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Preface

Mathematical modelling of the groundwater flow and the pollution allows to un-

derstand and predict behaviour of the fluids in the subsurface and therefore to

protect the quality of the most important resource for all forms of life on Earth.

Cleanup of contaminated water aquifers is a very difficult task and it is often be-

yond human potentialities.

The present work examine the quasi-analytical solution firstly obtained by

McWhorter and Sunada in 1990 and provide detailed analysis of the way the

solution of the governing partial differential equation of two-phase flow can be

obtained from a functional integral equation given by the analytical treatment of

the problem. I present an improved algorithm implementation of this solution.

The McWhorter and Sunada analytical solution can be applied to porous media

with a discontinuity for a nonzero advection term, which has not been published

yet in the available literature. Therefore, the exact solution for heterogeneous

media will be useful in the verification of the treatment of the fluid behaviour at

the material interfaces in the numerical schemes.

I am very grateful to my advisors Doc. Dr. Ing. Michal Beneš1, Ing. Jiřı́
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Last but not least, I would like to thank Doc. Ing. Richard Liska, CSc.1 for
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Introduction

OBJECTIVE OF THIS WORK

Complex multi-dimensional numerical models of multi-phase flow through

porous media such as those described in Helmig (1997), or Mikyška et al. (2004)

and Mikyška and Illangasekare (2005) require verification to assure that the gov-

erning equations are solved correctly and the codes do not contain programming

errors. This step of code verification is a necessary step in modelling protocols

used in practice (e.g. Anderson & Woessner, 2002). The code simulations are

compared to closed form analytical solutions to the governing equations to esti-

mate numerical errors and other inaccuracies of numerical schemes when they are

used to simulate simplified flow problems.

Two known solutions to the two-phase flow equations are available for this

task, namely the Buckley-Leverett solution of the flow without capillary effects

(e.g. described by Helmig, 1997; LeVeque, 2002; or see references in Sunada

& McWhorter, 1990) and the exact integral solution derived by McWhorter and

Sunada (1990) with subsequent discussions by Chen et al. (1992), McWhorter

and Sunada (1992), Fučı́k 2005 and Fučı́k et al. (2004a), which allow to study the

influence both of the advection and capillary effects in specific one-dimensional

settings for the homogeneous porous media.

In this work, the author discusses the exact integral equation for the wetting-

phase saturation obtained by McWhorter and Sunada (1990). This equation has

to be numerically integrated to yield the saturation distribution along the length of

the soil column. In this solution scheme a value for entry saturation is needed as an

input boundary condition. The solution to the problem as presented by McWhorter

and Sunada (1990) has limitations in situations where the entry wetting-phase

saturations are high. The author discusses the use of the McWhorter and Sunada

exact solution for all admissible values of the input to total velocity ratio parameter

R, including its negative values.

The extension of the original McWhorter and Sunada exact solution allows to

derive exact solutions for the heterogeneous porous medium with the nonzero ad-

vection term and thus extend exact solutions for the diffusion equation discussed

1
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by van Duijn, 1998.

STRUCTURE OF THIS WORK

This book starts with an introduction to the mathematical modelling of the

multiphase flow in homogeneous and heterogeneous porous media. The one-

dimensional two-phase flow equation is derived in Chapter 1.

The one-dimensional Buckley-Leverett and McWhorter-Sunada exact solu-

tions for the homogeneous porous media are derived and discussed in Chapter 2.

The applicability of the McWhorter-Sunada exact solution is extended to a larger

set of admissible input parameters and a new iterative method for solving the re-

spective integral equation developed by the author is presented.

New quasi-analytical solutions for the heterogeneous porous media derived by

the author are presented in Chapter 3.

Chapter 4 concentrates on the numerical solutions of the McWhorter and

Sunada problem and underlines the applicability of the analytical solution both

for the homogeneous and heterogeneous problems.
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Chapter 1

Modelling Immiscible Flow in

Porous Media

This chapter provides an introduction to the mathematical modelling of immisci-

ble multiphase flow in porous media. The author briefly shows how the complex

nature of multiphase flow in porous media is described by mathematical modelling

and how a domain of validity of this approach is specified.

The author follows Bastian, 1999, Kazda, 1997, Helmig, 1997 and Bear &

Verruijt, 1990 in order to describe fundamental approaches in modelling multi-

phase flow in porous media.

1.1 Porous Medium

1.1.1 Definitions

POROUS MEDIUM

A porous medium is composed of a persistent solid matrix (also called solid

phase) and a void space (or a pore space). Figure 1.1 shows a two-dimensional

cross section of a porous medium filled with water and oil.

In order to develop mathematical models for fluid dynamics within pore space,

several assumptions are placed upon the geometry and dimensions of the porous

medium (see Bastian, 1999):
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CHAPTER 1. MODELLING IMMISCIBLE FLOW IN POROUS MEDIA

Figure 1.1: Depiction of a porous medium filled with water and oil (two-phase system).

A. The pore space is interconnected since no flow can take place in a

disconnected void space.

B. The dimensions of the void space must be sufficiently large compared

to the dimensions of the fluid molecules and the solid structure can be

considered as a hypothetical continuum.

C. The dimensions of the pore space must be small enough so that the

fluid flow is governed by adhesive forces at fluid-solid interfaces and

cohesive forces at fluid-fluid interfaces in multiphase systems. This

excludes cases like a network of pipes from the definition of porous

medium.

Soil, various sands with different grain sizes, fissured rocks, sandstone and

Karstic limestone are typical representatives of porous media. However, ceramics,

foam rubber, bread, bones or organic tissue are also considered as porous media

(see Bear & Verruijt, 1990).

PHASE

A phase is defined as a chemically homogeneous portion of a system under

consideration that is separated from other such portions by a definite physical

boundary (see the citation on the page 7 in Bastian, 1999).

The necessity of a definite physical boundary between two or more phases

implies that no more than one gaseous phase can be present in the multiphase

system since gases are always completely miscible. A phase can be formed from

one or more fluids and it is usually characterized by the dynamic viscosity µ [Pa s]

and the density % [kg m−3].

Flow of air (or gaseous mixture), water or NAPL in porous media is studied in

the majority of cases. NAPL stands for Non-Aqueous Phase Liquid. These liquids

can be further divided into dense NAPL (abbreviated DNAPL), which have higher
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1.1. POROUS MEDIUM

density than water and light NAPL (abbreviated LNAPL), whose density is lower

than water. The most frequent problem in porous media flow is a groundwater

contamination or a protection simulation, where NAPL is usually a liquid such as

petroleum products or chlorinated hydrocarbons. These volatile chemicals have

very low solubility in water and they satisfy the phase definition. On that account,

the division of fluids as above is used.

1.1.2 Continuum Approach to Porous Medium

The previous section adumbrated that considering different dimension scales is

very important for modelling porous media flow. Figure 1.2 depicts different mag-

nifications of a porous medium from macroscale (left figure) through microscale

(middle figure) to molecular scale (right figure).

Figure 1.2: Figure of different scales in a porous medium. It illustrates a typical con-

tamination problem, where the contamination source (e.g. oil barrel) lies at the bottom of

a water reservoir (e.g. lake). The contaminant (e.g. oil) is leaking out of the source and

enters the fully water saturated porous medium.

Every problem concerning fluid dynamics in porous media has to be provided

with a set of boundary and initial conditions. It is obvious from Figure 1.2 that for

a macroscopic problem the boundary conditions can neither be prescribed at mi-

croscale nor at molecular scale due to practically random geometry of the porous

medium. In order to develop a mathematical model a description of the porous

medium as a continuum at macroscopic scale is needed. Each point in the con-

tinuum on the macroscale is assigned average values over elementary volumes of

quantities on the microscopic level. This process leads to macroscopic equations

that are in fact independent of the exact description of the microscopic configura-
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CHAPTER 1. MODELLING IMMISCIBLE FLOW IN POROUS MEDIA

tion, because only statistical properties of the porous medium and the fluid phases

are taken into account.

POROSITY

In this section, a macroscopic property of the porous medium porosity Φ is

derived by volume averaging.

Figure 1.3: Porosity at different scales.

LetΩ be a domain occupied by the porous medium and measΩ be its volume.

The void space indicator function on the microscopic level is defined as follows

γ(x) =

{

1 x ∈ void space

0 x ∈ solid matrix
∀x ∈ Ω. (1.1)

Suppose B(x0, r) ⊂ Ω is a ball centered at a point x0 ∈ Ω with radius r. Then the

porosity Φ(x0) at position x0 with respect to B(x0, r) ⊂ Ω is defined as

Φ(x0) =
1

meas B(x0, r)

∫

B(x0,r)

γ(x)dx. (1.2)

The macroscopic quantity porosity is obtained by averaging over the micro-

scopic void space indicator function. The REV has to be chosen so that the value

of the averaged quantity does not depend on the size of the averaging volume. A

rough plot of porosity values in function of the averaging ball radius is depicted

in Figure 1.3. For small values of r the porosity is significantly oscillating, but be-

tween certain radii rmicro and rmacro, the value ofΦ(x0) steadies and remains almost

constant. For values of r greater than rmacro a smooth and monotonous growth
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1.2. SINGLE-PHASE FLOW

of Φ(x0) is observed. The average volume is called Representative Elementary

Volume (REV) if the radii rmicro and rmacro exist such that the value of averaged

quantity does not depend on the radius r within the range

rmicro � r� rmacro,

(see Bastian, 1999 or Mikyška, 2005).

A REV is a volume, that is sufficiently large to statistically estimate all rele-

vant parameters of the void space configuration (see Bear & Verruijt, 1990) and

small enough to be considered as a negligible portion of total volume from the

macroscopic scale. If such REV cannot be found then the macroscopic theory of

porous media presented in this chapter can not be applied.

Another way to arrive at macroscopic quantities out of microscopic is the ho-

mogenization technique which is based on the mathematical theory on asymptotic

functional expansion (see Hornung, 1997). Some of its principles has been already

discussed in Fučı́k, 2004.

HOMOGENEOUS VS. HETEROGENEOUS MEDIUM

A porous medium is homogeneous, resp. heterogeneous with respect to a

macroscopic quantity (i.e. porosity, temperature...) if that parameter has the same

value, resp. differs throughout the domain.

In the case of this work, only a homogeneous porous media is considered.

The term heterogeneous porous media is used for media that are composed of

more than one homogeneous subdomains of different physical properties (like

porosity). Therefore, all relevant quantities of the porous medium are assumed to

be constant or piecewisely constant in space.

1.2 Single-Phase Flow

The single-phase fluid flow in the porous medium is described in this section.

The mass-conservation law is applied to the fluid in porous medium and then the

Darcy law, which is a statistical result of momentum balance law in porous media,

is analyzed.

1.2.1 Continuity Theorem

Let us consider a porous medium domain Ω with porosity Φ that is filled with

a single fluid phase. Macroscopic fluid mass conservation law, the continuity

theorem, is expressed by the partial differential equation

∂(Φ%)

∂t
+ ∇ · (% u) = % q in Ω, (1.3)
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CHAPTER 1. MODELLING IMMISCIBLE FLOW IN POROUS MEDIA

where the quantities have the following meaning :

u(t, x) [m s−1] Macroscopic apparent velocity. This velocity is ob-

served at macroscale. On the microscopic level the flow

takes only place through the pore channels of the porous

medium where an average velocity of u
Φ

is observed (see

Bastian, 1999).

Φ(x) [−] Porosity of the porous medium defined in (1.2). Note

that it is a function of position for heterogeneous porous

media.

%(t, x) [kg m−3] Density of the fluid that can potentially depend on posi-

tion or time for compressible fluid.

q(t, x) [s−1] Specific source/sink term.

1.2.2 Darcy Law

By using local averaging techniques (see citation on the page 13 in Bastian,

1999) or homogenization (see Hornung, 1997), the momentum conservation law

(Navier-Stokes equations or Euler equations, see Fučı́k, 2004) can be reduced to

a statistical principle:

u = −
K

µ
(∇p − % g), (1.4)

where all quantities have the following meaning :

u(t, x) [m s−1] Macroscopic apparent velocity already defined in (1.3).

K(x) [m−2] Symmetric tensor of absolute permeability , that can de-

pend on position in the case of heterogeneous medium.

Homogeneous (isotropic) porous medium implies K =

K I, where I is the identity matrix and K is scalar abso-

lute permeability, also called intrinsic soil permeability.

µ(t, x) [Pa s] Dynamic viscosity of the fluid.

p(t, x) [Pa] Fluid pressure.

g [m s−2] Gravitational acceleration vector.

This principle is called the Darcy Law after the French physician Henry Darcy,

who in 1856 investigated the flow of water in vertical homogeneous sand filters in

connection with the fountains of the city of Dijon. It is valid only for slow flows

of Newtonian fluid 1 through a porous medium with rigid solid matrix. The range

of its validity can be approximated using the following number Re.

1Newtonian fluid : the stress tensor depends linearly on the deformation tensor.
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1.3. TWO-PHASE FLOW

The Reynolds number Re is a quantity that characterizes fluid velocity u with

respect to fluid kinematic viscosity ν [m2 s−1] and representative microscopic

length d describing the solid matrix (mean diameter of grain size) of the porous

medium. It can be defined by the relationship

Re =
d

ν
‖u‖. (1.5)

Despite some other definitions of the Reynolds number Re , the Darcy law is

valid for values of Re between 1 (fine sand) and 10 (coarse sand). The linear Darcy

law in the form (1.4) is therefore valid for most of the practical porous media

problems. More complex nonlinear Darcy law has to be employed for greater

values of Re, e.g. for modelling flow in a very close vicinity of large pumping

or recharging wells, or in very porous matters like cavernous limestone or larger

stones, see Bear & Verruijt, 1990.

1.3 Two-Phase Flow

Basics of the two-phase flow in porous medium is studied in this section, but the

respective quantities can be used in a multiphase flow formulation as well. The

definitions and explanations presented in Helmig, 1997, Bear & Verruijt, 1990

and Bastian, 1999 are resumed.

1.3.1 Saturation

Let us consider REV of a porous medium occupied by several phases. At the

microscale every point of the REV is occupied either by the solid phase or by

exactly one of the fluid phases. Let γα be indicator function of the fluid phase α,

defined by

γα(t, x) =

{

1 x belongs to phase α at time t
0 otherwise

∀x ∈ Ω. (1.6)

(see Bastian, 1999). This α-phase indicator function allows us to define a macro-

scopical quantity called saturation Sα of the phase α by the relation

Sα(t, x0) =

∫

REV

γα(t, x)dx

∫

REV

γ(t, x)dx
, (1.7)

where x0 ∈ REV and the void space indicator function γ is defined in (1.6). The

REV volume can be chosen as a ball B(x0, r) centered in x0 with a specifically

chosen radius r (compare to Section 1.1.2).
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CHAPTER 1. MODELLING IMMISCIBLE FLOW IN POROUS MEDIA

The α-phase saturation Sα expresses the volumetric ratio of the phase α to the

total void space at a given position x and a time t and therefore

0 ≤ Sα ≤ 1, (1.8)

and ∑

α

Sα = 1. (1.9)

RESIDUAL SATURATION

Since not all volume of the fluid phase can be displaced in multiphase flow

from a porous medium due to hysteretic effects (see Helmig, 1997), an α-phase

residual saturation quantity Srα is introduced. It expresses the minimal saturation

of the phase α that will retain in the porous medium due to adhesion effects with

respect to the solid matrix. Nevertheless, the remnant phase saturation can be

reduced by other means like diminishing the surface tension of the phase (i.e.

modifying Srα by chemical substances called surfactants) or by phase transition,

in this case vaporization (see Bastian, 1999).

