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Abstract

The article presents an analysis of the nonlinear Galerkin method applied to a system of reaction–di%usion equations. If
the system admits a bounded invariant region, it is possible to demonstrate the convergence of the approximate solutions
to the weak solution of the system. The proof is based on the compactness technique. It is performed for arbitrary ratio
of dimensions of the approximation space and of the correction space used in the nonlinear Galerkin method. This fact,
generalizing the previously published results, is important for the practical use of the method and allows optimization of
the CPU-time consumption of the algorithm. The method is applied to the well-known Brusselator system for which we
present an overview of the computational results and our experience with the numerical method used. c© 2001 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Consider a system of di%erential equations in the form
@u
@t

=D<u+ F(u); (1)

where D ∈ Rd;d denotes a positively de>nite diagonal matrix, F : Rd → Rd is a locally Lipschitz-
continuous map (i.e., any restriction to a bounded domain in Rd is Lipschitz-continuous), u(t; z) is
a d-dimensional function of time t (t¿0) and of space z (z ∈ �⊂Rn).
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We solve Eq. (1) in a bounded space domain �, having piecewise smooth boundary, and we
consider the homogeneous Dirichlet boundary condition

u|@� = 0; (2)

and the initial condition

u|t=0 = u0: (3)

We introduce the space H :=L2(�;Rd) as a Hilbert space with the scalar product

(u; v) ≡ (u; v)H =
d∑

i=1

(ui; vi)L2(�) =
d∑

i=1

∫
�
uivi;

and the space V :=H (1)
0 (�;Rd) as a Hilbert space with the scalar product

(u; v)V =
d∑

i=1

(ui; vi)H (1)
0 (�) =

d∑
i=1

∫
�
�ui ·�vi;

where u= (u1; : : : ; ud)T, v= (v1; : : : ; vd)T.

De�nition 1. Let u0 ∈ H ; then the weak solution of problem (1)–(3) on a time interval (0; T ) is a
mapping u : (0; T ) → V such that it satis>es the following conditions:

d
dt
(u; w) + (Du; w)V = (F(u); w) a:e: in (0; T ) ∀w ∈ D(�);

u|t=0 = u0: (4)

In addition, we assume that problem (1)–(3) has a bounded closed convex invariant region
O⊂Rd, which means (see [7, Section 4] or [9]) that if for almost every z ∈ �, the initial condition
u0(z) ∈ O, then (∀z ∈ �)(u(t; z) ∈ O) for every t ¿ 0, for which the solution u exists.

Denote H(O) the space of functions from H for which u0(z) ∈ O for almost every z ∈ �.

2. Nonlinear Galerkin method

The nonlinear Galerkin method described in [4], [5] or [8] is applied to the system (1). We
consider an orthonormal basis of the space H composed of eigenvectors of the operator −D� in �
satisfying the homogeneous boundary condition:



w(1)

j =




�j

0
...
0


 ; : : : ; w(d)

j =




0
...
0
�j







∞

j=1

;
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where �j(z) ∈ C2
0 (�) have the following properties:

∀j¿1 : −<�j = �j�j;

i¡ j ⇒ 0¡�i6�j; �j
j→+∞−→ +∞;

∀i; j¿1 : (�i; �j)L2(�) = �i; j;

where �i; j is the Kronecker symbol.
The approximate solution um(t) of system (1) in each time t is searched in a dm-dimensional

subspace PdmH = [w(1)
1 ; : : : ; w(d)

1 ; : : : ; w(1)
m ; : : : ; w(d)

m ]� generated by the >rst dm naturally selected func-
tions of the basis. In addition, we consider a correction term zm(t) from the space (PdM − Pdm)H =
[w(1)

m+1; : : : ; w
(d)
m+1; : : : ; w

(1)
M ; : : : ; w(d)

M ]� generated by the next d(M − m) functions of the basis. Let us
denote

um(t) =
m∑
i=1

d∑
l=1

�(l)
i (t)w(l)

i ; zm(t) =
M∑

i=m+1

d∑
l=1

�(l)
i (t)w(l)

i :

The equations of the nonlinear Galerkin method are

d
dt
(um(t); w

(l)
k ) + (Dum; w

(l)
k )V = (F(um(t) + zm(t)); w

(l)
k ); k = 1; : : : ; m; l= 1; : : : ; d; (5)

