.00 MOFXSX 0.83 t0.06 0.77 080 169 31116

MOFLD.X 1.28 #0.02 127 129 56 8,886 20.00 MOFXDX 1.14 4#0.06 113 116 109 23,562
MOFLUX 0.78 #0.09 075 078 105 72,937 21.00 MOFXUX 1.83 +0.23 165 168 1 72472
MSQLN.X 0.40 40.04 041 043 350 16,913 22.00 MSQXM.X 2.58 +0.23 230 236 3 4,495
MSQLO.X 0.21 40.01 020 022 125 20,801 23.00 MSQXOX 3.10 0.00 3.05 315 30 3840

N
=
o
o

MSQLDX 0.09 #0.02 009 011 92 12,207
MSQLEX 0.04 ¥0.02 004 005 165 14,193
MSQLRX 0.02 0.00 002 003 161 9,359
MSQLS.X 0.02 0.00 NA 003 224 3.643

MSOXD.X 3.80 0.00 395 405 167 3,871
MSQXEX 4.90 0.00 485 495 157 2,075
MSQXRX 6.15 0.00 585 5095 210 1,795
MSQXSX 7.00 0.00 685 695 45 1,156

I
oL (e
o
o

NN
N o
o o
o lo

MSQLTX 0.02 0.00 NA 002 59 MSQXTX 7.55 0.00 780 795 24 874
MSQLEX 0.01 0.00 KA 002 10 0 MSQXFX 10.54 0.00 9385 1000 26 124

Highlighted options are inthe-money.

Figure: Prices of call and put options with different exercise (strike)
prices E for Microsoft from 26. 11. 2008.
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Stochastic character of options
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Figure: Top: Stock prices of IBM from 22. 5. 2002. Bottom: Bid and Ask
prices of call option for IBM stocks and their arithmetic average value
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Financial derivatives as a tool for protecting volatile

portfolios

@ A natural question arises:
Although the time evolution of the asset price S; as well as its
derivative (option) V; is stochastic (volatile, unpredictable)
CAN WE FIND A FUNCTIONAL RELATIONSHIP

Vt — V(Sh t)

relating the actual stock price S; at time t and the price of its
derivative (like e.g. an option) V;?

D. Sevéovi¢ Analytical and numerical methods of financial-derivative pricing



Financial derivatives as a tool for protecting volatile

portfolios

@ This was a long standing problem in financial mathematics
until 1972. The answer is YES due to pioneering work of
M.Scholes, F.Black and R.Merton

Figure: M. S. Scholes a R. C. Merton shortly after they were awarded the
Price of the Swedish Bank for Economy in the memory of A. Nobel in
1997.
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Financial derivatives as a tool for protecting volatile

portfolios

@ The Black-Scholes formula
V=Vt TEro)

where S = S; is the spot (actual) price of an asset, V = V; is
a the spot price of the option (call or put) at time 0 < ¢t < T.
Here T is the time of maturity, E is the exercise price, r > 0

is the interest rate of a secure bond, o > 0 is the volatility of
underlying stochastic process of the asset price S;.
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@ Stochastic differential calculus, 1td’s lemma, It3's integral
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Stochastic differential calculus, 1t0's lemma

@ Stochastic process is t - parametric system of random

variables {X(t),t € I}, where [ is an interval or discrete set of
indices

@ Stochastic process {X(t),t € I} is a Markov process with the
property: given a value X(s), the subsequent values X(t) for

t > s may depend on X(s) but not on preceding values X(u)
for u <s.

If t > s then for conditional probabilities we have:
P(X(t) <x|X(s)) = P(X(t) < x|X(s), X(u))

for any u <s.
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Stochastic differential calculus, 1t0's lemma

@ a stochastic process {X(t),t > 0} is called Brownian motion

i) all increments X(t + A) — X(t) are normally distributed with
mean value uA and dispersion (or variance) o2A,

i) for any division of times tp =0 < t; < tp < t3 < ... < t, the
increments X(t1) — X(to), X(t2) — X(t1), ..., X(tn) — X(tn=1)
are independent random variables

i) X(0) = 0.

@ Brownian motion {W/(t),t > 0} with the mean =0 and
dispersion 02 = 1 is called Wiener process

Figure: Norbert W|ener (1884 1964) and Robert Brown (1773-1858).
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Stochastic differential calculus, 1t0's lemma

@ Additive (semigroup) property of Brownian motion
{X(t),t =0}
let 0 =ty < t; < ... < t, = t be any division of the interval [0, ¢].
Then

X(t) — X(0) = zn:Xi — Xi-1,
i=1

Therefore the mean value E and variance Var of the left and right
hand side have to be equal.

