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DIFFUSE-INTERFACE TREATMENT OF THE ANISOTROPIC

MEAN-CURVATURE FLOW

��� � � ���	��
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, Praha

Abstract. We investigate the motion by mean curvature in relative geometry by means of
the modified Allen-Cahn equation, where the anisotropy is incorporated. We obtain the ex-
istence result for the solution as well as a result concerning the asymptotical behaviour with
respect to the thickness parameter. By means of a numerical scheme, we can approximate
the original law, as shown in several computational examples.
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1. Introduction

Mean-curvature flow in relative geometry. The article studies the following

motion law for closed hyperplanes in � n denoted by Γ:

(1) velocity = −curvature + forcing

in a certain sense, which is specified below. Both the velocity and the curvature are

evaluated with respect to the direction given by a vector locally influenced by the

orientation of the Euclidean normal vector to Γ.

One example of the law (1) is represented by the isotropic mean-curvature flow

given by the equation

(2) vΓ = −κΓ + F,

This work was partly supported by the Grant No. 201/01/0676 of the Grant Agency
of the Czech Republic. Some computations were performed under the support of the
Institute of Computer Science, Academy of Sciences of the Czech Republic, within the
project No. A1030103 of the Grant Agency of the Academy of Sciences of the Czech
Republic.
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in the direction of nΓ which is the Euclidean normal vector to Γ, while vΓ is the

normal velocity, κΓ the mean curvature, and F a forcing term. The equation (2) in

the form of the Gibbs-Thompson law is contained in the modified Stefan problem.

For details, we refer the reader to [12], [19].

Anisotropic example. One of few cases where the analytical solution is known

considers a ball under the relative geometry which shrinks according to (1) with

F = 0. In this case we have the initial ball with radius r0, normal velocity ṙ, actual

curvature along the ball of radius r being 1

r . The equation (1) reads

ṙ = −
1

r
,

and has the solution

(3) r(t) =
√

r2
0 − 2t.

Our aim is to treat the motion law (1) by means of the Allen-Cahn equation, whose

solution levelset approximates Γ. The mentioned approach based on non-sharp in-

terpretation of Γ can be traced to [14], [8], [16], [9] or [6]. The physical background

is summarized e.g. in [5].

2. Equations

Notation and toolbox. The problem (1) can be analysed in a quite straightfor-

ward way, provided we introduce the following framework, based on results published

first in [2].

We consider a nonnegative function Φ: � n → � +
0 which is smooth, strictly convex,

C2( � n \ {0}) and satisfying

Φ(tη) = |t|Φ(η), t ∈ � , η ∈ � n ,(4)

λ|η| 6 Φ(η) 6 Λ|η|,(5)

where λ, Λ > 0. The function given by

Φ0(η∗) = sup{η∗ · η | Φ(η) 6 1}

is its dual. They satisfy the relations

Φ0
η(tη∗) =

t

|t|
Φ0

η(η∗), Φ0
ηη(tη∗) =

1

|t|
Φ0

ηη(η∗), t ∈ � − {0},(6)

Φ(η) = Φη(η) · η, Φ0(η∗) = Φ0
η(η∗) · η∗, η, η∗ ∈ � n ,
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where the index η means the derivative with respect to η (Φη is in fact the total

derivative consisting of partial derivatives with respect to components of the vec-

tor η). We define the map T 0 : � n → � n as

T 0(η∗) := Φ0(η∗)Φ0
η(η∗) for η∗ 6= 0,

T 0(0) := 0.

It allows to define the Φ-gradient of a smooth function u:

(7) ∇Φu := T 0(∇u) = Φ0(∇u)Φ0
η(∇u).

If we assume that the hypersurface Γ(t) is given by a levelset of the field function

P = P (t, x), then

Γ(t) = {x ∈ � n | p(t,x) = const},

and the Φ-normal vector (the Cahn-Hoffmann vector) and the velocity of Γ(t) given

by a field P are

nΓ,Φ = −
∇ΦP

Φ0(∇P )
= −

T 0(∇P )

Φ0(∇P )
, vΓ,Φ =

∂tP

Φ0(∇P )
.

The anisotropic curvature is given by the formula

κΓ,Φ = div(nΓ,Φ).