Situations with constant residual saturations will be always considered in this

work. x Consequently, the relation (1.8) can be adjusted into

Srα ≤ Sα ≤ 1 −
∑

β,α

Srβ. (1.10)

EFFECTIVE SATURATION

Mathematical models developed in this work consider residual saturations Srα

to be constant in time and space and they are treated as another input parameters

to the model. Another quantity effective saturation Sα is introduced by the relation

Sα =
Sα − Srα

1 −
∑

β
Srβ
. (1.11)

This definition permits to modify the relation (1.10) into

0 ≤ Sα ≤ 1, (1.12)

which gives a more favorable range than the inequality (1.10) from the mathemat-

ical point of view. The equation (1.9) is transformed into

∑

α

Sα = 1. (1.13)
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1.3. TWO-PHASE FLOW

A new term ϑ in the reverse relationship (1.11) is introduced in the form

Sα = Srα +




1 −

∑

β

Srβ





︸         ︷︷         ︸

ϑ

Sα, (1.14)

to simplify the following text.

1.3.2 Continuity Theorem

The mass balance equation (1.3) can be expressed for each phase α in the form

(see Bastian, 1999)

∂(Φ%αSα)

∂t
+ ∇ · (%α uα) = %αqα. (1.15)

This expression of the continuity theorem includes the saturation quantity as

a consequence of the reduction of the void space volume ΦV to a volume ΦSαV
occupied by the phase α.

The mass balance equation (1.15) can be also formulated using the effective

saturation Sα simply by substituting relation (1.11) into (1.15)

ϑ
∂(Φ%αSα)

∂t
+ ∇ · (%α uα) = %αqα, (1.16)

if the residual saturations Srα are constant in time.

1.3.3 Darcy law

As in the single phase flow it can be shown by volume averaging or homogeniza-

tion techniques that the macroscopic α-phase velocity uα can be expressed in the

α-phase Darcy law

uα = −
Kα

µα
(∇pα − %α g), (1.17)

if the momentum transfer between phases is negligible. The phase permeability

tensor Kα depends on the saturation of the phase α and can be decomposed into

Kα = krα(Sα) K, (1.18)

where the function krα is called the relative permeability of the phase α and is

further discussed in Section 1.3.7. The term K is called absolute permeability or

intrinsic soil permeability and it is independent of fluid.

The term
krα

µα
is frequently called α-phase mobility λα and the Darcy law (1.17)

yields

uα = −λα(Sα)K(∇pα − %α g). (1.19)
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CHAPTER 1. MODELLING IMMISCIBLE FLOW IN POROUS MEDIA

1.3.4 Capillarity

Single phase flow is governed by pressure forces arising from the pressure gradient

within the void space and the exterior gravitational force. The sharp interfaces

between fluid phases in multiphase flows on the microscale give rise to a capillary

force. This force is evoked by surface tension σ [J m−2] of both phases (interfacial

tension) at their interface, which is caused by both molecular coherence within

each of phases and adhesion effects between the phases and the solid matrix.

Figure 1.4: Interface between two phases in detail . The contact angle α characterizes

the meniscus at the fluid-fluid interface (right figure) and defines the wetting (water) and

the non-wetting phase (NAPL).

Figure 1.4 shows the interface in a pore channel between two solid grains. At

the fluid-fluid interface the equilibrium of forces leads to a curved form of the

interface due to capillarity. Consider two immiscible phases (e.g. water and air).

The interaction of three different phases (solid matrix can be considered as a third

phase) results in a contact angle α as it is depicted in Figure 1.4. The influence

of these forces decreases with increasing distance from the interface. Young’s

equation gives the following expression of forces at equilibrium :

σS−1 = σS−2 + σ1−2 cos α, (1.20)

where σS−1, σS−2 and σ1−2 are respective surface tension forces at solid phase-fluid

1 interface, solid phase-fluid 2 interface and fluid 1 - fluid 2 interface as it is shown

in Figure 1.5. From (1.20) the contact angle α can be explicitly expressed as

α = arccos

(
σS−2 − σS−1

σ1−2

)

. (1.21)

The contact angle α plays a significant role in the terminology. It is also called

the wetting angle, because of the following definition. The fluid phase with an
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1.3. TWO-PHASE FLOW

Figure 1.5: Interface tension and wetting angle at equilibrium.

acute contact angle is referred to as the wetting phase with respect to the solid

matrix (fluid 1 in Figure 1.5), while the fluid phase with an obtuse contact angle is

the non-wetting phase (fluid 2 in Figure 1.5). This notation allows us to develop

more general two-phase flow mathematical models with one wetting and one non-

wetting phase regardless of factual nature of fluid phases.

In the following text, the subindex w is used for quantities related to the wet-

ting phase and analogously n for quantities related to the non-wetting phase.

More detailed description of microscopic capillarity effects are in Helmig,

1997 as well as in Bastian, 1999.

1.3.5 Capillary Pressure

The microscopic capillary pressure pc is introduced by the following definition

pc = pn − pw ≥ 0. (1.22)

The curved interface between both phases is preserved by a discontinuity in mi-

croscopic pressure of each phase. The capillary pressure is thus the height of the

jump and it is always a non-negative quantity, because the pressure pn of the non-

wetting phase is larger than the pressure pw in the wetting phase at the interface

(consequence of the definition of the wetting resp. the non-wetting phase).

In order to incorporate capillarity effects into macroscopic level, an average

of the microscopic capillary pressure over REV is taken so that the macroscopic

capillary pressure is defined almost in the same way as in (1.22), this time using

macroscopic pressures pw and pn.

pc(t, x) = pn(t, x) − pw(t, x). (1.23)

Generally, macroscopic capillary pressure is a function of phase saturations,

fluid temperature and fluid composition due to changes in surface tension. Ac-

cording to Hassanizadeh & Gray, 1993, the macroscopic relationship (1.23) is
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CHAPTER 1. MODELLING IMMISCIBLE FLOW IN POROUS MEDIA

valid only at equilibrium of forces (i.e. both phases are immobile) and it should

not be viewed as the definition of the macroscopic capillary pressure pc. The

macroscopic capillary pressure function pc is seen to be function of the fluid-fluid

interfacial areas per unit volume, as well as of the saturation, but it is difficult to

incorporate the complex approach made by Hassanizadeh and Gray into existing

multiphase flow models, because the capillary pressure - fluid-fluid interfacial area

functional dependence is currently unknown. Therefore, only the dependence on

saturation is considered in this work.

For two-phase flow, saturations Sw and Sn are related by Sw + Sn = 1, so that

the capillary pressure function can be defined for instance as

pc = pc(Sw). (1.24)

There exist two principal non-linear mathematical models for the capillary pres-

sure function (1.24) that are used in modelling multiphase flow in porous media.

Both of them are based on experimental results and they approximate macroscopic

effects of the capillarity in porous media in dependence on the effective wetting

phase saturation Sw.

BROOKS-COREY CAPILLARY PRESSURE MODEL

Brooks and Corey, 1964 developed mathematical model for pc(Sw) in the form

Sw(pc) =

(

pc

pd

)λ

for pc ≥ pd. (1.25)

The parameter λ describes pore distribution of the grains in porous material. A

very small values of λ belongs to single grain size material, while a very large

values indicate a highly non-uniform material (see Helmig, 1997). The entry pres-

sure pd [Pa] is considered as the minimal capillary pressure required to displace

the wetting phase at its maximal saturation from the largest occurring pore.

This parametrization of the Sw ↔ pc relations simulates a DNAPL pooling

(physical barrier) described in Section 1.4.1.

The capillary pressure pc(Sw) can be easily expressed from (1.25)

pc(Sw) = pdS
− 1
λ

w for Sw ∈ (0, 1], (1.26)

from which it is obvious that pc(1) = pd.

VAN GENUCHTEN CAPILLARY PRESSURE MODEL

After van Genuchten, 1980 the capillary pressure is defined by

Sw(pc) =
(
1 + (αpc)

n)m
for pc ≥ 0. (1.27)
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1.3. TWO-PHASE FLOW

Usually, the parameters m and n are related by m = 1 − 1
n

and they are charac-

terising the pore structure of the porous medium. The last parameter α is given in

[Pa−1]. All parameters are estimated to fit the experimental Sw ↔ pc relations.

Expression of pc(Sw) follows easily from (1.27) as

pc(Sw) =
1

α

(

S
− 1

m
w − 1

) 1
n

for Sw ∈ (0, 1]. (1.28)

Unlike the Brooks-Corey capillary pressure, the van Genuchten model does

not simulate the barrier effect, because the capillary pressure is always zero for

maximal effective wetting phase saturation, i.e. pc(1) = 0.

Note that for small values of effective water saturation Sw the capillary pres-

sure function pc(Sw) as well as its first derivative p′c(Sw) are unbounded. This has

profound consequences in mathematical formulations and numerical models (see

next sections and chapters).

1.3.6 Capillary Hysteresis

Figure 1.6 shows typical shapes of pc(Sw) curves. Note that these curves are valid

either for a drainage (displacement) cycle or a imbibition (wetting) cycle. If the

porous medium is drained and subsequently filled again (imbibition) the capillary

pressure-saturation relation will change. According to Bastian, 1999 the pc ↔ Sw

relationship depends on the complete history of drainage and imbibition cycle.

It can be significantly observed during the ink bottle effect when a capillary

tube of axial symmetry having periodical variations in radius has its lower end

immersed in water (air-water system), the water will rise through the tube until the

hydrostatic pressure in the tube becomes equal to the capillary pressure. If then

the tube is raised in the water, some water will drain out and a new equilibrium

level will establish.

When the interface meniscus is advancing and it approaches a reduction of the

tube it jumps through the neck (imbibition). When receding it halts without pass-

ing through the neck. This phenomenon explains why a given capillary pressure

corresponds to a higher saturation on the drainage curve than on the imbibition

curve.

This issue is called the capillary hysteresis phenomenon and it is concisely

described in Collins, 1976, Bastian, 1999 or Helmig, 1997.

In most fluid-flow problems of practical interest, capillary hysteresis can be

neglected because the flow regime usually dictates that one or the other capillary

pressure-saturation curve will apply. In the case of this work, only the drainage

curve is used, because only contamination (NAPL enters water-saturated domain)
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CHAPTER 1. MODELLING IMMISCIBLE FLOW IN POROUS MEDIA

Figure 1.6: Typical capillary pressure curves pc(Sw) after Brooks-Corey and after van

Genuchten for both drainage and imbibition. Parameters correspond to sand # 30 in

Turner, 2004 on page 43. Drainage : λ = 2.89, pd = 873 Pa, n = 5.5, α = 0.00077 Pa−1.

Imbibition : λ = 2.29, pd = 667 Pa, n = 4.0, α = 0.00110 Pa−1.

or displacement of contaminants (water enters NAPL-saturated domain) in fully

saturated zones is discussed in the following text.

1.3.7 Relative Permeability

The relative permeability krα models the fact that the flow paths of fluid α are

hindered by the presence of the other phases. It can be considered as a scaling

factor and obeys the constraint

0 ≤ krα ≤ 1.

For the two-phase flow in porous media, the mathematical models for the rel-

ative permeability functions krw and krn can be deduced from the models of capil-

larity effects by the relations (see Helmig, 1997):
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Figure 1.7: Relative permeability functions based on imbibition and drainage capillary

curves. Parameters correspond to sand # 30 in Turner, 2004 on page 43. Drainage :

λ = 2.89, pd = 873 Pa, n = 5.5, α = 0.00077 Pa−1. Imbibition : λ = 2.29, pd = 667 Pa,

n = 4.0, α = 0.00110 Pa−1.

krw = S
A
w





Sw∫

0

[pc(v)]−Bdv

1∫

0

[pc(v)]−Bdv





C

, (1.29)

krn = (1 − Sw)A





Sw∫

0

[pc(v)]−Bdv

1∫

0

[pc(v)]−Bdv





C

. (1.30)

The Burdine mathematical model for relative permeability functions are ob-

tained by substituting the Brooks-Corey pc into (1.29) and (1.30) with A = B = 2

and C = 1 :

krw(Sw) = S
3+ 2
λ

w , (1.31)

krn(Sw) = (1 − S)2(1 − S
1+ 2
λ

w ). (1.32)

Therefore, it is common to refer to (1.31) and (1.32) in conjunction with (1.26) as

Brooks-Corey model 2.

2This reference is intuitive as the Brooks-Corey parameters λ and pd are used in the relations
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The Mualem mathematical model for relative permeability functions are ob-

tained by substituting the van Genuchten capillary pressure pc into (1.29) and

(1.30) with A = 1
2
, B = 1 and C = 2:

krw(Sw) = S
1
2
w

(

1 − (1 − S
1
m
w )m

)2

, (1.33)

krn(Sw) = (1 − Sw)
1
3 (1 − S

1
m
w )2m (1.34)

Analogously, it is usual to refer to (1.33) and (1.34) in conjunction with (1.28) as

van Genuchten model.

The relationship between the Brooks and Corey model parameters λ and pd

and the van Genuchten model parameters m, n and α is described in Morel-

Seytoux et al., 1996.

1.4 Fluid Behaviour at Material Interface

This section describes mathematical treatment of heterogeneous media. The sit-

uation, where two different 3 homogeneous porous medium domains meet at a

common interface is discussed.

1.4.1 Interfacial Conditions

Let ΩA and ΩB be neighbouring homogeneous domains with capillary pressure -

saturation functions pA
c resp. pB

c . Initially, both domains are fully water-saturated,

i.e. the wetting-fluid is present on both sides of the interface, which implies that

non-wetting residual water saturations Snr necessarily equal to zero in both sub-

domains. Therefore

pw is continuous at the interface. (1.35)

Note that pn is not defined in the domains since the non-wetting phase is not yet

present in the subdomainsΩA andΩB.

It is assumed that the non-wetting phase is approaching the interface through

Ω
A. Since no mass is lost or produced at the interface, it is possible to state from

the mass conservation law that fluxes

%w uw · n and %n un · n are continuous across the interface, (1.36)

for relative permeability. The same remark applies to the van Genuchten model as well.
3Each porous medium has different material properties.
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1.4. FLUID BEHAVIOUR AT MATERIAL INTERFACE

where n is the normal vector to the interface oriented towardsΩB as it is illustrated

in Figure 1.8.

The definition of the entry pressure introduced in Section 1.3.5 can be general-

ized. From now, the entry pressure is the value of the capillary pressure in the fully

saturated zone, scilicet the value of pc(1). This definition naturally incorporates

the definition of the Brooks-Corey entry pressure pd.

It is possible to describe the phase saturations behaviour at the interface in the

following way. The non-wetting phase will flow through the interface if and only

if the capillary pressure pA
c is higher than the entry pressure pB

c (1). If this condition

holds, then the capillary pressure is continuous across the interface, i.e. pA
c = pB

c .

This condition implies that there is always jump in saturation across the boundary

as it is shown in Figure 1.9. If the pA
c is not higher than the entry pressure pB

c (1),

the non-wetting phase is prevented from entering the domain B.

This behaviour is observed in experiments (see Mikyška, 2005 or Bastian,

1999), when the non-wetting phase infiltrating fully wetting phase saturated do-

main accumulates at the interface of two homogeneous porous medium. When

the amount of the non-wetting phase is sufficiently large, the non-wetting phase

pressure increases at certain level and the non-wetting phase enters the other do-

main.