E(X(t) = X(0)) = p(t —0) = pt.
On the other side we have due to linearity of the mean value
operator

n n n
S R S R IO WEL R
i=1 i=1 i=1

@ In order to verify the equality we had to require that increments X; — X;_1 have
the mean value E(X; — X;_1) = u(t; — ti—1)
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Stochastic differential calculus, 1t0's lemma

@ Additive (semigroup) property of Brownian motion
{X(t),t = 0}

For dispersions of the random variables X(t) — X(0) and
Som (X(ti) — X(ti—1)) we have

Var(X(t) — X(0)) = o2(t — 0) = o°t.

Recall that for random independent variables A, B it holds:
Var(A + B) = Var(A) + Var(B). Hence, assuming independence
of increments X; — X;_1 for different i = 1,2,..., n we have

ar (zn:X(t,) — t, 1 ) Z Var t,) X t, 1) ZO’ ti—ti—1
i=1

@ In order to verify the equality we had to require that increments X(t;) — X(ti_1)
have the dispersion (variance) V(X(t;) — X(ti_1)) = o?(t; — ti_1)
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Stochastic differential calculus, 1t0's lemma

In summary:

@ The Brownian motion {X(t),t > 0} has the following
stochastic distribution:

X(t) ~ N(ut,ot)

where N(mean, variance) stands for normal random variable
with given mean and variance

@ The Wiener process {W(t),t > 0} (here u = 0,02 = 1) has
the following stochastic distribution:

W(t) ~ N(O, t)
Moreover dW(t) := W(t + dt) — W(t) ~ N(0, dt), i.e.

dW(t) := W(t + dt) — W(t) = oV dt
where ® ~ N(0,1).
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Stochastic differential calculus, 1t0's lemma
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Figure: Two randomly generated samples of a Wiener process.
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Figure: Five random realizations of a Wiener process alltogether.
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Stochastic differential calculus, 1t0's lemma

Since W(t) ~ N(0,t) we have Var(W(t)) = t.
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Figure: Time dependence of the variance Var(W(t)) of 1000 random
realizations of a Wiener process.
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Stochastic differential calculus, 1t0's lemma

Relation between Brownian and Wiener process:

@ For a Brownian motion {X(t),t > 0} with parameters y and
o we have by definition
dX(t) = X(t + dt) — X(t) ~ N(udt,a?dt) Therefore, if we
construct the process
X(t) — pt

Wit ==

we have

AW(t) = W(t + dt) — w(t) = KO =1 o ar)

o
i.e. {W(t),t >0} is a Wiener process

Since X(t) = ut + ocW(t) we may therefore write a
Stochastic differential equation

dX(t) = pdt + odW(t),
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Stochastic differential calculus, 1t0's lemma

@ Geometric Brownian motion

If {X(t),t > 0} is a Brownian motion with parameters ;. and o we
define a new stochastic process {Y(t),t > 0} by taking

Y (t) = yoexp(X (1))
where yg is a given constant. The process {Y(t),t > 0} is called

Geometric Brownian motion.

@ Statistical properties of the Geometric Brownian motion
@ let us take for simplicity yg = 1. Then

W(t) = In Y(z;) — ut

is a Wiener process with W(t) ~ N(0,t), i.e. we know its
distribution function
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Stochastic differential calculus, 1t0's lemma

@ Statistical properties of the Geometric Brownian motion

Then for the distribution function G(y,t) = P(Y(t) < y) it holds:
G(y,t) =0 for y <0 (since Y(t) is a positive random variable)
and for y >0

Gly,t)=P(Y(t)<y)=P (W(t) < w>

—pt+iny

1 o 2
_ —£°/2t
= e d
V 27lt /;oo g
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Stochastic differential calculus, 1t0's lemma

@ Statistical properties of the Geometric Brownian motion

Since E(Y(t)) = [, vg(y,t)dy and

E(Y(t)?) = [, v?&(y, t) dy, where g(y, t) = £ G(y, t), we can
calculate

E(Y(t)) =/OO ve(y, t)dyzfoooyg(% t) dy

—00
1 /°° _<—uf+2|ny)2 1 d
= e 204t —_—
V2rt Jo Y oy Y

(€= (—ut+1Iny)/(oVt))

0,2
eht  [© 2 eMttzt [0 (e ovi?
= e 2OV g = e 2 d¢
V2T J o V2n )
2
= ehttTt,
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Stochastic differential calculus, 1t0's lemma