� �����������
. In 2D, we typically use the dual metric set as

Φ0(η∗) = %Ψ(Θ),

where [%, Θ] are polar coordinates of η∗. Our choice can be Ψ(Θ) = 1 + A sin(mΘ),

where A > 0 is the anisotropy strength and m = 2, 3, . . . the order of symmetry. The

convexity condition reads A 6 (m2 − 1)−1. In higher dimensions, the anisotropy can

explore various norms of the lp type, as indicated in [2].

���������! 
. The (strong) monotonicity of the operator T 0 is equivalent to the

(strict) convexity of the functional

∫

Ω

Φ0(∇p)2 dx.

Using this framework, we can consider the following problem for a nonlinear parabolic

equation.
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Hamilton-Jacobi equation. Using the above given tools, we can write the

law (1) in a more accurate way as

vΓ,Φ = −κΓ,Φ + F,

in the direction of nΓ,Φ. If the manifold Γ is described as

Γ(t) = {x ∈ � n | P (t,x) = const},

with a convention

Ωs(t) = {x ∈ � n | P (t,x) > const},

then we can induce the Hamilton-Jacobi equation

∂P

∂t
= Φ0(∇P )∇ ·

( ∇ΦP

Φ0(∇P )

)

+ Φ0(∇P )F.

For the case when Φ(·) ≡ | · | we obtain the isotropic form of this equation

∂P

∂t
= |∇P |∇ ·

( ∇P

|∇P |

)

+ |∇P |F,

known e.g. from [10], [17].

Wulff shape representing the unit ball under the metric Φ is defined in [13], and

can be parametrized as follows:

W : x(θ) = Ψ(θ) cos θ − Ψ′(θ) sin θ,

y(θ) = Ψ(θ) sin θ + Ψ′(θ) cos θ.

In Fig. 1, we show examples of various anisotropies in terms of the Wulff shape.

It is worth mentioning that under the law (1), the manifold Γ always tends to ap-

proach W before shrinking or expansion.

Figure 1. Examples of Wulff shape as the boundary of a convex interior for presented pat-
terns.
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IBVP. In analogy with the isotropic motion by mean curvature (e.g., [6]), we pro-

pose to use a modified Allen-Cahn equation approximating the manifold Γ through

the levelset 1

2
of its solution. When treating the law (1), we have to incorporate the

anisotropy into the equation, which is done in agreement with the results of [2] and

[3]. For the sake of simplicity, we restrict ourselves to a two-dimensional rectangular

domain and homogeneous Dirichlet boundary conditions.

First, we introduce a rectangular domain Ω = (0, L1)×(0, L2) ⊂ � 2 , x = [x1, x2] ∈

Ω, and the time variable t ∈ (0, T ). The problem for the unknown function p = p(t, x)

reads as follows:

ξ
∂p

∂t
= ξ∇ · T 0(∇p) +

1

ξ
f0(p) + F (u)ξΦ0(∇p) in (0, T )× Ω,(8)

p
∣
∣
∂Ω

= 0 on (0, T )× ∂Ω,

p|t=0 = pini(x) in Ω.

Here, ξ > 0 is a parameter related to the thickness of the interface layer (it is usually

set to a value � 1). The polynomial

f0(p) = ap(1 − p)
(

p −
1

2

)

with a > 0 is derived from the double-well potential w0 as w′
0 = −f0. The function

F = F (x) is bounded and continuous. The function pini is the initial condition. We

refer the reader to [5], [4] for details concerning the isotropic version of the equation

and the physical background.

As usual, we introduce the following notations

(u, v) =

∫

Ω

u(x)v(x) dx,

‖u‖ =

√
∫

Ω

u(x)2 dx for u, v ∈ L2(Ω),

(∇u,∇v) =

∫

Ω

∇u(x) · ∇v(x) dx,

‖∇u‖ =

√
∫

Ω

|∇u(x)|2 dx for u, v ∈ H1
0(Ω).