Altogether, the extended capillary pressure condition is given by

S
B
w =

{
1 if pA

c (SA
w) ≤ pB

c (1),
(
pB

c

)−1
(

pA
c (SA

w)
)

else.
(1.37)

Figure 1.8: Interface between two homogeneous porous media.

The van Genuchten model for the capillary pressure-saturation relationship

involves zero entry pressure and thus the pc(Sw) function is always invertible in

(1.37). There is no barrier effect for the van Genuchten model as it was already

discussed in Section 1.3.5.
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Figure 1.9: Capillary pressure curves fot a porous medium with a discontinuity.

1.5 Flow in Homogeneous Porous Medium

The complete two-phase flow model applied throughout the work is stated in this

section. The flow of two immiscible and incompressible fluids in homogeneous

isotropic porous medium is considered, i.e. %α and Φ are constant in time and

space and absolute permeability tensor reads K = KI.

All relevant equations (1.13), (1.16), (1.17) and (1.23) under these assump-

tions are resumed in the following way

1 = Sw + Sn, (1.38)

pc = pn − pw, (1.39)

uw = −K λw(∇ pw − %w g), (1.40)

un = −K λn(∇ pn − %w g), (1.41)

ϑΦ
∂Sw

∂t
= −∇ · uw + qw, (1.42)

ϑΦ
∂Sn

∂t
= −∇ · un + qn, (1.43)

where the definition of the α-phase mobility λα introduced in Section 1.3.7 is

employed.

New variables are introduced to eliminate explicit presence of pw and pn in the

set of equations (see Bastian, 1999).
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1.5. FLOW IN HOMOGENEOUS POROUS MEDIUM

1.5.1 Total Velocity

A quantity called total velocity u can be introduced by the relationship

u = uw + un. (1.44)

It expresses the total velocity of the whole fluid content within the porous medium

at each point.

Addition of equations (1.42) and (1.43) yields

ϑΦ
∂

∂t

(

Sw + Sn

)

︸    ︷︷    ︸

1

from (1.38)

= −∇ ·
(

uw + un

)

︸     ︷︷     ︸

u

+qw + qn, (1.45)

which yields

∇ · u = qw + qn. (1.46)

This equation includes the equation (1.38) in the summary above.

1.5.2 Rearranging Equations

In order to reduce the total number of equations, the definition of the capillary

pressure (1.39) is incorporated in this subsection.

Substitution of pw = pn−pc in the equation (1.40) and un = u−uw into (1.41)

and then multiplication of the equation (1.40) resp. (1.41) by λn resp. λw. yield

λn uw = −λwλnK(∇pn − ∇pc − %wg) (1.47)

λw u − λw uw = −λwλnK(∇pn − %ng). (1.48)

Subtraction of (1.47) and (1.48) yields

(λw + λn)uw = λwu + λwλnK
(
∇pc + (%w − %n)g

)
. (1.49)

Since λw + λn > 0 for all Sw ∈ [0, 1], we can replace the equation (1.40) by

uw =
λw

λw + λn
u +

λwλn

λw + λn
K

(
∇pc + (%w − %n)g

)
. (1.50)

Analogously, it is possible to obtain

un =
λn

λw + λn

u −
λwλn

λw + λn

K
(
∇pc + (%w − %n)g

)
. (1.51)
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CHAPTER 1. MODELLING IMMISCIBLE FLOW IN POROUS MEDIA

The term

fα =
λα

λw + λn
, (1.52)

is called the α-phase fractional flow function and it is a function of effective sat-

uration due to the definition of relative permeability functions. As the capillary

pressure function pc depends only on the effective wetting phase saturation, the

capillary pressure gradient ∇pc can be replaced by

∇pc = p′c(Sw)∇Sw = −p′c(1 − Sn)∇Sn, (1.53)

where

p′c(Sw) =
d

dSw

pc(Sw).

1.5.3 Complete Set of Equations

Finally, new equations can be collected in the following list

∇ · u = qw + qn, (1.54)

uw =
λw

λw + λn
u +

λwλn

λw + λn
K

(
∇pc + (%w − %n)g

)
, (1.55)

un =
λn

λw + λn
u −

λwλn

λw + λn
K

(
∇pc + (%w − %n)g

)
, (1.56)

ϑΦ
∂Sw

∂t
= −∇ · uw + qw, (1.57)

ϑΦ
∂Sn

∂t
= −∇ · un + qn. (1.58)

The explicit presence of both phase pressures pw and pn is eliminated from the

model equations. However, they are hidden in the total velocity term by the rela-

tion

u = −(λw + λn)K

(

∇pn − fw ∇pc −
λw%n + λn%w

λw + λn
g

)

, (1.59)

that results from adding the equations (1.40) and (1.41) with respect to (1.39).

1.6 One-Dimensional Two-Phase Flow Problem

One of the main objectives of this work is to study exact solutions of one-

dimensional two-phase flow problems in porous media. Exact solutions can be
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1.6. ONE-DIMENSIONAL TWO-PHASE FLOW PROBLEM

obtained under following constraints. Let two immiscible and incompressible

phases flow through one dimensional domain of a homogeneous porous medium

with no gravitational force and without sinks or sources throughout the domain.

This situation can be represented by a long thin pipe of length L filled with porous

material. The pipe is situated horizontally since no gravitational effects are as-

sumed. All position dependent quantities introduced in the previous sections are

considered constant in every cross-section of the pipe (the one dimensional as-

sumption) and thus calculated only at each point x ∈ [0, L].

1.6.1 One-Dimensional Transport Equation

Since no sinks or sources are placed in the domain [0, L], the equation (1.54)

yields

u(t, x) = C(t), (1.60)

where u is the one-dimensional total velocity and C(t) is an arbitrary function

independent of the position x. Therefore, it follows that

u = u(t).

To simplify the following text, a new term D = D(Sw) is introduced by the

definition

D(Sw) = −K
λw(Sw)λn(Sw)

λw(Sw) + λn(Sw)

dpc

dSw
(Sw). (1.61)

The symbol D stands for diffusion or diffusive term, also commonly called the

capillary diffusive term. It is always a non negative quantity because p′c(Sw) is non

positive function since pc(Sw) decreases in (0, 1].

The equations (1.55) and (1.57) can be expressed as one

ϑΦ
∂Sw

∂t
= −u

∂ fw(Sw)

∂x
+
∂

∂x

(

D(Sw)
∂Sw

∂x

)

, (1.62)

and analogously the equations (1.56) and (1.58) give

ϑΦ
∂Sn

∂t
= −u

∂ fn(1 − Sn)

∂x
+
∂

∂x

(

D(1 − Sn)
∂Sn

∂x

)

. (1.63)

Formally, the two-phase flow equation can be given in the form

ϑΦ
∂Sα
∂t
= −u

∂ fα

∂x
+
∂

∂x

(

D
∂Sα
∂x

)

. (1.64)

The α-phase velocity is expressed as

uα = u fα −D
∂Sα
∂x
. (1.65)
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CHAPTER 1. MODELLING IMMISCIBLE FLOW IN POROUS MEDIA

1.6.2 Problem Formulation

Three main problems can be described by the equation (1.64).

First of them is a two-phase flow problem without capillary effects included

in the model. This pure hyperbolic two-phase flow problem is described by

ϑΦ
∂Sα
∂t
= −u

∂ fα

∂x
. (1.66)

There exists an analytical solution derived by Buckley and Leverett using modified

method of characteristics which is discussed in the next chapter (see Section 2.2).

If the total velocity is zero, i.e. u = 0, a nonlinear equation of a parabolic type

is obtained

ϑΦ
∂Sα
∂t
=
∂

∂x

(

D
∂Sα
∂x

)

. (1.67)

This situation is referred to as bi-directional displacement, because the fluid phase

velocities are opposite at each point x ∈ [0, L],

0 = u ⇒ uw = −un.

The third problem is the equation (1.64) itself

ϑΦ
∂Sα
∂t
= −u

∂ fα

∂x
+
∂

∂x

(

D
∂Sα
∂x

)

. (1.68)

Both advective and diffusive terms are present in the equation and it is referred to

as unidirectional displacement since u , 0.

McWhorter and Sunada, 1990 developed a closed form exact solution for the

two-phase flow equation with diffusion (1.67) and also with diffusion and ad-

vection (1.68). The main contribution of this work is a deep analysis of the

McWhorter and Sunada exact solution and clarification of some outstanding is-

sues published in Sunada & McWhorter, 1990, Z.-X. Chen & Witherspoon, 1992

and Sunada & McWhorter, 1992.

DUAL FORMULATIONS

Both problem formulations (1.62) and (1.63) represent dual problem formu-

lations to each other in the following way. Exact solutions are derived under an

assumption, that the Dirichlet boundary conditions Sα(t, 0) = S0 and Sα(t, L) = Si

with L = ∞, satisfy Si < S0. If the problem formulation requires Si > S0, simply

the other formulation is used and the inequality is satisfied because S#
i
< S#

0
, where

S
#
i

and S#
0

are the dual saturations to the original problem defined as

S
#
i = 1 − Si, (1.69)

S
#
0 = 1 − S0. (1.70)
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Chapter 2

Exact Solutions in Homogeneous

Media

2.1 Introduction

OVERVIEW

A derivation of exact solutions of the two-phase flow one dimensional prob-

lems in porous medium is presented in this chapter. For that purpose, a general

form of the two-phase flow equation (1.68) is presented in the form

Φϑ
∂S

∂t
= −u(t)

∂ f (S)

∂x
+
∂

∂x

(

D(S)
∂S

∂x

)

, (2.1)

where S = S(t, x) (0 ≤ S ≤ 1) is a non-specified 1 effective saturation, f = f (S)

is a fractional flow function. In the case of this work, the relative permeability

models so that the diffusive term is a non-negative function such that D(0) = 0

and D(1) = 0 due to λw(0) = λn(1) = 0 in the definition of D in (1.61).

The mathematical derivation of exact solutions in the general form including

analysis and respective algorithms is provided in this chapter.

APPLICATION TO POROUS MEDIA TRANSPORT PROBLEMS

In this section we specify, how the general exact solutions of the two-phase

flow equation (2.1) can be applied to the problems (1.66), (1.67) or (1.68). We

present description of the functions f and D for the wetting-phase and the non-

wetting phase displacement.

1S can be either wetting phase or non-wetting phase effective saturation.
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CHAPTER 2. EXACT SOLUTIONS IN HOMOGENEOUS MEDIA

In the situation where the non-wetting phase is displaced from the domain,

the wetting phase is introduced to the domain at x = 0. Therefore we redefine

variables in the general equation (2.1) in the following way

S ≡ Sw

f (S) = fw(Sw) (2.2)

D(S) = D(Sw).

The resulting equation is the equation (1.62).

In the other case the wetting phase is displaced from the domain via inflow

of the wetting phase at x = 0. The redefinition of the variables in the general

equation (2.1) is as follows

S ≡ Sn

f (S) = fn(1 − Sn) (2.3)

D(S) = D(1 − Sn).

This substitution still preserves the positive sign before the diffusive term in

the equation (2.1) because of the expression of the non-wetting phase velocity un

in (1.56) and the execution of the derivative ∇pc(1 − Sn) in (1.53). As a result we

obtain the equation (1.63).

TEST PROBLEMS

The setups in Table 2.1 are used in this chapter to illustrate usage and analysis

of the exact solutions. The wetting phase is always water in the computational

experiments while various realistic or theoretical NAPLs are used.

The first test setup consists of the Brooks-Corey model functions (1.26), (1.31)

and (1.32) and artificially selected values of the soil parameters (see Helmig,

1997). Since NAPLs that are more viscous than water make the problems de-

scribed in this work more obvious, the value of µn = 0.020 kg m−1 s−1 is selected

in the test setup 1.

The other test setups 2 and 3 model realistic soil parameters (sand #30 in

Turner, 2004, p.43) and realistic NAPL Soltrol 220.

2.2 Buckley-Leverett Analytical Solution

The strictly hyperbolic two-phase flow equation (1.66) is a version of the equation

(2.1) without diffusive term (D ≡ 0) and it can be solved analytically. Let the total
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2.2. BUCKLEY-LEVERETT ANALYTICAL SOLUTION

Par. Units Setup 1 Setup 2 Setup 3

Porosity Φ [−] 0.3 0.4

Intrinsic Permeability K [m2] 1 · 10−10 2.26 · 10−10

Residual Water Sat. Swr [−] 0 0.144

Residual NAPL Sat. Snr [−] 0 0.069

Water Viscosity µw [kg m−1s−1] 0.001 0.001

DNAPL Viscosity µn [kg m−1s−1] 0.020 0.0035

Model Functions BC BC vG

Brooks-Corey (BC) P0 [Pa] 1000 668 -

λ [−] 2 2.29 -

van Genuchten (vG) α [Pa−1] - - 1
909

m [−] - - 0.75

Table 2.1: Parameter setup used in this chapter.

velocity u = u(t) be an arbitrary integrable non-negative function. Buckley and

Leverett used modified method of characteristics to derive analytical solution to

the following Riemann problem (see LeVeque, 2002, Collins, 1976, Huyakorn &

Pinder, 1983)

Φϑ
∂S

∂t
+ u(t)

∂ f (S)

∂x
= 0, (2.4)

or

Φϑ
∂S

∂t
+ u(t) f ′(S)

∂S

∂x
= 0. (2.5)

The boundary and initial conditions for all t ∈ (0,∞) resp. x ∈ (0,∞) are

S(t, 0) = S0, (2.6)

S(0, x) = Si. (2.7)

The modification of the method of characteristics is necessary due to exis-

tence of an inflexion point of the function f in most of the common models as

it is depicted in Figure 2.1. This situation is referred to as the Buckley-Leverett

problem and it is sufficiently described in literature only for S0 = 1, Si = 0 and

u constant in time. Bastian, 1999 describes the derivation of the solution for any

0 ≤ Si ≤ S0 ≤ 1, but he still considers constant total velocity u.

2.2.1 Method of Characteristics

The analytical solution to the Riemann problem (2.4) is derived using the method

of characteristics and the theory concerning the non-convex flux functions dis-
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CHAPTER 2. EXACT SOLUTIONS IN HOMOGENEOUS MEDIA

Figure 2.1: Typical fractional flow function f with inflexion (left) and its first derivative

f ′ (right), model Brooks-Corey.

cussed in LeVeque, 1990.

A characteristics is a line in the (x, t)-plane, whereon the solution S(t, x) is

constant. Let η = η(x, t) be unknown function such that

S̃(η(t, x)) = S(t, x). (2.8)

Derivative of the expression (2.8) by η yields

dS̃

dη
=
∂S

∂t

dt

dη
+
∂S

∂x

dx

dη
= 0, (2.9)

because it is assumed that the solution S(t, x) is constant along the characteristic

described by η(t, x).

Comparing the coefficients in (2.9) and (2.4), a system of ordinary differential

equations

dS̃

dη
= 0, (2.10)

dt

dη
=

1

Φϑ
, (2.11)

dx

dη
=

1

Φϑ
u(t) f ′(S̃), (2.12)
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2.2. BUCKLEY-LEVERETT ANALYTICAL SOLUTION

is obtained and thus it yields

dx

dt
=

1

Φϑ
u(t) f ′(S̃). (2.13)

A smooth rarefaction wave is obtained for convex flow functions f for the

situation S0 > Si by integrating the relationship (2.13) in the form

x(t, S̃) = f ′(S̃)

t∫

0

u(τ)dτ. (2.14)

The convexity or concavity of the function f means that its first derivative is a

monotonous function and thus it can be inverted to obtain the solution S(t, x).