@ Naive (and also wrong) formal calculation
Since Y(t) = exp(X(t)) where dX(t) = pdt + odW/(t) we have
dY (t) = (exp(X(t))) dX(t) = exp(X(t))dX(t)
and therefore
dY(t) = pY(t)dt + o Y(t)dW(t)

Hence by taking the mean value operator operator E(.) (it is a
linear operator) we obtain

dE(Y(t)) = E(dY(t)) = pE(Y(t))dt+cE(Y(t)dW(t)) = nE(Y(t))dt

as Y(t) and dW(t) are independent. Solving the differential
equation L E(Y(t)) = pE(Y(t)) yields

E(Y(t)) = exp(ut)

BUT according to our previous calculus E(Y(t)) = exp(ut + %2t)
Where is the mistake?
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Stochastic differential calculus, 1t0's lemma

@ The answer is based on Ito's lemma

@ We cannot omit stochastic character of the process
{X(t),t > 0} when taking the differential of the
COMPOSITE function exp(X(t)) !!!

Ito lemma
Let f(x,t) be a C? smooth function of x, t variables. Suppose that

the process {x(t),t > 0} satisfies SDE:
dx = p(x, t)dt + o(x, t)dW,

Then the first differential of the process f = f(x(t), t) is given by

of ofF 1, 0
df = —dX+ <E + 50' (X, t)w) dt,
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Stochastic differential calculus, 1t0's lemma

B

Figure: Kiyoshi Itd 1915 —2008).

® According to Wikipedia Itd's lemma is the most famous
lemma in the world
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Stochastic differential calculus, 1t0's lemma

@ Meaning of the stochastic differential equation
dx = p(x, t)dt + o(x, t)dW,

in the sense of Ito.

@ Take a time discretization 0 < t; < t» < ... < t,. The above
SDE is meant in the sense of a limit when the norm
v = max; |ti+1 — tj| — 0 of explicit in time discretization:

x(tiv1)—x(t) = p(x(ti), ti)(tia—ti)+o(x(ti), i) (W(tir1)— W(ti))

@ Random variables x(t;) and W(t;1) — W(t;) are independent
so does o(x(t;), t;) and W(ti+1) — W(t;). Hence

E(o(x(ti), ti))(W(tit1) — W(t;))) =0
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Stochastic differential calculus, 1t0's lemma

Intuitive (and not rigorous) proof of Itd's lemma by Taylor series
expansion of f = f(x,t) of th 2nd order

of , of *f O*f O*f
df = Edﬂ_a dx—+ (8 5 (dx x)? 4 2 IO dxdt+ﬁ(dt) )+h.o.t.

Recall that dw = ®/dt, where ® ~ N(0,1),
(dx)? = 0?(dw)?+2uodw dit+p?(dt)? ~ o?dt+0((dt)>/?)+0((dt)?).
because E(®2) = 1 (dispersion is 1).

Analogously, the term dx dt = O((dt)3/?) + O((dt)?) and thus
differential df in the lower order terms dt and dx can be expressed:

_of of 1, . Of
df = Z-dx + (a +50%(x. )8X>dt
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Stochastic differential calculus, 1t0's lemma

@ Example: Geometric Brownian motion
o Y(t) = exp(X(t)) where dX(t) = udt + ocdW(t)
Here f(x, t) = e and Y(t) = f(X(t), t). Therefore

o of of 1 ,0°f

1 1
- eX(t)dX(t)+§o2eX(t)dt = (u+507) Y (t)de+o Y ()dW(t)

@ As a consequence, we have for the mean value E(Y'(t))
1
dE(Y(t)) = (u+ 507)E(Y(¢))dt

and so E(Y(t)) = ett+3o°t
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Stochastic differential calculus, 1t0's lemma

@ Example: Dispersion of the Geometric Brownian motion
@ Y(t) = exp(X(t)) where dX(t) = udt + odW(t)
o Compute E(Y(t)?). Solution: set f(x,t) = (&¥)? = e**.Then

2
dY(t)? = df = ?dx (% - 302%) dt.

1
= 2e2X(®) dX(t)+§(724e2X(t) dt = 2(u+0?) Y (t)2dt+20 Y (t)2dW(t)
@ As a consequence, we have for the mean value E(Y(t)?)
dE(Y (t)?) = 2(n+ 0*)E(Y (t)°)dt

and so E(Y(t)?) = e2#t+27°t Hence

D(Y (1) = E(Y()?) = (E(Y (1)) = 27 (1 — ™)

D. Sevéovi¢ Analytical and numerical methods of financial-derivative pricing



[to's lemma and Fokker—Planck equation

@ Suppose that a process {x(t),t > 0} follows a SDE (It0's
process)
dx = p(x, t)dt + o(x, t)dW,
where 1 a drift function and o is a volatility of the process.