We also notice that the assumptions on F imply that there is a constant CF > 0 such

that |F | 6 CF . Our existence and uniqueness result is contained in the following

theorem.
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Theorem 1. If pini ∈ H1
0(Ω) and ξ remains fixed then there is a unique solution

pξ ∈ L2(0, T ; H1
0(Ω)) of the weak problem

ξ
d

dt
(pξ , q) + ξ(T 0(∇pξ),∇q) =

1

ξ
(f0(p

ξ), q) + (FξΦ0(∇pξ), q),(9)

pξ(0) = pini,

a.e. in (0, T ), ∀q ∈ D(Ω) for which

pξ ∈ L2(0, T ; H2(Ω) ∩ H1
0(Ω)),

∂pξ

∂t
∈ L2(0, T ; L2(Ω)).

Additionally, the proof of the theorem provides suitable apriori estimates allowing

to show

Theorem 2. Let pξ be the solution of the weak problem with the initial data

satisfying Eξ [pξ](0) < M0 independently of ξ, and let

∫

Ω

|pξ(0, x) − v0(x)| dx → 0

as ξ → 0, for a function v0 ∈ L1(Ω). Then for any sequence ξn tending to 0 there is

a subsequence ξn′ such that

lim
ξ

n
′→0

pξ
n
′
(t, x) = v(t, x)

is defined a.e. in (0, T )× Ω. The function v reaches values 0 and 1 and satisfies

∫

Ω

|v(t1, x) − v(t2, x)| dx 6 C|t2 − t1|
1/2,

where C > 0 is a constant, and

sup
t∈〈0,T 〉

∫

Ω

|∇v| dx 6 C1

in the sense of BV(Ω), where C1 > 0 is a constant. The initial condition is

lim
t→0+

v(t, x) = v0(x)

a.e.
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This theorem together with formal asymptotic expansions (see [4] for the isotropic

analogue) indicate that the solution p through its levelset 1

2
approaches the problem

vΓ,Φ = −κΓ,Φ + F

in the direction of Cahn-Hoffmann vector nΓ,Φ. We sketch this relationship in Fig. 2.

d a

c b

ξ
∂p

∂t
= ξ∇ · T 0(∇p) +

1

ξ
ap(1 − p)

(

p −
1

2

)

+ξFΦ0(∇p)

︸ ︷︷ ︸ ︸ ︷︷ ︸




y

ξ → 0+





y

on Γ





y

νΓ,Φ = −κΓ,Φ + F

Figure 2. Schematic relationship to the original motion law.

Due to remarks in [2], we keep in mind that the choice Φ0(η∗) = %Ψ(Θ) leads to

the law

vΓ = −Ψ(Ψ + Ψ′′)κΓ + ΨF

in the direction of the Euclidean unit normal vector.

3. Proofs of the statements

"#�!$%$�&
of Theorem 1. We derive a sequence of approximate solutions to the

original problem (9) by means of the Faedo-Galerkin method. Assume that there is

an orthonormal basis {vi}i∈ ' of the Hilbert space L2(Ω) consisting of eigenvectors

of the operator −∆ coupled with homogeneous Dirichlet boundary conditions.

Additionally, we assume that (∀ i ∈ ( )(vi ∈ C2(Ω) ∩ C1(Ω)). The corresponding

eigenvalues are denoted by {λi}i∈ ' . Let Vm = span{vi}i∈ ' m
be a finite-dimensional

subspace ( ( m = {1, . . . , m}) and Pm : L2(Ω) → Vm the L2-projection operator (co-

inciding with the H1-projector). We seek for a solution pm from 〈0, T ) to Vm of an

auxiliary problem

ξ2 d

dt
(pm, vj) + ξ2(T 0(∇pm),∇vj) = (f0(p

m), vj) + ξ2(FΦ0(∇pm), vj)(10)

a.e. in (0, T ), ∀ j = 1, . . . , m,

pm(0) = Pmp0.

We use the basis functions of Vm to express the solution of (10) as

pm(t) =
∑

i∈ ' m

γm
i (t)vi
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and to obtain a system of ordinary differential equations for the unknown func-

tions of time γm
i using (10). We follow the procedure of the compactness method

(e.g., see [18]), show that the solution of (10) is defined on (0, T ) for T > 0 and show

an appropriate convergence of pm. For this purpose, we prove an a priori estimate

by multiplying (10) by dγm
j /dt and summing for j ∈ ( m :

ξ2

∥
∥
∥

∂pm

∂t

∥
∥
∥

2

+
ξ2

2

d

dt
(Φ0(∇pm)2, 1) +

d

dt
(w0(p

m), 1) = ξ2
(

FΦ0(∇pm),
∂pm

∂t

)

,

where w′
0 = −f0, and where the property (6) was important to use:

Φ0(∇pm)Φ0
η(∇pm) · ∇pm = Φ0(∇pm)2.