(Dzm; w
(l)
k )V − (�F(um(t))zm(t); w

(l)
k ) = (F(um(t)); w

(l)
k ); k = m+ 1; : : : ; M ; l= 1; : : : ; d; (6)

where �F is the FrMechet derivative of F .
The initial condition is given by a projection of u0:

um(0) = u0m:=Pdmu0: (7)

3. Convergence of the nonlinear Galerkin method

According to [1], we de>ne an operator A and a mapping G̃ by the following relations:

Au:=−D<u+ u; G̃(u):=u+ F(u):

The FrMechet derivative of the mapping G̃(u) can be written as

�G̃(u) = Id +�F(u): (8)

In this notation, Eqs. (5) and (6) have the following form:

d
dt

um + Aum = PdmG̃(um + zm); (9)

− Azm + (PdM − Pdm)G̃(um) =−(PdM − Pdm)�G̃(um)zm; (10)

and Eq. (1) is transformed into

d
dt

u+ Au= G̃(u): (11)
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The investigation of convergence requires a computation of eigenvalues and eigenvectors of the
operator A. Obviously, the eigenvectors of A are identical with those of −D�, i.e. {w(1)

j ; : : : ; w(d)
j }j¿1,

and the corresponding eigenvalues are

�(1)
j = D1�j + 1; : : : ; �(d)

j = Dd�j + 1; j ∈ N;

where D = diag(D1; : : : ; Dd). For further modi>cations, we introduce the following notation:

Dmin:=min{Di | 16i6d}; �min
j :=min{�(i)

j | 16i6d}:
A is a positive self-adjoint operator in H . Therefore, for all p; q ∈ Def (A) = Def (A∗)⊂Def (

√
A),

the relation (Ap; q) = (p;A∗q) = (p;Aq) = (
√
Ap;

√
Aq) holds. In addition, for q ∈ Def (A):

||Aq||2 = || −D<q||2 + ||q||2 − 2(D<q; q)

= ||D<q||2 + ||q||2 + 2||
√
D�q||2; (12)

||
√
Aq||2 = (Aq; q) = (−D<q; q) + ||q||2 = ||

√
D�q||2 + ||q||2; (13)

||
√
Dq||2¿Dmin||q||2; (14)

||Dq||2¿D2
min||q||2: (15)

Theorem 2. If Eq. (1) admits a closed convex bounded invariant region O⊂Rd and if the initial
condition u0 belongs to H(O)∩Def (

√
A), then the sequence {um}∞m=1 of the solutions of system (9)

and (10) given by the nonlinear Galerkin method converges strongly to the unique weak solution
u ∈ L2(0; T ;V) of problem (1)–(3) in L2(0; T ;H) for each T ¿ 0, if m → +∞ and M ¿m.
Moreover, there exists a sub-sequence {um′}∞m′=1 of {um}∞m=1 converging weak-star to the solution
u in L2(0;+∞;H).

Proof. We use the technique of [7]. Let us de>ne the functions on Rd:

#:=



e1=||s||

2
Rd

−1 for ||s||Rd ¡ 1;

0 for ||s||Rd¿1;
#0:=

(∫
Rd

#(s) ds
)−1

# ∈ C∞
0 (Rd):

Let O& be an open &-neighbourhood of the region O, i.e. O& = {x ∈ Rd | dist(x;O)¡&}. We de>ne,
for any & and set O&, a function ( as a “molli>ed” characteristic function of O&: ((x):=&−2

∫
O&
#0((x−

y)=&) dy. Consequently, supp (= O& and (∀s ∈ O)(((s) = 1) and (∀s ∈ O&)(((s)61).
We de>ne a mapping G in Rd as (∀q ∈ Rd)(G(q):=((q)G̃(q)). Then there exist constants k0 ¿ 0,

and k1 ¿ 0 such that (∀q ∈ Rd)(||G(q)||Rd6k0); (∀q; p ∈ Rd)(||�G(q)p||Rd6 k1||p||Rd) and (∀q ∈
O)(G(q) = G̃(q)).
Moreover, the equation

d
dt

u+ Au= G(u): (16)

admits the same invariant region as (11), and if, considering the initial condition u0 with all its
values in O, the solution of (11) stays in the invariant region O, where Eq. (16) is identical with
Eq. (11), then their solutions will have to coincide.
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We prove the convergence of the solutions of the modi>ed equation (16) obtained by the nonlinear
Galerkin method, i.e.,

d
dt

um + Aum = PdmG(um + zm); (17)

Azm − (PdM − Pdm)G(um) = (PdM − Pdm)�G(um)zm; (18)

to the solution of problem (16). It will imply the convergence of the nonlinear Galerkin method (9)
and (10) to the original equation (11), if the initial condition has values in the invariant region O.