Since this is not the case in the Buckley-Leverett problem (see Figure 2.1), only

weak solutions exist.

For the discussion on the weak solution theory, refer to LeVeque, 2002, LeV-

eque, 1990.

Note that the solution of the Riemann problem (2.4) involves both a shock and

rarefaction wave and is called compound wave.

To determine the weak solution to a nonconvex scalar conservation law, one

needs to consider the following form of the entropy condition (see citations on

page 353 in LeVeque, 2002)

Theorem 1 (Entropy condition (Oleinik)). A weak solution S(t, x) is the

vanishing-viscosity solution to a general scalar conservation law (2.4) if all dis-

continuities have the property that

f (S) − f (S0)

S − S0

≥ s ≥
f (S) − f (Si)

S − Si
, (2.15)

for all Si ≤ S ≤ S0, where

s =
f (St) − f (S0)

St − S0

(2.16)

is the (fractional) shock speed and St is the postshock value that is constant in

time defined by the relationship

f ′(St) =
f (St) − f (Si)

St − Si

. (2.17)

The term fractional shock speed is used because the shock speed vshock is de-

fined as

vshock(t) = s u(t) (2.18)

29
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in this case and it is a time dependent variable. If the function f has no inflex-

ion then St = Si and the shock speed vshock(t) is exactly the Rankine-Hugoniot

condition (see Bastian, 1999).

vRH =
f (S0) − f (Si)

S0 − Si
u(t). (2.19)

There are two possible interpretations of the equation (2.17). The first one is a

consequence of the entropy condition while the second one is a result of the mass

balance equation, also called equal area rule.

2.2.2 Entropy Condition : Convex Hull Construction

The entropy-satisfying solution to the Riemann problem (2.4) can be determined

from the graph of f (S) in the following way. Only the relationship Si ≤ S0 is con-

sidered, because the other case can be simply reformulated e.g. from the wetting

phase displacement formulation to the non-wetting phase formulation, where the

relationship Si ≤ S0 holds (see the dual formulation in Section 1.6.1).

Figure 2.2: Convex hull construction of the set S, model Brooks-Corey, S0 = 1, Si = 0.

It is possible to construct the convex hull of the setS

S =
{
(S, y) : Si ≤ S ≤ S0, y ≤ f (S)

}
.

The convex hull of a set is the smallest convex set that contains the original set as it

is depicted in Figure 2.2 for Si = 0 and S0 = 1. The upper boundary of the convex
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2.2. BUCKLEY-LEVERETT ANALYTICAL SOLUTION

hull is composed of a tangential from the origin [Si, f (Si)] to the graph at point

[St, f (St)]. The notation of St therefore corresponds to the tangent point to the

graph f and is also called the Welge tangent saturation (see Sunada & McWhorter,

1990). The point St is exactly the postshock value defined by the equation (2.17).

The straight line represents a shock jumping from S = Si to S = St. The segment

where the convex hull boundary follows the graph f (S) is the rarefaction wave.

Moreover the slope of the line equals to the fractional shock speed s defined in

Theorem 1.

If f is convex, then the convex hull construction gives either a single line

segment (single shock) or the function f itself (single rarefaction) if f is concave.

2.2.3 Mass Balance Condition : Equal Area Rule

The mass conservation law and the method of characteristics imply that the area

delimitated by the function

x(t) =
1

Φϑ
f ′(S)

t∫

0

u(τ)dτ Si ≤ S ≤ S0,

Figure 2.3: Equal area rule illustration, model Brooks-Corey, S0 = 1, Si = 0.

must be the same as the area between the solution S(t, x) and Si. Figure 2.3

depicts the situation for Si = 0 and S0 = 1. Using the notation in Figure 2.3, the
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CHAPTER 2. EXACT SOLUTIONS IN HOMOGENEOUS MEDIA

equal area rule is expressed as

meas(A) = meas(B).

This condition is refered to as the equal area rule and can be expressed by the

relation

S0∫

Si

f ′(s)ds = f ′(St)(St − Si) +

S0∫

St

f ′(s)ds.

Evaluating the integrals on both sides, one gets exactly the same condition as in

the equation (2.17) in Theorem 1, i.e.

f (St) − f (Si) = f ′(St)(St − Si).

Figure 2.4: Illustration of the Buckley-Leverett analytical solution, model Brooks-Corey.

If S0 > St the solution of the Riemann problem contains a rarefaction wave and a shock-

wave (case (a),left picture), while the solution consists of a single shockwave if S0 < St

(case (b), right picture). Note that the factor 1
Φϑ is included in the term u(z).

2.2.4 Analytical Solution

The value of St is computed from the equation (2.17). If St < S0 the solution of the

Riemann problem (2.5) contains a shockwave as well as a rarefaction wave, see

Figure 2.4 (a). There is only a shockwave with Rankine-Hugoniot shock speed
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vRH(t) if St > S0. The shock front position xRH(t) can be expressed as

xRH(t) =
1

Φϑ

f (S0) − f (Si)

S0 − Si

t∫

0

u(τ)dτ, (2.20)

Let x0(t) and xt(t) are time-dependent variables defined by

x0(t) =
1

Φϑ
f ′(S0)

t∫

0

u(τ)dτ, (2.21)

xt(t) =
1

Φϑ
f ′(St)

t∫

0

u(τ)dτ, (2.22)

Then the solution is obtained for a given time t in the following form :

Case S0 ≥ St : x = f ′(S)
t∫

0

u(τ)dτ for St ≤ S ≤ S0,

S(t, x) = S0 for ∀x ≤ x0(t),
S(t, x) = Si for ∀x > xt(t).

Case S0 < St : S(t, x) = S0 for ∀x ≤ xRH(t),
S(t, x) = Si for ∀x > xRH(t).

2.3 McWhorter-Sunada Exact Solution

McWhorter and Sunada published their article on exact integral solution of two-

phase flow equation in 1990 resp. 1992. Despite presented derivations and exam-

ples illustrating usage of their exact solution, the work contains a lot of confusions.

The author’s contribution to the subject would be to explain how the exact solution

can be derived, to correct some impetuous conclusions and to offer better insights

into the subject through the modified iterative methods.

2.3.1 Problem Formulation

The McWhorter and Sunada exact solution to the two-phase flow problem is de-

rived in this section.

TRANSPORT EQUATION
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Consider one-dimensional problem already introduced in Section 1.6.1 in gen-

eral terms (see (2.1))

Φϑ
∂S

∂t
= −u(t)

∂ f (S)

∂x
+
∂

∂x

(

D(S)
∂S

∂x

)

, (2.23)

where S = S(t, x) for all x ∈ [0,∞] and t ∈ [0,∞].

INITIAL CONDITION

At t = 0, the domain [0,∞) is uniformly occupied by the phase α with its

effective saturation Si,

S(0, x) = Si for all x ∈ (0,∞). (2.24)

Note that the subscript i stands for initial effective saturation.

DIRICHLET BOUNDARY CONDITIONS

In order to obtain a unique solution of the two-phase flow equation (2.23),

boundary conditions are needed at x = 0 and x = ∞. Both conditions are of the

Dirichlet type

S(t, 0) = S0, (2.25)

S(t,∞) = Si, (2.26)

where Si is the initial effective saturation. The inlet effective saturation S0 is re-

lated to the total velocity term u and therefore the Dirichlet boundary condition

(2.25) corresponds to the total velocity condition (2.31) presented in the next sub-

section.

TOTAL VELOCITY CONDITION

The displacing phase is introduced to the domain at x = 0 with velocity 2 udp

given by

udp(t, 0) = Ag(t) = A t−
1
2 , (2.27)

with A > 0. Reasons why the function g must have the form g(t) = t−
1
2 will be

discussed later in the exact solution derivation text.

The other phase velocities at the inlet (x = 0) and the outlet (x = ∞) are

unknown, although one can suppose the boundary at x = ∞ as semi-permeable

characterized by a scalar coefficient R ∈ [0, 1]. The total velocity u is independent

of the position in one-dimensional case and it is defined as

u = uw + un. (2.28)

2The displacing phase velocity is either uw or un, generally denoted as udp.
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Depending on the permeability of the boundary at infinity, it is assumed that

u(t) = R Ag(t), (2.29)

where R ∈ [0, 1] because the total velocity can vary from Ag(t) to 0. The total

velocity is maximal u(t) = Ag(t) (i.e. R = 1) in the situation where the outlet from

the domain is not prevented at x = ∞ , i.e. in the unidirectional displacement. On

the other hand the total velocity vanishes (i.e. R = 0), if the displaced phase can

be drained out only at x = 0, it is the situation of the bidirectional displacement.

Introducing a semi-permeable membrane at x = ∞, it is possible to obtain all

values of R ∈ [0, 1] and therefore the original problem formulation proposed by

Sunada & McWhorter, 1990 can be generalized in that way.

Using the expression (1.65) in a generalized form

udp = u f −D
∂S

∂x
, (2.30)

it is possible to formulate the total velocity condition from (2.27) in the terms of

S

Ag(t) = R Ag(t) f (S0) −D(S0)
∂S

∂x
(t, 0), (2.31)

where the boundary condition (2.25) : S(t, 0) = S0 is applied.

The condition (2.30) can be formulated either for the case of the non-wetting

phase displacement (dp = w) according to (1.55) as

uw = u fw(Sw) −D(Sw)
∂Sw

∂x
,

or for the case of the wetting phase displacement (dp = n) from (1.56) as

un = u fn(1 − Sn) −D(1 − Sn)
∂Sn

∂x
.
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SUMMARY

The partial differential equation

Φϑ
∂S

∂t
= −A R t−

1
2
∂ f (S)

∂x
+
∂

∂x

(

D(S)
∂S

∂x

)

, (2.32)

is solved for the unknown function S = S(t, x) with boundary and initial conditions

for all x ∈ (0,∞) and t ∈ [0,∞)

S(t, 0) = S0, (2.33)

S(t,∞) = Si, (2.34)

S(0, x) = Si, (2.35)

(2.36)

where

S0 > Si. (2.37)

The total velocity condition (2.31) yields

∂S

∂x
(t, 0) = −A t−

1
2

1 − R f (S0)

D(S0)
. (2.38)

2.3.2 Exact Solution Derivation

The exact solution is derived in this section. In order to understand the necessity

of the form g(t) = t−
1
2 of the input velocity resp. the total velocity term, the

general form of the input flux

u(t) = R udp(t, 0) = R Ag(t)

will be used in the following text.

FUNDAMENTAL ASSUMPTION

Suppose the solution exists in a form

S = S(λ), (2.39)

where

λ = x g(t). (2.40)

This substitution is possible if and only if the following fundamental assumption

holds:

Let S = S(λ) be strictly monotone function of λ. (2.41)
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This assumption permits to invert the dependence (2.39) and assume that

λ = λ(S). (2.42)

Partial differentiation of (2.40) yields

∂S

∂t
(t, x) =

λ[S(t, x)]

λ′[S(t, x)]

g′(t)

g(t)
, (2.43)

∂S

∂x
(t, x) =

g(t)

λ′[S(t, x)]
, (2.44)

where g′(t) resp. λ′(S) stands for the derivative
dg(t)

dt
resp.

dλ(S)

dS
.

FUNCTION F

The fractional flow function F = F(t, x) is defined as

F(t, x) = R
f [S(t, x)] − f (Si)

1 − R f (Si)
−

D[S(t, x)]

Ag(t) (1 − R f (Si))

∂S

∂x
(t, x). (2.45)

The substitution (2.44) makes possible to assume that F = F(S),

F(S) = R
f (S) − f (Si)

1 − R f (Si)
−

1

A(1 − R f (Si))

D(S)

λ′(S)
. (2.46)

ODE DERIVATION

According to the expression of the function F (2.46), the partial differential

equation (2.32) can be modified into

Φϑ
∂S

∂t
+ Ag(t) (1 − R f (Si))

∂

∂x

(

R
f (S) − f (Si)

1 − R f (Si)
−

D(S)

Ag(t) (1 − R f (Si))

∂S

∂x

)

︸                                              ︷︷                                              ︸

F(t,x)

= 0,

(2.47)

where the added constant f (Si) vanishes after applying the partial differentiation

and thus the equation (2.47) is equivalent to (2.32).

Application of the substitution (2.40) yields

Φϑ
g′(t)

g3(t)
λ(S) + A(1 − R f (Si))F

′(S) = 0. (2.48)

If the time dependence of the terms in the equation (2.48) is removed, an ordi-

nary differential equation only in terms dependent on S is obtained. The relevant

condition is
g′(t)

g3(t)
= C1. (2.49)
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It is solved by

g(t) = (−2 C1 t + C2)−
1
2 . (2.50)

It is possible to incorporate any negative value of C1 in A because u(t) = Ag(t),
and thus one may choose for instance C1 = −

1
2
.

Under these assumptions, the equation (2.48) is transformed into

F′(S) =
Φϑ

2A(1 − R f (Si))
λ(S). (2.51)

Differentiation of this equation with respect to S allows to substitute λ′(S) from

(2.46), and finally, the second order ordinary differential equation

F′′(S) = −
Φϑ

2A2(1 − R f (Si))2

D(S)

F(S) − ϕ(S)
(2.52)

is obtained, where

ϕ(S) = R
f (S) − f (Si)

1 − R f (Si)

is the normalized fractional flow function.

CONDITIONS FOR FUNCTION F

If g(0) = ∞ then the value of F(0, x) is

F(0, x) = R
f [S(0, x)] − f (Si)

1 − R f (Si)

and the initial condition (2.24) yields

F(Si) = 0, (2.53)

independently of the values of D(Si) or ∂S∂x (t,∞), if D(Si) and ∂S∂x (t,∞) are bounded.

The infinite condition g(0) = ∞ implies that the only possible form of the input

flux function g(t) is g(t) = t−
1
2 and thus it incorporates C2 = 0 in (2.50).

Boundary condition (2.25) and the total velocity condition (2.31) substituted

into F(t, 0) in (2.45) yields

F(S0) = 1. (2.54)

The boundary condition (2.25) ensure time independency of S0 while the total

velocity condition (2.31) incorporates the α-phase velocity prescribed at x = 0

through the term ∂S
∂x (t, 0) explicitly expressed in (2.38).

Moreover, the condition (2.25) can be used in the relationship (2.42)

λ(S0) = 0 g(t)
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and the equation (2.51) to formulate an extra condition

F′(S0) = 0. (2.55)

Altogether, the second order differential equation (2.52) with three conditions

for F is obtained. However, the problem is not overdetermined because the third

condition is used to establish relationship between A and S0.

SOLUTION OF PDE

Once the function F(S) is known, it is possible to easily compute the inverted

solution from (2.51) 3

2A(1 − R f (Si))

Φϑ
F′(S) = λ = x t−

1
2 , (2.56)

which is in a similar form to the Buckley-Leverett analytical solution (see Section

2.2.4), i.e.

x(t, S) =
(1 − R f (Si))

Φϑ

dF(S)

dS

t∫

0

Aτ−
1
2 dτ. (2.57)

This formula is valid for all values of S ∈ [Si, S0] because the function
dF(S)

dS
can

be inverted as the consequence of to the fundamental assumption (2.41).

In order to demonstrate the relationship between the Buckley-Leverett and

McWhorter-Sunada exact solutions, the Buckley-Leverett fractional flow function

FBL has to be defined as

FBL =





ϕ(S) ∀S ≥ St,

ϕ(St)
S−Si

St−Si
∀S < St,

(2.58)

where St is again the Welge tangent saturation computed from (2.17). It is obvious

that the function FBL does not agree to the fundamental assumption (2.41) with

respect to the relationship (2.46) due to its linear part, but formally the solution

(2.57) with FBL substituted for F is the same as in Section 2.2.4.