We use the Schwarz and Young inequalities, estimate |F | 6 CF , so that we finally

obtain the inequality

1

2
ξ2

∥
∥
∥

∂pm

∂t

∥
∥
∥

2

+
ξ2

2

d

dt
(Φ0(∇pm)2, 1) +

d

dt
(w0(p

m), 1) 6
C2

F

2
ξ2(Φ0(∇pm)2, 1).

We integrate over (0, t) and subsequently over (0, T ), and get

(ξ2

2
(Φ0(∇pm)2, 1) + (w0(p

m), 1)
)

(t)(11)

6

(ξ2

2
(Φ0(∇pm)2, 1) + (w0(p

m), 1)
)

(0) exp
(C2

F

2
t
)

,

∫ T

0

(1

2
ξ2

∥
∥
∥

∂pm

∂t

∥
∥
∥

2)

(t) dt +
(ξ2

2
(Φ0(∇pm)2, 1) + (w0(p

m), 1)
)

(T )(12)

6

(ξ2

2
(Φ0(∇pm)2, 1) + (w0(p

m), 1)
)

(0)

+
C2

F

2

∫ T

0

(ξ2

2
(Φ0(∇pm)2, 1) + (w0(p

m), 1)
)

(t) dt

6

(ξ2

2
(Φ0(∇pm)2, 1) + (w0(p

m), 1)
)

(0) exp
(C2

F

2
T

)

.

The assumption of the theorem together with the coincidence of projectors in L2 and

H1 imply that ∇Pmp0 ∈ L2(Ω; � n ) and Pmp0 in L4(Ω) are bounded independently

of m.

Consequently, the inequality (5) implies that, independently of m, ∇pm are

bounded in L∞(0, T ; L2(Ω)), and pm are bounded in L∞(0, T ; Ls(Ω)) for each finite

time T > 0 and for any 1 6 s 6 4. The estimate (12) says that ∂pm/∂t are bounded

in L2(0, T ; L2(Ω)) for each finite time T > 0, independently of m.
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Therefore, we are able to pass to a weak limit pm′

⇀ p in L2(0, T ; H1
0(Ω)∩L4(Ω))

via a subsequence m′, and thanks to the compact-imbedding theorem with the as-

sumptions

{pm}∞m=1 bounded in L4(0, T ; H1
0(Ω) ∩ L4(Ω)),

{∂pm

∂t

}∞

m=1
bounded in L2(0, T ; L2(Ω)),

also to the strong limit p in L4(0, T ; L4(Ω)). Such a choice is useful when treating the

nonlinear term f0(p
m), where we apply the Aubin lemma to get weak convergence

to f0(p) in L 4
3
(0, T ; L 4

3
(Ω)). We investigate strong convergence of gradients. �

Lemma 1. The sequence ∇pm′

converges strongly to ∇p in L2(0, T ; L2(Ω, � n )).

"#�!$%$�&
. We multiply the equation (10) by γm

i − γi where p =
∑

i∈ '
γivi, sum over

i ∈ ( and integrate over (0, T ):

ξ2

∫ T

0

(∂pm′

∂t
, pm′

− p) dt + ξ2

∫ T

0

(T 0(∇pm′

),∇(pm′

− p)) dt(13)

=

∫ T

0

(f0(p
m′

), pm′

− p) dt + ξ2

∫ T

0

(FΦ0(∇pm′

), pm′

− p) dt.