3.1. Sequence {zm}+∞
m=1

Applying (18) to Azm and using twice the Young inequality

|(f; g)|6 &
2
||f||2 + 1

2&
||g||2; f; g ∈ H ; (19)

for &= 2, we obtain

||Azm||26||G(um)||2 + 1
4 ||Azm||2 + ||�G(um)zm||2 + 1

4 ||Azm||2: (20)

By relation [1, (1.14)], we observe that

||Azm||2¿�min
m+1||

√
Azm||2 = (1 + Dmin�m+1) ||

√
Azm||2: (21)

Using (21), Eq. (20) becomes

�min
m+1||

√
Azm||262(||G(um)||2 + ||�G(um)zm||2):

The boundedness of G and of �G implies that

||
√
Azm||26 2

1 + Dmin�m+1
(k2

0 + k2
1 ||zm||2): (22)

The left-hand side of this inequality can be modi>ed using (13), (14), and the PoincarMe inequality
with the constant C� to obtain(

Dmin

C�
+ 1

)
||zm||26 2

1 + Dmin�m+1
(k2

0 + k2
1 ||zm||2):

Finally, we obtain

||zm||26 2k2
0

(Dmin=C� + 1)(1 + Dmin�m+1)− 2k2
1
:

Consequently, the fact that �j
j→+∞−→ +∞ implies

||zm||2 m→+∞−→ 0;

zm(t)
m→+∞−→ 0 in H uniformly with respect to t¿0:
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3.2. Sequence {um}+∞
m=1

Assume that u0 ∈ Def (
√
A). Then, the following relations are a direct consequence of the Bessel

inequality:

||um(0)||= ||u0m||= ||Pdmu0||6||u0||;

||
√
Aum(0)||= ||

√
Au0m||= ||

√
APdmu0||6||

√
Au0||:

We apply (17) on Aum:
1
2
d
dt
(
√
Aum;

√
Aum) = (−Aum;Aum) + (G(um + zm);Aum):

Using Young inequality (19) for & = 1, the boundedness of G , and the properties of the operators
A and

√
A, we obtain

1
2
d
dt
||
√
Aum||2 + ||Aum||26 1

2k
2
0 +

1
2 ||Aum||2;

and after a simple modi>cation:
d
dt
||
√
Aum||2 + ||Aum||26k2

0 : (23)

Integrating (23) over t ∈ (0; T ) and neglecting the positive norm on the left-hand side, we obtain∫ T

0
||Aum(t)||2 dt6 k2

0T + ||
√
Aum(0)||26k2

0T + ||
√
Au0||2

⇒ (∀T ¿ 0) ({Aum}m bounded in L2(0; T ;H)):

Following Eq. (17), the boundedness of {Aum}m and {G(um + zm)}m, we observe that

(∀T ¿ 0)
({

d
dt

um

}
m

bounded in L2(0; T ;H)
)
: (24)

Relations (12) and (13) imply that for q ∈ Def (A): ||Aq||2¿||√Aq||2. We use this relation to
modify inequality (23):

d
dt
||
√
Aum||2 + ||

√
Aum||26k2

0 : (25)

The uniform Gronwall lemma implies

||
√
Aum(t)||26e−t[||

√
Aum(0)||2 + k2

0 (e
t − 1)]6e−t[||

√
Au0||2 + k2

0 (e
t − 1)]

⇒ {
√
Aum}m bounded in L∞(0;+∞;H)⊂L∞(0; T ;H)⊂L2(0; T ;H) (26)

⇒ (∀T ¿ 0) ({um}m bounded in L2(0; T ;V)): (27)

Consequently, there exists a sub-sequence {um′}m′ weakly converging in the space L2(0; T ;V). From
[6, Theorem 5:1], it follows that for each >nite T ¿ 0, the space WT :={q ∈ L2(0; T ;V)|(d=dt)q ∈
L2(0; T ;H)} with the norm ||q||W :=||q||L2(0; T ;V) + ||(d=dt)q||L2(0; T ;H) is a Banach space, and it is
compactly embedded into L2(0; T ;H). Then, following (24) and (27), {um′}m′ converges strongly in
L2(0; T ;H). Let us denote its limit as u.
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3.3. Sequence {G(um + zm)}+∞
m=1

Since G is Lipschitz-continuous, the following relation holds:

||G(um′ + zm′)− G(u)||2L2(0; T ;H) =
∫ T

0
||G((um′ + zm′)(t))− G(u(t))||2 dt

6
∫ T

0
L2||um′(t) + zm′(t)− u(t)||2 dt =L2||um′ + zm′ − u||2L2(0; T ;H)

6L2 (||um′ − u||L2(0; T ;H) + ||zm′ ||L2(0; T ;H)
)2 m′→+∞−→ 0;

where L is the Lipschitz constant of G . Consequently, {G(um′ + zm′)}m′ also converges strongly to
G(u) in L2(0; T ;H).