@ Denote by
G =G(x,t) = P(x(t) < x | x(0)=xp)

probability distribution function of the process {x(t),t > 0}
starting almost surely from the initial condition xg

@ Then the cummulative distribution function G can be
computed from its density function g = 9G/dx where g(x, t)
is a solution to the Fokker—Planck equation:

8g_1 H? 5 0 _
9t 20x2 (U g)—a(ug), g(XaO)—5(X—X0)-
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[to's lemma and Fokker—Planck equation

Here 6(x — xp) is the Dirac function with support at xp. It means:

[0 ak x # xg, o0 B
(x —x0) = {—I—oo ak x=x 2 /_OO d(x — xp)dx = 1.

In our case at the origin t = 0 we have

ak x < xp,
ak x > xp,

G(x,0) = /_XOO 5(E — x)dE = {g’

so the process {x(t),t > 0} at t = 0 is almost surely equal to xp.
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[to's lemma and Fokker—Planck equation

Intuitive proof of the Fokker-Planck equation:

o Let V = V(x,t) be any smooth function with compact
support, i.e. V € (R x (0, T))
@ By Itd's lemma we have
oV 0?9’V ov ov
V= G5+ 75755 tus —dW.
d <at T2 e +“ax> dttogd

o Let E; be the mean value operator with respect to the random
variable having the density function g(., t), i.e.

E(V(., 1)) = /R V(x, t) g(x, t) dx
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[to's lemma and Fokker—Planck equation

Then

oV o292V ov
dE(V(.,t)) = E(dV(.,t)) = E; (E T “5) at.

because random variables o(., t)a—v( t) and dW(t) are
independent and therefore

E, <a(., t)%(., t)dW(t)> _
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[to's lemma and Fokker—Planck equation

@ Since V € (§° we have V(x,0) = V(x, T) =0 and
V(x,t) =0 for |x| > R, where R > 0 is sufficiently large.

@ By integration by parts we obtain

T d AV 022V oy
A S t))dt_/o Et<ﬁ*7ﬁ+ﬂa>dt
282\/ aV

- / /<8t 2W+ﬂ§>g(x,t)dxdt
g 1 92 o
B / / Xt( +282(‘72g)_5(ug) dx dt.

@ Since V € Cg°(R x (0, T)) is an arbitrary function we obtain
the Fokker—Planck equation for the density g = g(x, t):

og 12, ,. 0,
E‘Fiﬁ(ag)—&(ﬂg)—o
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[to's lemma and Fokker—Planck equation

@ Example: dx = dW and x(0) =0 as.
It means x(t) is a Wiener process

@ The Fokker—Planck (diffusion) equation reads as follows:

og 10°g _

ot 20x2
@ lts solution (normalized to be a probabilistic density)

1 2
g(x7 t): \/ﬁe 2t

is indeed a density function of the random variable
W(t) ~ N(O,t)
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[to's lemma and Fokker—Planck equation

e Example:  dr = k(0 — r)dt + odW and and r(0) = rp.
This is a so called Ornstein-Uhlenbeck mean reversion process
used in the modelling of short rate interest rate stochastic
processes
@ The Fokker—Planck equation reads as follows:
of d20*f 0
ot~ 202 o 000

@ lts solution (normalized to be a probabilistic density)
1 (r="¢)

\/ 2152 ©

is the density function for the normal random variable
r(t) ~ N(F.,52) satisfying the above SDE. Here

2
Fr=0(1—e ™)+ e, &2= g—ﬁ(l — 72,

f(r,t)=
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[to's lemma and Fokker—Planck equation

@ Simulation of the process r(t) satisfying dr = k(6 — r)dt + cdW and and
r(0) = rg = 0.08. Here 6 = 0.04.

0.08

0.07
£ 006
g 0.05
$0.04
> 0.03

0.02

@ Time steps of the evolution of the density function f(r, t) for various times t.