We add and subtract a term

ξ2

∫ T

0

(T 0(∇p),∇(pm′

− p)) dt

to the equality (13) knowing that it tends to 0 as

∇(pm′

− p) → 0

weakly in L2(0, T ; L2(Ω, � n )). We also recall that

pm′

− p → 0

strongly in L4(0, T ; L4(Ω)), if m′ → ∞. Then we have

ξ2

∫ T

0

(T 0(∇(pm′

) − T 0(p)),∇(pm′

− p)) dt

= − ξ2

∫ T

0

(∂pm′

∂t
, pm′

− p
)

dt +

∫ T

0

(f0(p
m′

), pm′

− p) dt

+ ξ2

∫ T

0

(F (um′

)Φ0(∇pm′

), pm′

− p) dt + ξ2

∫ T

0

(T 0(∇p),∇(pm′

− p)) dt.
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As all terms on the right-hand side tend to 0 if m′ → ∞, we see that

∫ T

0

(T 0(∇(pm′

) − T 0(p)),∇(pm′

− p)) dt → 0.

The strong monotonicity of T 0,

T 0(∇(pm′

) − T 0(p)),∇(pm′

− p)) > c0‖∇(pm′

− p)‖2,

then yields the strong convergence of ∇pm′

to ∇p in L2(0, T ; L2(Ω, � n )). �

Since the operator T 0 is (strongly) monotone, we also observe that the term

T 0(∇pm′

) converges weakly to T 0(∇p) in L2(0, T ; L2(Ω; � n )). We are therefore able

to pass to the limit in the equation (10) as in [15] to show that u and p is the solution

of the problem (9).

We prove uniqueness of the solution of (9). We consider two solutions of the

problem (9), denoted by p1 and p2. Subtracting the corresponding systems of equa-

tions and denoting p12 = p1 − p2, multiplying the equation by p12, we have

1

2
ξ2 d

dt
‖p12‖

2 + ξ2(T 0(∇p1) − T 0(∇p2),∇p12)

= (f0(p1) − f0(p2), p12) + ξ2(FΦ0(∇p1) − FΦ0(∇p2), p12) in (0, T ),

p12(0) = 0.

We notice that thanks to the shape of f0 we have

(f0(p1) − f0(p2), p12) 6 ‖p12‖
2,

and the properties of Φ0 yield

|Φ0(∇p1) − Φ0(∇p2)| 6 Φ0(∇p12).

We then have

1

2
ξ2 d

dt
‖p12‖

2 + ξ2(T 0(∇p1) − T 0(∇p2),∇p12)

= ‖p12‖
2 + ξ2CF (Φ0(∇p12), 1)‖p12‖ in (0, T ),

p12(0) = 0.

For the term with the operator T 0 we use the strong monotonicity with c0 > 0,

(T 0(∇p1) − T 0(∇p2),∇p12) > c0‖∇p12‖
2,

and the boundedness of Φ0 by (5) to get the uniqueness result by means of the

Gronwall lemma. �
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"#�!$%$�&
of Theorem 2 is completed by using the results of [7] and [6], for which

we use the apriori estimate obtained in the previous proof

Eξ [p
ξ](t) 6 Eξ [p

ξ](0) exp
{C2

F

2
t
}

t ∈ (0, T ),

where we denoted

Eξ [p
ξ](t) =

∫

Ω

[

ξ
1

2
Φ0(∇pξ)2 +

1

ξ
w0(p

ξ)
]

dx.

Additionally, there is an estimate for the time derivative:

1

2
ξ

∫ T

0

‖∂tp
ξ‖2 dt + Eξ [p

ξ](T ) 6 CT Eξ[p
ξ ](0).

�

���������! 
. We observe that the condition of strong monotonicity is important in

the above given proof. Breaking this condition (increasing the anisotropy strength)

leads to the investigation of phenomena known as the “crystalline” case. Recently,

several new results have been obtained, see [11], [1].

4. Computational results

For the numerical solution of the problem (8), we use the method of lines. First,

we introduce the following notation:

h = (h1, h2), h1 =
L1

N1

, h2 =
L2

N2

,

xij = [x1
ij , x

2
ij ], uij = u(xij),

ωh = {[ih1, jh2] | i = 1, . . . , N1 − 1; j = 1, . . . , N2 − 1},

ωh = {[ih1, jh2] | i = 0, . . . , N1; j = 0, . . . , N2},

γh = ωh − ωh,

ux1,ij =
uij − ui−1,j

h1

, ux1,ij =
ui+1,j − uij

h1

,

ux2,ij =
uij − ui,j−1

h2

, ux2,ij =
ui,j+1 − uij

h2

,

ux1x1,ij =
1

h2
1

(ui+1,j − 2uij + ui−1,j),

and

∇hu = [ux1
, ux2

], ∇hu = [ux1
, ux2

],

∆hu = ux1x1
+ ux2x2

.
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Then the semi-discrete scheme has on ωh the form