2.3.3 Original Integral Equation

DERIVATION OF INTEGRAL EQUATION

3Compare to the Buckley-Leverett solution in Section 2.2.4
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The ODE (2.52) can not be solved directly because the relationship between

A and S0 is not determined yet. It is advised from Sunada & McWhorter, 1990 to

integrate the ODE to

F(S) = 1 −
Φϑ

2A2(1 − R f (Si))2

S0∫

S

(v − S) D(v)

F(v) − ϕ(v)
dv, (2.59)

where conditions (2.55)

F′(S0) = 0,

and (2.54)

F(S0) = 1,

were already included. The last condition (2.53)

F(Si) = 0,

permits to write

F(Si) = 0 = 1 −
Φϑ

2A2(1 − R f (Si))2

S0∫

Si

(v − Si) D(v)

F(v) − ϕ(v)
dv, (2.60)

and consequently

A2
=

Φϑ

2(1 − R f (Si))2

S0∫

Si

(v − Si) D(v)

F(v) − ϕ(v)
dv. (2.61)

With (2.61), it is possible to rewrite integral equation (2.59) to

F(S) = 1 −

S0∫

S

(v−S) D(v)

F(v)−ϕ(v)
dv

S0∫

Si

(v−Si) D(v)

F(v)−ϕ(v)
dv

. (2.62)

Differentiating this integral equation, the desired function F′(S) is obtained in the

form

F′(S) =

S0∫

S

D(v)

F(v)−ϕ(v)
dv

S0∫

Si

(v−Si) D(v)

F(v)−ϕ(v)
dv

. (2.63)
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The magnitude of the diffusion term D(S) does not influence the function F
(multiplicative constants can be reduced in (2.62 as well as in (2.63)), it affects

only the value of A.

SOLVING INTEGRAL EQUATION

According to Sunada & McWhorter, 1990, the unknown function F(S) is com-

puted from the integral equation (2.62) by iterations.

Fk+1(S) = 1 −

S0∫

S

(v−S) D(v)

Fk(v)−ϕ(v)
dv

S0∫

Si

(v−Si) D(v)

Fk(v)−ϕ(v)
dv

. (2.64)

It is suggested to use F0 ≡ 1 as a first guess. The function Fk is considered to be a

solution of (2.59) when successive iterations are sufficiently small in a norm. The

L∞ norm is employed in the case of this work. The iterative process is terminated

if

‖Fk − Fk+1‖L∞ < εF. (2.65)

Integrals in (2.64) are evaluated numerically, therefore the exact solution is often

named as quasi-analytical solution.

The iterative process is rapid and convergent for all values of S0 in the case of

the bidirectional flow (R = 0). However, serious difficulties occur when S0 and R
are close to 1 as the following first iteration analysis demonstrates.

FIRST ITERATION ANALYSIS

If
∂S

∂x
≤ 0, (2.66)

the function F fulfils (see the definition (2.46), resp. (2.45)) the inequality

F(S) ≥ ϕ(S), (2.67)

for all S ∈ [0, 1]. The inequality (2.67) permits to analytically demonstrate causes

of the iterative process failures for the case of the Brooks-Corey model functions

(1.26), (1.31) and (1.32).

As the author already suspected in recent works Fučı́k et al., 2004b or Fučı́k

et al., 2004a, the original iterative process fails as the denominator in the inte-

grand
D(v)

F(v)−ϕ(v)
in (2.62) becomes arbitrarily small or zero if the values of S0 and

R are selected close to 1. It is possible to present analytical explanation of this
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phenomenon. It can be shown that F(S) > ϕ(S) for all S ∈ (Si, S0) and so this

relationship must stand for all approximations Fk of the function F.

The first iteration of the function F is obtained by substituting F0 ≡ 1 into the

right hand side of the integral equation (2.64). The Brooks-Corey model functions

(1.26), (1.31) and (1.32) permit to express the first iteration F1 analytically as

follows

F1(S) = 1 −
S

3+ 1
λ

0
(3λS0 − 4λS − S) + λS4+ 1

λ

S
3+ 1
λ

0
(3λS0 − 4λSi − Si) + λS

4+ 1
λ

i

. (2.68)

The second iteration of the function F can not be computed for certain values

of S0 by substituting F1 into the right hand side of the integral equation (2.64)

because the function F1 intersects the function ϕ and the integrand
D(v)

F(v)−ϕ(v)
be-

comes unbounded as it is illustrated in Figure 2.5, where Si = 0, R = 1 and

S0 ∈ {0.5, 0.7, 0.9, 1}.
Definitions of functions D and f imply that the first iteration of F1 is always

independent of any other variables except λ, which enables analytical analysis

of the subject. Any admissible value of λ does not affect the situation in any

remarkable way.

Although µw and µn do not influence F1, they have an important impact on the

instability occurrence through the function ϕ, as depicts Figure 2.5. The viscosity

ratio parameter M =
µw

µn
is the key variable that affects the stability of the whole

iterative process because it shifts the inflexion point of the function ϕ towards S0

or Si (see Figure 2.5) and therefore the singularity may occur at any point of the

interval (Si, S0) and not only in the vicinity of S0.

The other parameter that influences the formation of the instability after the

first iteration is the initial saturation Si which occurs in both functions ϕ and F1.

The original iterative process fails for values of S0 from a close neighborhood

of 1 as it is demonstrated in details in Table 2.2, Table 2.3 and Table 2.4.

The critical boundary denoted by S∗
0

represents the highest value of S0 for

which the original iterative process (2.64) is stable. It is obvious that the instability

issue of the original process is not peripheral for high viscous non-wetting fluids.

For example, the original iterative process fails for values of S0 superior to

0.82 in the case of realistic DNAPL Soltrol 220 (test setup 2), where µn =

0.0035 kg m−1 s−1 (i.e. M = 0.286) and Si = 0.

As a consequence of the first iteration analysis the original iterative process

can not be used for the values of S0 ≥ S
∗
0
, where S∗

0
is defined as

S
∗
0 = inf

{

S0 : FS0

1
(S) > ϕ(S) ∀S ∈ (Si, S0)

}

, (2.69)

where FS0

1
is a first iteration of the function F for a given S0.
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Si viscosity ratio M
0.001 0.01 1 100 1000

0.00 0.33593 0.52734 0.91578 0.99728 0.99984

0.10 0.30390 0.49330 0.90798 0.99824 0.99976

0.20 0.30468 0.45937 0.89843 0.99656 0.99966

0.30 0.41142 0.45790 0.88378 0.99602 0.99957

0.40 0.52743 0.54003 0.86640 0.99527 0.99970

0.50 0.63696 0.64037 0.84570 0.99413 0.99928

0.60 0.73642 0.73730 0.82968 0.99230 0.99896

0.70 0.82395 0.82414 0.84648 0.98904 0.99842

0.80 0.89818 0.89821 0.90151 0.98261 0.99843

Table 2.2: Critical values S∗
0

for the model setup 1 depending on Si and M =
µw

µn
.

Si viscosity ratio M
0.001 0.01 1 100 1000

0.00 0.32018 0.51366 0.91241 0.99715 0.99982

0.10 0.30390 0.47880 0.90463 0.99824 0.99973

0.20 0.30312 0.44335 0.89335 0.99641 0.99980

0.30 0.41347 0.45295 0.87831 0.99584 0.99954

0.40 0.52946 0.54032 0.85929 0.99503 0.99970

0.50 0.63889 0.64208 0.83886 0.99384 0.99920

0.60 0.73798 0.73886 0.82460 0.99191 0.99890

0.70 0.82500 0.82520 0.84648 0.98849 0.99832

0.80 0.89872 0.89877 0.90195 0.98281 0.99843

Table 2.3: Critical values S∗
0

for the model setup 2 depending on Si and M =
µw

µn
.

IMPLEMENTATION

The implementation of the numerical algorithm for solving the original inte-

gral equation (2.48) is based on the first order Newton-Cotes formulae for numer-

ical approximation of integrals. The function F is discretized to a vector with M
components. The code below computes the function F′(S) and the value of A de-

pending on input parameters S0, Si, R and input functions D(S) and f (S). In some

particular cases

D(S)

F(S) − ϕ(S)
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Si viscosity ratio M
0.001 0.01 1 100 1000

0.00 0.27734 0.52319 0.98449 0.99998 0.99999

0.10 0.23359 0.47792 0.98143 0.99998 0.99999

0.20 0.32031 0.44921 0.97714 0.99997 0.99999

0.30 0.44731 0.49277 0.97163 0.99996 0.99999

0.40 0.56977 0.58690 0.96410 0.99995 0.99999

0.50 0.68108 0.68798 0.95483 0.99993 0.99999

0.60 0.77875 0.78123 0.94492 0.99991 0.99999

0.70 0.86109 0.86193 0.93784 0.99988 0.99999

0.80 0.92667 0.92687 0.94645 0.99982 0.99999

Table 2.4: Critical values S∗
0

for the model setup 3 depending on Si and M =
µw

µn
.
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Figure 2.5: Depiction of the function ϕ and F1 for different selections of S0 illustrate

why the original iterative process fails even after the first iteration. As an illustration, a

non-wetting phase displacement problem with R = 1 and Si = 0 (i.e. ϕ ≡ f ) is studied.

Whenever the function ϕ intersects the first iteration F1, a singularity in the integrand
D(v)

F(v)−ϕ(v)
in (2.62) occurs. Brooks-Corey model setup: λ = 2.

has an undefined value for S = S0 so we have to compute the limit

lim
S→S0

D(S)

F(S) − ϕ(S)
.

and implement its value in the C function limitS0().
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Theorem 2. Let F be an arbitrary continuous function such that F(S0) = 1 and

F′(S0) = 0. If

D(S) = V(S)(1 − ϕ(S))

and for all S ∈ (0, 1)

0 < ϕ(S) < 1,

then for all 0 < S0 < 1

lim
S→S0−

D(S)

F(S) − ϕ(S)
= V(S0).

Proof. It follows from F′(S0) = 0 that

(∀ε > 0)(∃δ > 0)(∀h, 0 < h < δ) (|F(S0) − F(S0 − h)| < ε h) .

The term D
F−ϕ

can be simplified into

D

F − ϕ
= V

1

1 − 1−F
1−ϕ

,

where F(S0) = 1. Since 1 − ϕ(S) > 0 for all S ∈ [Si, S0], it follows that

∣
∣
∣
∣
∣

1 − F(S0 − h)

1 − ϕ(S0 − h)

∣
∣
∣
∣
∣
< ε h

1

1 − ϕ(S0 − h)
,

for all 0 < h < δ. Therefore

lim
S→S0−

D(S)

F(S) − ϕ(S)
= V(S0).

�

The function D defined in Section 1.6.1 satisfies the Theorem 2 assumptions,

and therefore the C function limitS0() returns exactly the value of V(S0). Note

that this value can be infinite for the van Genuchten model for a particular param-

eter selection.

IMPLEMENTATION IN THE C LANGUAGE

// McWhorter-Sunada exact solution, algorithm, (C) Radek Fučı́k 2005

// Department of Mathematics,

// Faculty of Nuclear Science and Physical Engineering

// Czech Technical University in Prague,

// Trojanova 13,120 00 Prague, Czech Republic

#include <math.h> // fabs, sqrt
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#define M 100 // number of vector components

typedef double real; // representation of real numbers

typedef long nat; // representation of natural numbers

typedef double vector[M+1]; // vector of real numbers

// Input variables

real R = 0.8; // - R

real Si = 0.0; // - Si

real S0 = 0.9; // - S0

// Definition of input functions:

real D(real S) {return ?;} // - function D(S)

real f(real S) {return ?;} // - function f(S)

real limitS0() {return ?;} // - limit D/(1-phi) when S0->1

// Auxiliary functions:

real S(int j) { return Si+(S0-Si)/M*j; } // - discretization of S

real phi(real u) // - function phi(S)

{

return R*(f(u)-f(Si))/(1.0-R*f(Si));

}

// McWhorter Integral Equation Solver

real McWhorter(vector &F,vector &dF,real Epsilon_F)

{ // - Eps ... accuracy of successive iterations

vector prevF, IG, IsG; // - dF ... first derivative of function F

nat k;

real r=1.0,h,c;

for (k=0;k<=M;k++) {F[k]=1.0;prevF[k]=1.0;} // - initialization

while (r>Epsilon_F)

{

IG[M] = 0; IsG[M] = 0;

c = limitS0();

for (k=M-1;k>=0;k--) // - numerical computation of integrals

{

h=S(k+1)-S(k);

IG[k]=IG[k+1]+h*c/2.0;

IsG[k]=IsG[k+1]+h*S(k+1)*c/2.0;

c = (k==0) ? 0 : D(S(k))/(F[k]-phi(S(k)));

IG[k] +=h*c/2.0;

IsG[k]+=h*S(k)*c/2.0;

}

r=0;c=IsG[0]-Si*IG[0];

for (k=0;k<=M;k++) // - evaluation of new iteration of F and dF

{

prevF[k]=F[k];

F[k]=(1.0-(IsG[k]-S(k)*IG[k])/c);

dF[k]=IG[k]/c;

if (fabs(F[k]-prevF[k])>r)

r=fabs(F[k]-prevF[k]);

}

}

return sqrt(c/2.0)/(1.0-R*f(Si)); // - return the value of A

}

int main() // Calling of the function McWhorter

{ // - the solution S(t,x) is computed

vector F, dF; // from the function dF

real A;

A = McWhorter(F,dF,1e-15);

return 1;

}
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2.3.4 Modified Integral Equation

MODIFIED ITERATIVE PROCESS

As it was already demonstrated in the first iteration analysis, solution of the

above presented original integral equation is not always possible.

The author proposes the following modified iterative method to bypass the

formation of the instability in the numerical iterative process. Denoting the sig-

nificant part of the integrand in (2.62) as

G =
D

F − ϕ
, (2.70)

the equation (2.62) can be rewritten in a more suitable way

F(S) =
D(S)

G(S)
+ ϕ(S) = 1 −

S0∫

S

(v − S)G(v) dv

S0∫

Si

(v − Si)G(v) dv

, (2.71)

which allows us to deduce two types of iterative schemes; the variant A is given

by

Gk+1(S) = D(S) + Gk(S)





ϕ(S) +

S0∫

S

(v − S) Gk(v) dv

S0∫

Si

(v − Si) Gk(v) dv





, (2.72)

and the variant B is given by

Gk+1(S) =
[
D(S) +Gk(S) ϕ(S)

]





1 −

S0∫

S

(v − S) Gk(v) dv

S0∫

Si

(v − Si) Gk(v) dv





−1

. (2.73)

The author suggests to use

G0 ≡
D

1 − ϕ

as the first iteration which is equivalent to F0 ≡ 1 proposed in Sunada &

McWhorter, 1990.
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SOLUTION OF INTEGRAL EQUATION

The function F, resp. Fk is easily computed from

F(S) =
D(S)

G(S)
+ ϕ(S), (2.74)

since G(S) > 0 for all S ∈ (Si, S0). Nevertheless, the numerical implementation

allows to determine values of its first derivative F′ based on (2.63)

F′(S) =

S0∫

S

G(v) dv

S0∫

Si

(v − Si) G(v) dv

,

because the integrals are already numerically evaluated during the iterative pro-

cess.

DISCRETIZATION

The integrals in (2.72) and (2.73) are evaluated numerically taking advantage

of the form of the integrand as follows.