The process r(t) started from ry = 0.02. The limiting value § = 0.04

Shift of the density function f(r, t)
60 is due to the drift in the F-P equation
]
'S
S 40 of  o29%F 0
S — = ——— — — (k(@—r)f
8 ot 2 0r2  Or (r(® = )f)
20
0
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Multidimensional 1td’s lemma

@ Multidiemnsional stochastic processes

dx; = u,'()_f, t)dt + Z O';k()?, t)de ,
k=1

where w = (wy, wa, ..., w,,) T is a vector of Wiener processes
having mutually independent increments

E(dw; dwj) =0 for i # j, E((dw;)?) = dt.
@ It can be rewritten in a vector form
dX = [fi(X, t)dt + K(X, t)dw,
where X = (x1, X2, ...,x,) " and K is an n x n mattrix

K(X,t) = (oji(X, t))ij=1,....n-
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Multidimensional 1td’s lemma

@ Expanding a smooth function
f=1Ff(Xt)=f(xi,x2, ..., xn, t) : R” x [0, T] — R into 2nd
order Taylor series yields:

df = ?de f.dx
L1 f 2f
+5 <(dx)Tv2fd + 2V, fg dx dt—l—%(dtf) + ho.t.

AT O2f 42 _ NN 2f
® The term (dX)"VifdxX =3/, dei dx; can be
expanded using the relation between processes x; and x;

dx; dxj = Z ok jdwy dw; + O((dt)*?) + O((dt)?)
k,/=1

~ (zn: O';kO'jk)dt + O((dt)3/2) + O((dt)z)

k=1
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Multidimensional 1td’s lemma

@ The multidimensional 1td’s lemma gives the SDE for the
composite function f = f(X, t) in the form:

fo1
df = (8— + K : V2f K> dt + Vxfd3
ot 2

where
n 821‘ n
K:VifK =
Vi Z O0x;0x;
ij=1 k=1

Oik0jk
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Multidimensional |to's lemma and Fokker-Planck equation

@ For the joint density function g(xi,x2, ..., Xn, t) for the
probability

g(x1,x2, .., Xn, t) = P(x1(t) = x1,x2(t) = x2, ..., Xn(t) = Xn, t)
conditioned to the initial condition state

x1(0) = x?, x2(0) = X9, ..., x,(0) = x2 we obtain by following
the same procedure of as in the scalar case that:

g(%.0) = 6(% — 2°)

Fokker—Planck equation in the multidimensional case
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Multidimensional |to's lemma and Fokker-Planck equation

@ Example: Multidimensional Fokker—Planck equation for a
system of uncorrelated SDE's

dx; = ,ul(f(', t)dt + 1dwy
dxy, = ,u2(>_<', t)dt + godws
dx, = pn(X,t)dt+ cpdw,

with mutually independent increments of Wiener processes
E(dw; dw;) =0 for i # j, E((dw;)?) = dt.
@ The Fokker—Planck equations reads as follows:
og . 1 02 .,
2 Ldiv(iie) = = — (57

Scalar parabolic reaction—diffusion equation for g
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Black—Scholes model for pricing financial derivatives

@ Derivation of the Black—Scholes partial differential equation
@ the case of Call (or Put) option

@ Call option is an agreement (contract) between the writer
(issuer) and the holder of an option. It representing the right
BUT NOT the obligation to purchase assets at the prescribed
exercise price E at the specified time of maturity t = T in the
future.

@ The question is: What is the price of such an option (option
premium) at the time t = 0 of contracting. In other words,
how much should the holder of the option pay the writer for
such a derivative security
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Black—Scholes model for pricing financial derivatives

Denote

@ S - the underlying asset price
@ V - the price of a financial derivative (a Call option)

@ T - expiration time (time of maturity) of the option contract

84.2
15.25

15

84

83.8 14.75
83.6 14.5
83. 4| 14.25
83.2 14

13.75

83
13.5
S 0 50 100 150 200 250 300 350 V 0 50 100 150 200 250 300 350
Stock prices of IBM (2002/5/2) Bid and Ask prices of a Call option

Idea

@ Look for the price V as a function of s and time t € [0, T],
ie. V=V(S,1t)
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Black—Scholes model for pricing financial derivatives

Assumption:
@ the underlying asset price follows geometric Brownian motion
dS = pSdt + oSdw

Simulations of a geometric Brownian motions with 1 > 0 (left) and p < 0 (right)
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Black—Scholes model for pricing financial derivatives

Assumption:
@ Fundamental economic balancies
o conservation of the total portfolio in the book

SQs +VQv+B=0

o self-financing of the total portfolio in the book

5dQs + VdQy + 6B =0

where
@ Qs is # of underlying assets with unit price S in the portfolio
@ Qv is # of financial derivatives (options) with unit price V
@ B cash money in the portfolio (e.g. bonds, T-bills, etc.)
@ dQs the change in the number of assets
@ dQy the change in the number of options
@ 0B the change in the cash due to buying/selling assets and, options
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