ξ2ṗh = ξ2∇h · T 0(∇hph) + f0(p
h) + ξ2Φ0(∇hph)F,(14)

ph|γh
= 0, ph(0) = Phpini,

where its solution is a map ph : 〈0, T 〉 → Hh and Ph : C(Ω) → Hh is a restriction

operator.

Convergence results. For the purpose of computational investigation of the

convergence towards the sharp-interface description of the flow, we define a problem

vΓ,Φ = − κΓ,Φ,

Γ|t=0 = W ,

the analytical solution of which is known (see (3)). We compare it with the solution

of the problem (9) with the initial condition such that

{

x ∈ Ω|pini(x) =
1

2

}

= W .

We measure convergence of the numerically obtained levelsets of (14) towards the

analytical ones in terms of the Hausdorff distance. The results are presented in

Figs. 3, 4 and in Tab. 1. Here we decrease ξ and the mesh size h simultaneously,

observe the number of degrees of freedom, the final time step, and also the CPU

consumption (on a PentiumIII 700 MHz Redhat 6.2 Linux computer with the Intel

Fortran 6.0 compiler). The experimental order of convergence is the exponent given

by the formula

Error2/Error1 = (DoF2/DoF1)
EOC.

Mesh regul. final AC L∞(0, T ;H) CPU EOC
h ξ time step DoF error AC
0.06 0.2 0.00044643 3596698 0.00563 17.57 –
0.03 0.15 0.00015692 45123804 0.00176 162.01 0.4597
0.02 0.13 0.00008052 195812820 0.00148 612.68 0.2543
0.015 0.10 0.00004640 614053106 0.00139 1513.92 0.0549

Table 1. Table of convergence parameters.

Simulation of anisotropic motion by mean curvature. We present qualita-

tive results obtained for various situations. In the following figures, we show examples

of a mean-curvature flow approximated by the Allen-Cahn equation. In Fig. 5, the
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Figure 3. Solution of the Allen-Cahn equation.

Figure 4. Dynamics of the levelset 1
2
.

initial circular curve is converted to the Wulff shape, and then it is expanded. Fig. 6

shows how the initial nearly rectangular curve is converted again to the Wulff shape

which shrinks. Figs. 7 and 8 show a multiple topological change of the initially folded

curve thanks to a special choice of F = F (x). Fig. 9 shows the evolution under very

strong anisotropy, where the theoretical result cannot be proved in the presented

way, but the algorithm still works.
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Figure 5. Expansion of a circle at critical radius (r0 = 0.1, F = 10) according to vΓ =
−(f(θ) + f ′′(θ))κΓ + F ; ξ = 0.01, h1 = h2 = 0.002, f(θ) = 1 + 0.1 cos(3θ).

Figure 6. Shrinking of a rounded rectangle according to vΓ = −(f(θ)+ f ′′(θ))κΓ; ξ = 0.01,
h1 = h2 = 0.0031, f(θ) = 1 + 0.0375 cos(5θ).

450



Figure 7. Curve dynamics with space dependent F = F (x) according to vΓ = −(f(θ) +
f ′′(θ))κΓ + F (x); ξ = 0.02, h1 = h2 = 0.01, f(θ) + f ′′(θ) = 1 − 0.8 cos(4θ).

Figure 8. Curve dynamics with space dependent F = F (x) according to vΓ = −(f(θ) +
f ′′(θ))κΓ + F (x); ξ = 0.01, h1 = h2 = 0.01, f(θ) + f ′′(θ) = 1 − 0.8 cos(4θ).
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Figure 9. Shrinking of the Wulff shape according to vΓ,Φ = −κΓ,Φ with strong anisotropy;
ξ = 0.01, h1 = h2 = 0.0012, f(θ) = 1 + 0.1 cos(4(θ − )

2
)).
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