3.4. Passage to the limit

For the subscript m′, Eq. (17) can be written as follows:

d
dt
(um′ ; wj) = (−Aum′ ; wj) + (G(um′ + zm′); wj); j = 1; : : : ; m′:

For a >xed positive->nite time T , we multiply the previous relation by a function  ∈ C1(0; T ), for
which  (T ) = 0, and integrate by parts over t ∈ (0; T ) to obtain

− (0)(um′(0); wj)−
∫ T

0
(um′(t); wj)

d
dt

 (t) dt

=
∫ T

0
[(G(um′(t) + zm′(t)); wj)− (

√
Aum′(t);

√
Awj)] (t) dt: (28)

Before proceeding with the proof, we summarize:

• By (7), the initial conditions u0m′ converge strongly to the initial condition u0 in H .
• The conclusion of Section 3.2 says that um′ converges strongly in the space L2(0; T ;H) to the

function u.
• By Section 3.3, there is the strong convergence of G(um′ + zm′) in the same space to G(u).
• The weak convergence of um′ to u in L2(0; T ;V) implies that∫ T

0
(
√
Aum′(t);

√
Awj) (t) dt →

∫ T

0
(
√
Au(t);

√
Awj) (t) dt:

Therefore, we can pass to the limit in (28):

−  (0)(u0; wj)−
∫ T

0
(u(t); wj)

d
dt

 (t) dt =
∫ T

0
[(G(u(t)); wj)− (

√
Au(t);

√
Awj)] (t) dt: (29)

Additionally, if  ∈ D(0; T ), the following relation holds in the sense of D′(0; T ):

d
dt
(u; wj) =−(

√
Au;

√
Awj) + (G(u); wj); ∀j ∈ N: (30)
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Since
√
Au and G(u) are elements of L2(0; T ;H), the scalar products on the right-hand side of (30)

form regular distributions. Then (d=dt)(u; wj) is also a regular distribution. It means that relation
(30) holds in L2(0; T ).
Let us verify that the weak solution u satis>es the initial condition.
Multiplying Eq. (30) by a function  ∈ C1(0; T ), for which  (T ) = 0, integrating through (0; T ),

and integrating by parts on the left-hand side, the following equality is obtained:

− (0)(u(0); wj)−
∫ T

0
(u(t); wj)

d
dt

 (t) dt

=
∫ T

0
[(G(u(t)); wj)− (

√
Au(t);

√
Awj)] (t) dt: (31)

Subtracting (31) from (29), we get

 (0)(u(0)− u0; wj) = 0; ∀j ∈ N ⇒ u(0) = u0 in H : (32)

This means that u is the weak solution of Eq. (1) with the initial condition u0.

3.5. Uniqueness of the weak solution

Assume that there are two weak solutions u and v of Eq. (1) satisfying the initial condition
u(0) = v(0) = u0, then, following (30), for any j ∈ N and for almost every t ∈ (0; T ):

d
dt
(u(t); wj) + (

√
Au(t);

√
Awj) = (G(u(t)); wj);

d
dt
(v(t); wj) + (

√
Av(t);

√
Awj) = (G(v(t)); wj):

Subtract these two equations, and examine the function w:=u− v:

d
dt
(w(t); wj) + (

√
Aw(t);

√
Awj) = (G(u(t))− G(v(t)); wj):

Obviously, w(0) = u(0)− v(0) ≡ 0.
The last equation multiplied by (w(t); wj) and summed for all j ∈ N (this is possible – see [10,

Chapter 3]) implies:

1
2
d
dt
||w(t)||2 + ||

√
Aw(t)||2 = (G(u(t))− G(v(t)); w(t))

6 1
2 ||w(t)||2 + 1

2 ||G(u(t))− G(v(t))||26 1
2 ||w(t)||2 + 1

2L
2||w(t)||2;

where the Young inequality (19) for &= 1 and the Lipschitz-continuity of G were used.
The Gronwall lemma leads to

||w(t)||26e(L
2+1)t · ||w(0)||2 = 0 ⇒ w(t) ≡ 0; ∀t¿0:

As the procedure was performed for all T ¿ 0, the function u is de>ned on (0;+∞), it has values
in V , and thanks to a priori estimate (26), {um′}m′ converges weak-star in L∞(0;+∞;V) besides
stronger convergence on (0; T ); ∀T ¿ 0:
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4. Application to a particular reaction–di$usion model

We demonstrate the use of the method on the reaction–di%usion system Brusselator (see [3]):

@x
@t

=
Dx

L2

@2x
@z2

+ A− (B+ 1)x + x2y; (33)

@y
@t

=
Dy

L2

@2y
@z2

+ Bx − x2y; (34)

where A; B; Dx; Dy, and L are positive constants, x(t; z), and y(t; z) are functions of time t ∈ 〈0;+∞)
and of one space variable z ∈ 〈0; 1〉. The equations are completed by boundary conditions

x(t; 0) = A; x(t; 1) = A; y(t; 0) =
B
A
; y(t; 1) =

B
A
; (35)

and initial conditions

x(0; z) = x0(z); y(0; z) = y0(z): (36)

The model describes a >ctitious reaction of two species in an inert medium. We convert problem
(33)–(36) into one with homogeneous boundary conditions. De>ning the transformation

X (t; z) = x(t; z)− A; Y (t; z) = y(t; z)− B
A
; (37)

we obtain the system

@X
@t

=
Dx

L2

@2X
@z2

+ [(B− 1)X + A2Y ] +
[
2AXY +

B
A
X 2

]
+ X 2Y; (38)

@Y
@t

=
Dy

L2

@2Y
@z2

+ [− BX − A2Y ] +
[
−2AXY − B

A
X 2

]
− X 2Y: (39)

endowed with the homogeneous boundary conditions and with the initial conditions in the form

u(0) = u0:=
(
x0 − A;y0 − B

A

)T
: (40)

Denoting

u(t) =
(
X (t; ·)
Y (t; ·)

)
; D =




Dx

L2
; 0

0;
Dy

L2


 ; F(u) = Cu+ B(u) + T(u);

C =
(
B− 1; A2

−B; −A2

)
; B(u) =




2AXY +
B
A
X 2

−2AXY − B
A
X 2


 ; T(u) =

(
X 2Y
−X 2Y

)
;

problem (38)–(40) can be written as

@u
@t

=D<u+ F(u);
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u|@S = 0;

u|t=0 = u0: (41)

The FrMechet derivative of the mapping F is

∇F(u) = C + L(u) +Q(u);

where

L(u) =



2
B
A
X + 2AY; 2AX

−2
B
A
X − 2AY; −2AX


 ; Q(u) =

(
2XY; X 2

−2XY; −X 2

)
:

In this case, the dimensions n=1, d=2, the domain �=(0; 1), and the spaces H=L2(0; 1)⊕L2(0; 1),
and V =H (1)

0 (0; 1)⊕H (1)
0 (0; 1). The mapping F is composed of polynomials, and is therefore locally

Lipschitz-continuous. The existence of invariant regions has been proved in [2] for the following
cases:

O= tetragon with vertices [− 1:9;−2:725]; [− 1; 12:275]; [22:6;−2:475];

[22:6;−2:725] for A= 2; B= 5:45; Dx = Dy;

O= rectangle with vertices [− 0:05;−0:15]; [0:1;−0:15]; [0:1; 0:1];

[− 0:05; 0:1] for A= 0:5; B= 0:4; Dx and Dy arbitrary:

For the purpose of the nonlinear Galerkin method, we use an orthonormal basis of the phase space
H : {

w(1)
j =

(
�j

0

)
; w(2)

j =
(

0
�j

)}∞

j=1

; where �j(z) =
√
2 sin(j�z):

The approximation um and the correction term zm are

um(t) =
m∑

j=1

�j(t)w
(1)
j +

m∑
j=1

2j(t)w
(2)
j ;

zm(t) =
M∑

j=m+1

�j(t)w
(1)
j +

M∑
j=m+1

2j(t)w
(2)
j ;

where the coeTcients �j; 2j are given by the following system of equations:

d
dt

�j = (−�(1)j + B− 1)�j + A22j +
M∑
i=1

M∑
k=1

[
B
A
�i�k + 2A�i2k

]
(�i�k; �j)L2(�)