Let {G j}M
j=0

be equidistant discretization of the function G in the interval [Si, S0]

defined as

G j
= G(Si + j h), (2.75)

where h = S0−Si

M
. The numerical solution of the integral equations (2.72) and (2.73)

requires to compute the integral

Si+( j+1)h
∫

Si+ j h

(v − Si − l h) G(v) dv. (2.76)

The numerical approximation of the integral (2.76) is denoted as I j(l). The linear

interpolation of {G j}M
j=0

in the interval [Si, S0] allows to express the value of I j(l)
as

I j(l) =
h2

6
(3 j − 3l + 1)(G j

+ G j+1) +
h2

6
G j+1. (2.77)

It is possible to numerically evaluate the integrals in the modified iterative

schemes (2.72) and (2.73) as follows

S0∫

Si+l h

(v − Si − l h) G(v) dv =

M−1∑

j=0

I j(l). (2.78)
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Since both F(Si) = 0 and ϕ(Si) = 0 by definition, it follows from (2.70) that

the value of G(Si) is undefined. The value G(Si) = 0 is always used in the iterative

process.

IMPLEMENTATION

The implementation of the modified iterative schemes (2.72) and (2.73) is

based on the discretization presented in the previous subsection. The function

G is discretized to a vector with M components. The code below computes the

function F′(S) and the value of A depending on input parameters S0, Si, R and

input functions D(S) and f (S). In order to correctly setup the initial value of G0,

implementation of the function

V =
D

1 − ϕ
,

is required. The function D defined in Section 1.6.1 (see also Theorem (2)) can

be reduced in such a way.

IMPLEMENTATION IN THE C LANGUAGE

// McWhorter-Sunada exact solution, modified algorithm, (C) Radek Fučı́k 2005

// Department of Mathematics,

// Faculty of Nuclear Science and Physical Engineering

// Czech Technical University in Prague,

// Trojanova 13,120 00 Prague, Czech Republic

#include <math.h> // fabs, sqrt

#define M 100 // number of vector components

typedef double real; // representation of real numbers

typedef long nat; // representation of natural numbers

typedef double vector[M+1]; // vector of real numbers

// Input variables

real R = 0.8; // - R

real Si = 0.0; // - Si

real S0 = 0.9; // - S0

// Definition of input functions:

real D(real S) {return ?;} // - function D(S)

real f(real S) {return ?;} // - function f(S)

real phi(real u) // - function phi(S)

{

return R*(f(u)-f(Si))/(1.0-R*f(Si));

}

real V(real S) { return D(S)/(1-phi(S)); } // Simplified first guess G_0

// Auxiliary function:

// - discretization of S

real S(int j) { return Si+(S0-Si)/M*j; }

real ModifiedMethod(vector &F, vector &dF, vector &d2F, real Epsilon_A, int type)

{

vector G,fi,d;

nat k;
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real prevA,A,h=(S0-Si)/M,IG,IsG,diff,I0,Ik,dIk;

for (k=0;k<=M;k++)

{

G[k]=V(S(k)); // first guess

d[k] = D(S(k)); // pre-allocating values of D(S)

fi[k] = phi(S(k)); // pre-allocating values of phi(S)

}

F[M]=1.0;

dF[M]=0;

I0 = h*h/6.0*G[M]*(3.0*M-1.0);

for (k=1;k<=M-1;k++) I0+=k*G[k]*h*h;

while (diff>Epsilon_A)

{

diff=0;IG=0;IsG=0;

for (k=M-1;k>=1;k--)

{

Ik = h*h*(G[k] + G[M]*(3.0*M-3.0*k-1.0)/6.0)+IsG-k*IG;

dIk = h/2.0*(G[k] + G[M]) + IG/h;

IG = G[k]*h*h+IG;

IsG = k*G[k]*h*h+IsG;

switch (type)

{

default :

// variant A :

case 0 : G[k] = d[k] + G[k]*(fi[k] + Ik/I0); break;

// variant B :

case 1 : G[k] = (d[k] + G[k]*fi[k])/(1.0 - Ik/I0); break;

}

F[k] = 1.0-Ik/I0;

dF[k] = dIk/I0;

d2F[k] = -G[k]/I0;

}

d2F[M] = -G[M]/I0;

I0 = h*h/6.0*G[0] + h*h/6.0*G[M]*(3.0*M-1.0) + IsG;

A = sqrt(I0/2.0)/(1.0-R*f(Si));

diff=fabs(A-prevA);

prevA = A;

}

return A;

}

int main()

{ // function F, F’ and F’’

vector F, dF, d2F;

real A;

// variant A

A = ModifiedMethod(F,dF,d2F,1e-15,0);

// variant B

A = ModifiedMethod(F,dF,d2F,1e-15,1);

return 1;

}

MODIFIED ITERATIVE SCHEME ANALYSIS

In this section, the unidirectional case (R = 1) is picked to better illustrate the

functionality of the modified method on the edge of the validity of the fundamental
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assumption (2.41).

A monotone growth of successive estimates of G is observed in all compu-

tations, i.e. Gk ≤ Gk+1 in [Si, S0] and fast convergence for all cases, where the

original iterative method does not fail as it is illustrated in Table 2.5.

Number of iterations, test setup 1, Si = 0

S0 0.4 0.5 0.6 0.7 0.8 0.9 0.99 0.999

(2.64) 13 12 18 - - - - -

(2.72) 574 628 637 1645 8342 89684 7.53e7 > 109

(2.73) 36 115 411 1645 8348 89681 7.55e7 > 109

Number of iterations, test setup 2, Si = 0

S0 0.4 0.5 0.6 0.7 0.8 0.9 0.99 0.999

(2.64) 13 13 13 14 27 - - -

(2.72) 636 711 772 807 1655 17913 1.56e7 > 109

(2.73) 29 31 87 320 1652 17925 1.60e7 > 109

Number of iterations, test setup 3, Si = 0

S0 0.4 0.5 0.6 0.7 0.8 0.9 0.99 0.999

(2.64) 14 14 14 14 15 27 - -

(2.72) 1527 1747 1937 2103 2198 2027 121888 7.06e6

(2.73) 36 38 46 99 294 1493 121891 7.07e6

Number of iterations, test setup 2, Si = 0.2
S0 0.4 0.5 0.6 0.7 0.8 0.9 0.99 0.999

(2.64) 20 19 18 18 - - - -

(2.72) 38 25199 29088 32236 31501 17723 1.53e7 > 109

(2.73) 7 136 88 323 1654 failed 1.53e7 > 109

Number of iterations, test setup 3, Si = 0.2
S0 0.4 0.5 0.6 0.7 0.8 0.9 0.99 0.999

(2.64) 22 21 20 19 19 46 - -

(2.72) 20523 24836 29106 33519 38123 40250 119475 6.83e6

(2.73) 630 157 failed 68 292 1477 119467 failed

Table 2.5: Number of iterations required to obtain the function F and the value of A with

precision εA = 10−15. Original iterative scheme (2.64), the variant A (2.72) and variant B

(2.73) of the modified iterative scheme are used. In some situations if S i > 0 the modified

iterative method variant B 2.73 fails randomly.
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The modified method still works even if the original method fails, successive

approximations of G are decreasing in the L∞ norm, but the number of iterations

needed to reach required precision of the function G increases considerably as

both S0 and R approach 1. Although there are negligible variations in succes-

sive estimates Fk in this situation, the estimates of A converge very slowly. With

respect to such behaviour of the iterative process the author suggests to use dif-

ference of the successive estimates of A as the criterion to terminate the iterative

process, formally as

|Ak − Ak+1| < εA. (2.79)

The test models with high viscous NAPL are used to demonstrate robustness

of the modified iterative scheme in situations, where the original iterative scheme

fails even after the first iteration as it was already explained in the previous sec-

tions.

If Si > 0, the variant B (2.73) of the modified iterative process fails randomly

due to numerical division by zero, because the integrals in the fraction in (2.73)

give exactly the same value in the computer precision for S very close to Si. Other-

wise if Si = 0, the process is stable because the diffusivity term D(0) = 0 zeroize

the value of G(S) in the proximity of Si. It is obvious that the value of G(Si) is

undefined for all Si ∈ [0, S0] since F(Si) = ϕ(Si) = 0 by definition. The author

suggests to exclude the value of G(Si) from the discretization of the function G in

the numerical computation since F(Si) = 0.

Table 2.5 shows that the number of iterations required to reach certain preci-

sion of successive estimates of A increases as S0 → 1 for both variant A and B of

the modified iterative scheme.

This is due to extremely small difference between the function ϕ and F in the

neighborhood of 1 as McWhorter and Sunada claimed in Sunada & McWhorter,

1990. It is possible to verify numerically and graphically the approaching of the

function F to the Buckley-Leverett function FBL introduced in (2.58) in Table 2.6

and Figure 2.6. Moreover, this convergence is realized also for the first and second

derivatives of F, i.e. F′ → F′BL and F′′ → F′′BL as S0 → 1 (see Figure 2.6).

The number of iterations increases as S0 → 1 because the more these two func-

tions approach each other, the more the numerical evaluation of the integrals in the

iterative scheme is inaccurate due to finite precision of the computer arithmetic.

Furthermore, the limit function FBL does not obey the fundamental assumption

as it was already stated and its second derivative F′′BL is a discontinuous function.

Note that the function F′′ can be expressed as

F′′(S) = −
G(S)

S0∫

Si

(v − Si) G(v) dv

. (2.80)
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The convergence of F to FBL as S0 → 1 can be studied only by the means of

numerical experiments since all other analytical techniques are insufficient.

An extreme number of iterations is required to achieve convergence of A as S0

is close to 1 (see Figure 2.7), but after certain value of S0, the modified iterative

process will not converge due to loss of the numerical precision as it is demon-

strated in the Figure 2.7. However, the estimates of the function F with its first

and second derivative changes negligibly in such iterative process due to the fact,

that the fraction
S0∫

S

(v − S)Gk(v) dv

S0∫

Si

(v − Si)Gk(v) dv

, (2.81)

suppresses any effects of the increase of A on the function F. Note that the value

of A is represented by the integral in the denominator in (2.81) by the relationship

(2.61).

Consequently, the integral equation (2.62) cannot be solved numerically for

values of S0 greater than a certain limit unless one is able to compute with in-

finitesimally small numbers.

2.3.5 Limit value of A

As it was already stated in the previous sections, the important part of the com-

putational process is the value of A in dependence of S0. The iterative process

requires a huge number of iterations to arrive at certain precision of succesive

estimates of A for imposition of S0 and R close to 1 while the estimates of the

function F vary negligibly. Therefore the author pursues Sunada & McWhorter,

1990, Sunada & McWhorter, 1992 and Z.-X. Chen & Witherspoon, 1992 discus-

sion of the limit

lim
S0→1

A(S0). (2.82)

Only the unidirectional displacement case R = 1 is considered in this section.

McWhorter and Sunada claimed in Sunada & McWhorter, 1990 that the limit

(2.82) is infinite as the consequence of F→ ϕ in some neighborhood of S0. How-

ever, this statement has been impugned in Z.-X. Chen & Witherspoon, 1992 where

the authors declared the limit always finite as a consequence of boundedness of

the integrand

(v − Si)D(v)

F(v) − ϕ(v)
, (2.83)
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Figure 2.6: Experimental approaching of the functions F to FBL, F′ to F′
BL

and F′′ to F′′
BL

as S0 → 1; test setup 1 with Si = 0, variant A (2.72) of the modified iterative scheme.

The last figure depicts the evolution of the function G as S0 → 1. Note that the function

G and F′′ are related by (2.80), i.e. they differ only by a factor consisting of A2.

as S0 → 1. In the reply to this comment, McWhorter and Sunada confirmed

in Sunada & McWhorter, 1992 that the limit (2.82) is always finite because the

integrand (2.83) is bounded for v = S0.

On the contrary, the author’s work shows that as S0 approaches 1, the value

of A increases without bounds as it is demonstrated in Figure 2.7. Experimental

observations concerning the approaching of F′′ are applied to F′′BL as S0 → 1 as

follows.

The substitution λ = λ(S) permits to express the partial derivative of ∂S
∂x

(t, x)

in (2.44). The term λ′(S) can be evaluated by differentiating of the expression

(2.46) by S

Φϑ

2A(1 − f (Si))
λ′(S) = F′′(S). (2.84)
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Variant A (2.72) of the modified iterative scheme

S0 ‖F − FBL‖L1
‖F′ − F′BL‖L1

‖F′′ − F′′BL‖L1
Number of iterations

0.6 5.46e-2 2.48e-1 1.71 637

0.7 2.30e-2 1.07e-1 1.21 1645

0.8 5.76e-3 2.89e-2 5.62e-1 8342

0.9 1.00e-3 5.43e-3 1.951e-1 89684

0.99 3.75e-5 2.19e-4 3.09e-2 10000000∗)

0.999 1.20e-5 7.15e-5 1.64e-2 10000000∗)

0.9999 1.06e-5 6.34e-5 1.55e-2 10000000∗)

Variant B (2.73) of the modified iterative scheme

S0 ‖F − FBL‖L1
‖F′ − F′BL‖L1

‖F′′ − F′′BL‖L1
Number of iterations

0.6 5.46e-2 2.48e-1 1.71 411

0.7 2.30e-2 1.07e-1 1.21 1645

0.8 5.76e-3 2.89e-2 5.62e-1 8348

0.9 1.00e-3 5.43e-3 1.95e-1 89681

0.99 3.75e-5 2.19e-4 3.09e-2 10000000∗)

0.999 1.20e-5 7.15e-5 1.67e-2 10000000∗)

0.9999 1.06e-5 6.34e-5 1.55e-2 10000000∗)

∗) . . . the εA = 10−15 precision was not reached yet after 108 iterations

Table 2.6: Experimental convergence of F→ FBL as S0 → 1 for test setup 1, Si = 0 and

εA = 10−15.

The substitution of the expression of λ′(S) into (2.44) yields

∂S

∂x
(t, x) =

ΦϑAg(t)

2A2(1 − f (Si))F′′(S)
. (2.85)

The total velocity condition (2.38) can be written in the terms depending on S0

only as follows

Ag(t) = Ag(t) f (S0) −Ag(t)
ΦϑD(S0)

2A2(1 − f (Si))F′′(S0)
, (2.86)

This equation can be further simplified using for instance the non-wetting

phase displacement situation (2.2) into

1 =
Φϑ K krw(S0) p′c(S0)

2µwϑΦA2 (1 − fw(Si))F′′(S0)
, (2.87)

and thus one can state

lim
S0→1

A2(S0) = lim
S0→1

Φϑ K krw(S0) p′c(S0)

2µwϑΦ(1 − fw(Si))F′′(S0)
. (2.88)

55



CHAPTER 2. EXACT SOLUTIONS IN HOMOGENEOUS MEDIA

Based on the numerical experiments, the function F behaves asymptotically

as FBL at least to its second derivative. Under this assumption the limit (2.88) is

infinite for both the Brooks-Corey and van Genuchten model functions, i.e.

lim
S0→1

A2(S0) = ∞, (2.89)

which agrees to the experimental observations in Figure 2.7 and to Sunada &

McWhorter, 1990 as well.
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Figure 2.7: Evolution of A in the modified iterative process, variant A; test setup 1,

Si = 0. As S0 approaches 1, the iterative process requires higher number of iterations

to reach convergence of A. In the very proximity of S0 to 1, the value of A is far from

convergence even after 108 iterations. The variant B situation is analogous.