+
M∑
i=1

M∑
k=1

M∑
l=1

�i�k2l(�i�k�l; �j)L2(�) for j = 1; : : : ; m; (42)

d
dt

2j =−(�(1)
j + 1)�j − �(2)j 2j − d

dt
�j for j = 1; : : : ; m: (43)
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(−�(1)j +B− 1 + A2cj)�j +
m∑
i=1

M∑
l=m+1

[
2
B
A
�i + 2A2i + 2Acl�i

]
(�i�l; �j)L2(�)�l

+
m∑
i=1

m∑
k=1

M∑
l=m+1

(2�i2k + cl�i�k)(�i�k�l; �j)L2(�)�l (44)

=−
m∑
i=1

m∑
k=1

[
B
A
�i�k + 2A�i2k

]
(�i�k; �j)L2(�)

−
m∑
i=1

m∑
k=1

m∑
l=1

�i�k2l(�i�k�l; �j)L2(�) for j = m+ 1; : : : ; M;

2j = cj�j for j = m+ 1; : : : ; M; (45)

where cj =−(1 + �(1)j )=�(2)j and for i; j; k; l= 1; : : : ; M :

�(1)j =
Dx

L2
(j�)2; �(2)j =

Dy

L2
(j�)2;

(�i�k; �j)L2(�) =



0 for (i + j + k) even;

−
√
2
�

(
1

i+j+k − 1
i+j−k − 1

i−j+k − 1
j+k−i

)
else;

(�i�k�l; �j)L2(�) = 1
2(nul(i + j − k − l; i − j + k − l; i − j − k + l)

− nul(i + j + k − l; i + j − k + l; i − j + k + l;−i + j + k + l));

where nul(i1; : : : ; in) = |{ j ∈ n̂|ij = 0}| means the number of the zeros in the n-tuple (i1; : : : ; in).
We have used the Brusselator system to investigate the nonlinear Galerkin method regarding the

accuracy and ability to save the CPU time. We present numerical computations performed for the
following set-up of the system parameters: A= 2; B= 5:45; Dx = 0:008; Dy = 0:004.
Fig. 1 compares the usual Galerkin method with M = 50 and the nonlinear Galerkin method for

M = 50 and the variety of values m for case L = 1:25 and t ∈ 〈0; 6000〉, x0 = A +
√
2 sin �z +√

2 sin 2�z +
√
2 sin 3�z, y0 = B=A +

√
2 sin �z +

√
2 sin 2�z +

√
2 sin 3�z. It can be seen that the

nonlinear Galerkin method for M = 50; m= 40 saves nearly one half of CPU time required for the
computation. Fig. 2 demonstrates the di%erence of numerical solutions of the usual and the nonlinear
Galerkin methods with the above mentioned settings using the norm in the space H .

Next, two >gures show the complexity of the dynamics of the solution in the case when L=1:91,
t ∈ 〈2000; 6000〉, M=30, m=15, x0=A+

√
2 sin 2�z, y0=B=A+

√
2 sin 2�z. Fig. 3 presents the time

evolution of values of the solution for z=0:5, and Fig. 4 is the PoincarMe map using the hyperplane
x(t; 0:3) = 2.
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Fig. 1. The time-consumption comparison of the computations for M = 50 and m = 50; 40; 35; 30; 25; 15; 10, respectively,
from above. The model time t is on the x-axis, the CPU time in seconds is on the y-axis.

Fig. 2. The time-space comparison in terms of ||u2×40 − u2×50||2H of the Galerkin method (dimension M = 50) and the
nonlinear Galerkin method (m= 40, M = 50). Time t is on x-axis, the norm of di%erence u2×40 − u2×50 is on the y-axis.

5. Conclusion

The article presents a convergence analysis of the nonlinear Galerkin method applied to a system
of reaction–di%usion equations admitting an invariant region. The method allows to approximate the
solution for any >nite time interval and saves a certain amount of CPU time. A generalization with
respect to the dimensions of the approximating and correcting terms has been derived. The behaviour
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Fig. 3. The dynamics of Brusselator for L= 1:91. The graph contains time evolution of values (x(t; 12 ); y(t;
1
2 )).

Fig. 4. The PoincarMe map of Brusselator for L= 1:91. The graph contains values of (x(t; 12 ); y(t;
1
2 )), when x(t; 0:3) = 2.

of the method has been demonstrated on the Brusselator reaction–di%usion scheme, where an optimal
choice of the approximation and correction spaces allowed one half of the CPU time to be saved.
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