2.3.6 Generalization of Formulation

NEGATIVE VALUE OF R

The author studied various setups for the McWhorter and Sunada analytical

solution and he discovered that the formulation of the McWhorter and Sunada
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problem discussed in Section 2.3.1 can be further generalized by allowing the

parameter R to shift towards negative values. This generalization is necessary in

order to apply the exact solutions to the heterogeneous porous medium (see the

next chapter).

The formulation of the McWhorter and Sunada problem involves influx of the

displacing phase (denoted by the subscript in in this subsection) with velocity

uin = At−
1
2 . (2.90)

The displaced phase (denoted by the subscript out) already present in the medium

flows out of the medium either at x = ∞ or at x = 0 depending on the ratio

parameter R, defined as

R =
u

uin
, (2.91)

where u is the total velocity defined as u = uin + uout.

Assuming the displaced phase is injected instead of being drained out at

x = ∞, a negative value of R can be prescribed resulting that the displacing phase

can be injected in the counter-current flow direction of the displaced phase.

The original McWhorter and Sunada iterative algorithm (2.64) admits all neg-

ative values of R, while both of the variants of the modified iterative scheme (2.72)

and (2.73) fail for R lower than a Rcrit < 0. This is due to non-positivity of the

function ϕ in the modified iterative method with causes improper evaluation of

the iterations Gk. However, the original iterative scheme is designed such that the

integrals in the equation remains always non-negative for all values of R.

NEGATIVE VALUE OF A

Another generalization can be made with respect to the value of A. Consider

the McWhorter and Sunada problem in the semi-infinite domain (−∞.0) with the

boundary and initial conditions (2.25) and (2.24) in the form

S(0, x) = Si for all x ∈ (−∞, 0), (2.92)

S(t, 0) = S0 for all t > 0, (2.93)

S(t,−∞) = Si for all t > 0. (2.94)

The formal derivation of the McWhorter and Sunada solution with A < 0 is still

applicable as a consequence of the square of A in (2.61).

2.3.7 Summary

The restrictions of applicability of the original and modified iterative scheme are

resumed in the following list :
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Restrictions of applicability of the iterative schemes

Original method (2.64) : (S0,R) not close to (1, 1),

depending on
µw

µn

Modified method, variant A (2.72): Rcrit ≤ R ≤ 1

Modified method, variant B (2.73): Rcrit ≤ R ≤ 1 and only for Si = 0

2.4 Comparison of Exact Solutions

The demonstration of how the modified iterative method (2.72) resp. (2.73) shows

the relationship between McWhorter and Buckley-Leverett analytical solutions is

provided in this section. Computations for the test setup 1 (see Table 2.1, page

27), Si = 0 with various values of R and S0 are proceeded.

The value of A corresponding to the McWhorter exact solution for R = 1 is

used in order to compare the McWhorter exact solution (2.56) to the Buckley-

Leverett analytical solution (see Section 2.2.4).

The Figure 2.8 depicts how the bi-directional displacement (R=0, diffusive

term only in (2.1)), partially unidirectional displacement (R=0.8, both advective

and diffusive terms in (2.1)) and unidirectional displacement (R=1, both advective

and diffusive terms in (2.1)) are related to the Buckley-Leverett solution of the

advective equation (2.4). The more S0 approaches 1, the less the diffusive term in

(2.1) affects the solution. Table 2.7 contains values of A for various values of R
and S0.

The modified iterative process permits to obtain solutions for strong advec-

tive terms in (2.1) and compare them to the Buckley-Leverett solution while the

original iterative process fails already in situations where the diffusive term still

prevails; since the critical value S∗
0

for the test setup 1 with Si = 0 is S∗
0
= 0.69,

Figure 2.8 parts B), C) and D) depict only solutions, that are obtainable by the

modified iterative method (for the case R = 1).
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Dependency of A on S0 and R
S0 R=0 R=0.2 R=0.4 R=0.6 R=0.8 R=1

0.40 1.37e-4 1.42e-4 1.48e-4 1.55e-4 1.64e-4 1.75e-4

0.50 1.75e-4 1.85e-4 1.98e-4 2.16e-4 2.43e-4 9.94e-4

0.60 1.97e-4 2.11e-4 2.29e-4 2.57e-4 3.05e-4 1.62e-3

0.70 2.08e-4 2.23e-4 2.45e-4 2.78e-4 3.41e-4 2.95e-3

0.80 2.12e-4 2.28e-4 2.51e-4 2.86e-4 3.57e-4 6.75e-3

0.90 2.13e-4 2.30e-4 2.53e-4 2.89e-4 3.62e-4 1.82e-2

0.99 2.14e-4 2.30e-4 2.53e-4 2.89e-4 3.62e-4 1.09e-1

Table 2.7: Values of A for various values of R and S0; test setup 1, Si = 0.
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Figure 2.8: McWhorter exact solutions (the variant A) and Buckley-Leverett ana-

lytical solutions for various S0; test setup 1, Si = 0. As S0 → 1, the unidirectional

displacement solution (R=1) approaches the Buckley-Leverett solution, while the

front of the bi-directional displacement solution (R=0) advances negligibly.
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Chapter 3

Exact Solution for Heterogeneous

Media

3.1 Introduction

The author extends the ideas of van Duijn & de Neef, 1998, concerning exact

solutions of two-phase flow in heterogeneous porous media. In that paper, van

Duijn and de Neef discuss similarity solutions for capillary redistribution prob-

lems without external forces, i.e. the equation (2.23) with u ≡ 0:

Φϑ
∂S

∂t
=
∂

∂x

(

D(S)
∂S

∂x

)

. (3.1)

Extension of their idea to the advection-diffusion equation

Φϑ
∂S

∂t
= −u

∂ f (S)

∂x
+
∂

∂x

(

D(S)
∂S

∂x

)

, (3.2)

is provided by applying the McWhorter and Sunada exact solution discussed in

Chapter 2. According to available scientific resources, this approach has not been

published yet.

The quasi-analytical solution of the McWhorter and Sunada problem 2.23 can

be obtained for a large range of entry parameters by virtue of the original iterative

method 2.64 and the modified iterative methods 2.72 and 2.73.

The exact solution derivation and respective algorithms are presented for each

of the cases separatedly in order to describe the exact solution for both non-

wetting phase and wetting phase infiltration.
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3.2 Non-Wetting Phase Infiltration Problem

The non-wetting phase infiltration problem is defined as the intrusion of the non-

wetting phase in the positive direction along the x axis with nonnegative total

velocity u defined by (2.28) as u = un + uw. Therefore assume un(t, x) ≥ 0 for all

t ≥ 0 and x ∈ (−∞,∞).

3.2.1 Exact Solution

Van Duijn and de Neef, 1998 derive the similarity solution as a combination of

two solutions in semi-infinite domains by implementing the interface conditions

(1.36) and the extended capillary pressure condition (1.37). The author applies

their idea to the McWhorter and Sunada problem formulation, which is identical

to their equations in the case of the bidirectional displacement with no advection

term (the total velocity u ≡ 0 in (3.2), R = 0).

PROBLEM EQUATIONS

Denote the other parameters characterising the material in ΩR, resp. ΩL by

superscript R resp. L. Under this notation the system of the two-phase flow equa-

tions yields

Φ
RϑR∂Sn

∂t
= −uR

∂ f R
n (1 − Sn)

∂x
+
∂

∂x

(

D
R(1 − Sn)

∂Sn

∂x

)

, (3.3)

Φ
LϑL∂Sn

∂t
= −uL

∂ f L
n (1 − Sn)

∂x
+
∂

∂x

(

D
L(1 − Sn)

∂Sn

∂x

)

. (3.4)

The McWhorter and Sunada exact solution for the bidirectional case (R < 1)

involves positive velocity of the displacing phase at x = 0 while the displaced

phase flows out of the domain at x = 0 (therefore with negative velocity ar x = 0).

Suppose a one-dimensional unbounded domain Ω = (−∞,+∞) divided at

x = 0 into two semi-infinite domains ΩL and ΩR of different material properties.

The situation at t = 0 is depicted in Figure 3.1.

RIGHT DOMAIN PROBLEM

Consider the non-wetting phase intrusion problem (the wetting phase displace-

ment) in the domainΩR with boundary and initial conditions given by

Sn(t, 0) = SR
0 for all t > 0, (3.5)

Sn(t,∞) = SR
i for all t > 0, (3.6)

Sn(0, x) = SR
i for all x > 0. (3.7)
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Figure 3.1: Initial state of the porous medium with a discontinuity.

According to the derivation of the McWhorter and Sunada exact solution, the

non-wetting phase velocity at x = 0 is given by

uR
n (t, 0) = ARt−

1
2 , (3.8)

where AR > 0 and the total velocity uR satisfies for all t ≥ 0 and x ≥ 0

uR(t, x) = uR
n (t, x) + uR

w(t, x) = RRuR
n (t, 0) = RRARt−

1
2 . (3.9)

The McWhorter and Sunada exact solution for positive value of the non-

wetting phase influx velocity uR
n (t, 0) can be derived only for

S
R
0 > S

R
i , (3.10)

which is obvious from the duality of the formulation discussed in Section (1.6.1).

If SR
0
< SR

i
, then the McWhorter and Sunada solution can be still obtained us-

ing the dual formulation (i.e. the non-wetting phase displacement), but the non-

wetting phase velocity uR
n (t, 0) will be then negative.

LEFT DOMAIN PROBLEM

The non-wetting phase flows out of the domain ΩL with velocity given by

(3.8), while the wetting phase flows in with negative velocity which yields from

(3.9)

uR
w(t, 0) = AR(RR − 1)t−

1
2 . (3.11)

It was already discussed in Section 2.3.6 that the McWhorter and Sunada prob-

lem admits negative values of A and R. Preserving the formal formulation of the

McWhorter and Sunada problem, the the following formulation is used in the do-

mainΩL:

63



CHAPTER 3. EXACT SOLUTION FOR HETEROGENEOUS MEDIA

Sn(t, 0) = SL
0 for all t > 0, (3.12)

Sn(t,−∞) = SL
i for all t > 0, (3.13)

Sn(0, x) = SL
i for all x < 0. (3.14)

The McWhorter and Sunada exact solution for the non-wetting phase displace-

ment with negative value of AL can be derived only for

S
L
0 < S

L
i , (3.15)

because the effective wetting phase saturation Sw is related to the effective non-

wetting phase saturation Sn as Sw = 1 − Sn.

The influx wetting phase velocity in the non-wetting phase displacement prob-

lem is set as

uL
w(t, 0) = ALt−

1
2 , (3.16)

where AL < 0. The total velocity in the domainΩL, defined as

uL(t, x) = uL
w(t, x) + uL

n(t, x) = RLuw(t, 0) = RLALt−
1
2 , (3.17)

must be equal to the total velocity in the domainΩR such that

uR
= uL, (3.18)

because the phase velocities are continuous across the interface (see (1.36)).

INTERFACE CONDITIONS

It is possible to state the three interface conditions that combine the

McWhorter and Sunada exact solutions for the domainsΩL and ΩR.

Using the expressions (3.9), (3.17) and (3.18), the first condition can be ex-

pressed in the form

RLAL
= RRAR, (3.19)

where the expressions on both sides of the equation are nonnegative.

The continuity of the wetting phase velocity uw across the interface yields

uL
w(t, 0) = uR

w(t, 0), so that the second condition is obtained from (3.11) and (3.16)

AL
= AR(RR − 1), (3.20)

It follows from (3.19) and (3.20) that

RR
= −

RL

1 − RL
, (3.21)
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Figure 3.2: Function h(x) = x(x − 1)−1.

or

RL
= −

RR

1 − RR
, (3.22)

so that one of the parameters must be non-positive and the other one non-negative,

see Figure 3.2 that depicts the function h(x) = x(x − 1)−1.

The third condition is the extended capillary pressure condition that yields

from (1.37) for the case of permeable interface

pR
c (1 − SR

0 ) = pL
c (1 − SL

0). (3.23)

The relationship (3.23) is not always satisfied, particularly in the case of the

Brooks and Corey capillary pressure function (1.26) with nonzero entry pressure.

Therefore one can define the critical effective wetting phase saturation S∗Lw as

S
∗L
w =

{

(pL
c )−1

(

pR
c (1)

)

if pR
c (1) > pL

c (1)

1 else
. (3.24)

The critical saturation 1 − S∗Lw expresses the boundary value for the left saturation

SL
0
, for which it is possible to use the relationship (3.23) to obtain SR

0
, i.e.

S
L
i > S

L
0 ≥ 1 − S∗Lw , (3.25)

where (3.15) is incorporated . If the value of SL
0

is lower than 1 − S∗Lw , the non-

wetting phase interfacial capillary pressure inΩL is smaller than the entry pressure

pR
c (1) in the domain ΩR and the non-wetting phase can not enter the right-hand

side domain until the capillary pressure pL
c (1 − S0) is large enough (the barrier
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effect). This situation can not be incorporated in the exact solution derivation

since a nonzero interfacial velocity of both phases is assumed for all t ≥ 0.

Altogether, the inequalities (3.25) and (3.10) yield a limiting condition for the

initial saturations SR
i

and SL
i

in the form

pR
c (1 − SR

i ) < pL
c (1 − SL

i ). (3.26)

3.2.2 Algorithm

An algorithm is presented in this section, that incorporates the McWhorter and

Sunada exact solution with the following input and output parameters and func-

tions:

McWhorter and Sunada input and output variables

Input: S0 effective saturation at x = 0

Si effective initial saturation

R total velocity to displacing phase velocity ratio

Output: F′ first derivative of F used to compute S(t, x) in (2.56)

A positive velocity parameter

In order to satisfy the total velocity interface condition (3.19), various values

of SL
0
∈ [1− S∗L

0
, SL

i
) are prescribed and the right domain boundary saturation SR

0
is

computed from (3.23). However, the total velocity interface condition (3.19) can

not be used in the algorithm for the zero total velocity case R = 0 because the

condition is always true. Therefore, the relationship (3.21) is used and the total

velocity interface condition is reformulated as

AR
= AL(RL − 1). (3.27)

NON-WETTING PHASE INFILTRATION PROBLEM ALGORITHM

0. Let RL be given. Let SL
i

and SR
i

be given such that the relationship (3.26)

holds.

1. Choose some SL
0
∈ [1 − S∗L

0
, SL

i
).

2. Compute the McWhorter and Sunada exact solution for the non-wetting

phase displacement (the Sw formulation) with the setup parameters corre-

sponding to the left-hand side domain and with
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Si := 1 − SL
i , (3.28)

S0 := 1 − SL
0 , (3.29)

R := RL. (3.30)

Set AL := −A and F′L(Sn) := F′(1 − Sw).

3. Compute the right domain boundary saturation SR
0

from

pL
c (1 − SL

0) = pR
c (1 − SR

0 ).

4. Compute the McWhorter and Sunada exact solution for the wetting phase

displacement (the Sn formulation) with the setup parameters corresponding

to the right domain and with

Si := SR
i , (3.31)

S0 := SR
0 , (3.32)

R := −
RL

1 − RL
= RR. (3.33)

Set AR := A and F′R(Sn) := F′(Sn).

5. If the total velocity interface condition (3.27) holds or the estimates of AR

and AL(RL − 1) are below some bound εu

|AR − AL (RL − 1)| < εu,

terminate the algorithm, otherwise skip back to step 1.

The author suggests to use the bisection method in the step 1. The dependence

κ(SL
0) = AR − AL(RL − 1) (3.34)

is strictly monotonous as a consequence of the monotonicity of the dependence

A = A(S0), see the illustration in Section 3.4, Figure 3.4.

However, in some particular cases, the value of SL
0

such that κ(SL
0
) = 0 does

not exist due to small values of A in one of the subdomains for all admissible S0.

This issue can not be analytically resolved, only experimental observations are

currently available.
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The solution of the two-phase flow in heterogeneous medium problem (3.3)

and (3.4) is subsequently obtained from

2AR(1 − RR f R
n (1 − SR

i
))

ΦRϑR
F′R(Sn) = x t−

1
2 for all Sn ∈ [SR

i , S
R
0 ], (3.35)

2AL(1 − RL f L
w(1 − SL

i
))

ΦLϑL
F′L(Sn) = x t−

1
2 for all Sn ∈ [SL

0 , S
L
i ]. (3.36)

3.3 Wetting Phase Influx Problem

The exact solution for the wetting phase influx problem can be derived using the

analogous procedure as in the Section 3.2. It can be done by switching the non-

wetting phase variables for the wetting-phase variables and vice versa and the

Sw-formulation instead of the Sn-formulation is used.

The wetting phase influx problem is defined as the injection of the wetting

phase in the positive direction along the x axis with non-negative total velocity u
defined by (2.28) as u = un + uw. Therefore assume uw(t, x) ≥ 0 for all t ≥ 0 and

x ∈ (−∞,∞).

The derivation of the exact solution that have been already done for the non-

wetting phase intrusion problem is briefly repeated in the following text.

3.3.1 Exact Solution

PROBLEM EQUATIONS

The equations (3.3) and (3.4) are transformed into

Φ
RϑR∂Sw

∂t
= −uR

∂ f R
w (Sw)

∂x
+
∂

∂x

(

DR(Sw)
∂Sw

∂x

)

, (3.37)

Φ
LϑL∂Sw

∂t
= −uL

∂ f L
w(Sw)

∂x
+
∂

∂x

(

DL(Sw)
∂Sw

∂x

)

. (3.38)
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RIGHT DOMAIN PROBLEM

Consider wetting phase influx problem (the non-wetting phase displacement)

in the domainΩR with boundary and initial conditions given by

Sw(t, 0) = SR
0 for all t > 0, (3.39)

Sw(t,∞) = SR
i for all t > 0, (3.40)

Sw(0, x) = SR
i for all x > 0, (3.41)

where

S
R
0 > S

R
i . (3.42)

The wetting phase velocity is given by

uR
w(t, 0) = ARt−

1
2 , (3.43)

where AR > 0 and the total velocity uR satisfies for all t ≥ 0 and x ≥ 0

uR(t, x) = uR
n (t, x) + uR

w(t, x) = RRuR
w(t, 0) = RRARt−

1
2 , (3.44)

where RR ∈ [0, 1].

LEFT DOMAIN PROBLEM

The wetting phase flows out of the domain ΩL with the velocity given by

(3.43), while the non-wetting phase flows in with the negative velocity which

yields from (3.44)

uR
n (t, 0) = AR(RR − 1)t−

1
2 . (3.45)

The wetting phase displacement problem in the domain ΩL is defined as fol-

lows

Sw(t, 0) = SL
0 for all t > 0, (3.46)

Sw(t,−∞) = SL
i for all t > 0, (3.47)

Sw(0, x) = SL
i for all x < 0, (3.48)

where

S
L
0 < S

L
i . (3.49)

The influx non-wetting phase velocity in the wetting phase displacement is set

as

uL
n(t, 0) = ALt−

1
2 , (3.50)
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where AL < 0. The total velocity in the domainΩL, defined as

uL(t, x) = uL
w(t, x) + uL

n(t, x) = RLun(t, 0) = RLALt−
1
2 , (3.51)

must be equal to the total velocity in the domainΩR such that

uR
= uL. (3.52)

INTERFACE CONDITIONS

Again, it follows from (3.19) and (3.20) that

RR
= −

RL

RL − 1
, (3.53)

or

RL
= −

RR

RR − 1
, (3.54)

In this formulation, the extended capillary pressure condition (1.37), resp.

(3.23) has the form

pR
c (SR

0 ) = pL
c (SL

0). (3.55)

3.3.2 Admissible Range of Parameters

The inequalities (3.25) are transformed into

S
∗L
w ≥ S

L
0 , (3.56)

and together with the inequality (3.49) the limit condition for SL
0

is obtained in the

form

0 ≤ SL
0 < S

L
0min = min{S∗Lw , S

L
i }. (3.57)

Altogether, the inequalities (3.56) and (3.42) yield boundary condition for the

initial saturations SR
i

and SL
i

in the form (compare to (3.26))

pR
c (SR

i ) > pL
c (SL

i ). (3.58)

3.3.3 Algorithm

In order to satisfy the total velocity interface condition (3.19), various values of

SL
0
∈ [0, SL

0min
) are prescribed and the right domain boundary saturation SR

0
is

computed from (3.55).

WETTING PHASE INFLUX PROBLEM ALGORITHM
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0. Let RL be given. Let SL
i

and SR
i

be given such that the relationship (3.58)

holds.

1. Choose some SL
0
∈ [0, SL

0min
).

2. Compute the McWhorter and Sunada exact solution for the wetting phase

displacement with the setup parameters corresponding to the left domain

and with

Si := 1 − SL
i , (3.59)

S0 := 1 − SL
0 , (3.60)

R := RL. (3.61)

(3.62)

Set AL := −A and F′L(Sw) := F′(1 − Sn).

3. Compute the right domain boundary saturation SR
0

from

pL
c (SL

0) = pR
c (SR

0 ).

4. Compute the McWhorter and Sunada exact solution for the non-wetting

phase displacement with the setup parameters corresponding to the right

domain and with

Si := SR
i , (3.63)

S0 := SR
0 , (3.64)

R := −
RL

RL − 1
= RR. (3.65)

(3.66)

Set AR := A and F′R(Sw) := F′(Sw).

5. If the total velocity interface condition (3.27) holds or the estimates of AR

and AL(1 + RL) are below some bound εu

|AR − AL (RL − 1)| < εu,

terminate the algorithm, otherwise skip back to 1..
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The solution of the two-phase flow in heterogeneous medium problem (3.37)

and (3.38) is subsequently obtained from

2AR(1 − RR f R
w (SR

i
))

ΦRϑR
F′R(Sw) = x t−

1
2 for all Sw ∈ [SR

i , S
R
0 ], (3.67)

2AL(1 − RL f L
n (SL

i
))

ΦLϑL
F′L(Sw) = x t−

1
2 for all Sw ∈ [SL

0 , S
L
i ]. (3.68)

3.4 Illustrative Calculations

3.4.1 Model Parameters

The unrealistic sands in Table 3.1 are used in this subsection to demonstrate appli-

cability of the exact solution to a heterogeneous porous medium. The non-wetting

phase intrusion problem discussed in Section 3.2 is studied.

Par. Units fine sand (FS) coarse sand (CS)

Porosity Φ [−] 0.38 0.40

Intrinsic Permeability K [m2] 10−11 10−10

Residual Water Sat. Swr [−] 0.10 0.08

Residual NAPL Sat. Snr [−] 0 0

Water Viscosity µw [kg m−1s−1] 0.001 0.001

DNAPL Viscosity µn [kg m−1s−1] 0.001 0.001

Brooks-Corey Pd [Pa] 1000 900

λ [-] 3.86 3.86

van Genuchten 1
α [Pa] 1500 800

m [-] 0.60 0.40

Table 3.1: Parameter setup for two unrealistic porous materials - coarse and fine sands.

Different initial saturations SR
i

and SL
i

are distinguished in the two subdomains.

Various values of RL ∈ [−10000, 1] are prescribed and the boundary value RL
min

is

experimentally determined for the case of the algorithm failure due to absence of

the intersection point of the curves AR(S0) and (RL − 1)AL(S0) as in Figure 3.4. It

shows the values of AR and AL (RL − 1) depending on SL
0

for the maximal initial

saturations setup (i.e. SL
i
= 1 and SR

i
= 0). If the intersection of the two curves is

realized at SL
0
, then κ(SL

0
) = 0 and then the algorithm terminates successfully.

Figure 3.5 depicts the admissible range of initial saturations that can be pre-

scribed for the heterogeneous exact solution. Each point of the filled area of the

72



3.4. ILLUSTRATIVE CALCULATIONS

(SL
i
, SR

i
)-plane represents possible setup for the problem. The bisection method is

used to arrive at intersection of the AL(RL − 1) and AR curves in the step 1. of the

algorithm (see Figure 3.4).

The capillary pressure-effective saturation curves corresponding to the values

in Table 3.1 are depicted in Figure 3.3. The van Genuchten model functions are

selected such that the capillary pressure are intersected. Consequently, the satura-

tion jumps across the interface differs using the van Genuchten and Brooks-Corey

model respectively. The exact solutions for various setup parameters RL, SR
i

and SL
i

are depicted in Figures 3.6, 3.7, 3.8 and 3.9. All solutions are at time t = 1000 s
and are obtained by using the modified iterative method variant A (2.72) with

εA = 10−15.
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Figure 3.3: Capillary pressure curves for van Genuchten and Brooks-Corey model func-

tions.
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Figure 3.5: Admissible values of SL
i

and SR
i

in the (SL
i
, SR

i
)-plane that satisfy the condition

(3.26) are delimited by the filled area. The Brooks and Corey model functions are depicted

in upper figures and the van Genuchten model functions in the lower figures. The left-

hand side figures correspond to the flow from the coarse sand (CS) to the fine sand (FS)

and vice versa for the right-hand side figures.
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Figure 3.6: Exact solutions for a medium with a discontinuity for various RL and initial

setups at time t = 1000 s, Brooks-Corey model functions. The DNAPL flows from the

coarse sand (CS) placed at x < 0 to the fine sand (FS) placed at x > 0.
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Figure 3.7: Exact solutions for a medium with a discontinuity for various RL and initial

setups at time t = 1000 s, van Genuchten model functions. The DNAPL flows from the

coarse sand (CS) placed at x < 0 to the fine sand (FS) placed at x > 0.
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Figure 3.8: Exact solutions for a medium with a discontinuity for various RL and initial

setups at time t = 1000 s, Brooks-Corey model functions. The DNAPL flows from the

fine sand (FS) placed at x < 0 to the coarse sand (CS) placed at x > 0.
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Figure 3.9: Exact solutions for a medium with a discontinuity for various RL and initial

setups at time t = 1000 s, van Genchten model functions. The DNAPL flows from the

fine sand (FS) placed at x < 0 to the coarse sand (CS) placed at x > 0.
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3.4.2 Materials and Fluids with Significant Saturation Jumps

across Interface

Realistic materials described in Das et al., 2004 are used to compute exact solu-

tions of a PCE contamination problem. The flow of the non-wetting phase from

the fine sand to the coarse sand (FS → CS) can not be obtained using the pre-

sented formulation. This is due to very large jumps in the saturations across the

interface so that equation (3.19) does not admit any solution for none of the value

of RL ∈ (−∞, 1) and none of the wide range of possible initial saturations setups

SR
i

and SL
i
. Refer to the left-hand part of Figure 3.10, where the white area cor-

responds to the admissible values of SR
i

and SL
i

for the fine sand to coarse sand

flow.

On the other hand, the inverse placement of the porous media (CS → FS)

admits a solution for a very small range of initial saturations (the filled area of the

left-hand part of Figure 3.10, inverse to the previous FS→ CS case). The exact

solutions are depicted in the right-hand part of the Figure 3.10. The interfacial

saturation SL
0

is in near the maximal non-wetting saturation for all parameters RL,

again due to large jumps in the capillary pressure curves.

Par. Units fine sand (FS) coarse sand (CS)

Porosity Φ [−] 0.40 0.40

Intrinsic Permeability K [m2] 5 · 10−12 10−9

Residual Water Sat. Swr [−] 0.098 0.078

Residual NAPL Sat. Snr [−] 0 0

Water Viscosity µw [kg m−1s−1] 0.001 0.001

DNAPL Viscosity µn [kg m−1s−1] 0.0009 0.0009

Brooks-Corey Pd [Pa] 1325 370

λ [-] 2.49 2.86

Table 3.2: Parameter setup for two unrealistic porous materials - coarse and fine sands.
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Figure 3.10: Exact solutions for the Brooks-Corey model functions at time t = 1000 s
for various RL.
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3.4.3 Realistic Materials and Fluids

Realistic sands described in Walser et al., 1999 and the DNAPL Soltrol 220 de-

scribed in Chao et al., 2000 are used. In this case, the exact solution can be

obtained for both material compositions.

The ranges of admissible initial saturations are depicted in Figure 3.11 and the

solutions for both flows from the coarse to fine sand and reversely are depicted in

Figure 3.12.

Par. Units fine sand (FS) coarse sand (CS)

Porosity Φ [−] 0.40 0.40

Intrinsic Permeability K [m2] 5 · 10−10 10−9

Residual Water Sat. Swr [−] 0.01 0.08

Residual NAPL Sat. Snr [−] 0 0

Water Viscosity µw [kg m−1s−1] 0.001 0.001

DNAPL Viscosity µn [kg m−1s−1] 0.0035 0.0035

Brooks-Corey Pd [Pa] 1207 828

λ [-] 1.6 7.4

Table 3.3: Parameter setup for two realistic porous materials - coarse and fine sands.
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Figure 3.11: Admissible values of SL
i

and SR
i

in the (SL
i
, SR

i
)-plane that satisfy the condi-

tion (3.26) are delimited by the filled area, the Brooks and Corey model functions .
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Figure 3.12: Exact solutions for the Brooks-Corey model functions at time t = 1000 s
for various RL.
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Chapter 4

One-dimensional Numerical

Methods

4.1 Two-Phase Flow Equation

The McWhorter and Sunada exact solution described in the previous chapter has

to be solved numerically anyway. This fact motivates us to propose another

straight method of obtaining the solution of the one-dimensional problem

ϑΦ
∂S

∂t
= −u(t)

∂ f (S)

∂x
+
∂

∂x

(

D(S)
∂S

∂x

)

, (4.1)

where boundary and initial conditions will be discussed later.

Explicit numerical schemes based on the finite-difference method discretizing

the spatial derivatives are used with subsequent solution of the ODE system by

Runge-Kutta methods. It is also possible to use more complex and accurate nu-

merical methods as well as implicit methods for solving the equation (4.1), but

the objective is to demonstrate the applicability and existence of the exact solu-

tion using the simple numerical methods that have been already described in the

literature, e.g. in Helmig, 1997 or Bastian, 1999.

GENERALIZED FLOW EQUATION

In order to demonstrate applicability of the numerical method in solving the

one-dimensional heterogeneous medium problem discussed in Helmig, 1997, it

is necessary to incorporate gravitational effects into the equation. Combining the

equations (1.54) to (1.58), the one-dimensional two phase flow equation can be

obtained in the form

ϑΦ
∂S

∂t
= −u(t)

∂ f (S)

∂x
+
∂

∂x

(

D(S)
∂S

∂x
+ G(S)

)

, (4.2)
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where the term G(S) incorporates the effect of the gravitational force in the equa-

tion either in the form

G(Sw) = K(%n − %w)
λw(Sw)λn(Sw)

λw(Sw) + λn(Sw)
g, (4.3)

for the wetting phase saturation formulation, or in the form

G(Sn) = K(%w − %n)
λw(1 − Sn)λn(1 − Sn)

λw(1 − Sw) + λn(1 − Sn)
g, (4.4)

for the non-wetting phase saturation formulation.

4.1.1 Spatial Discretization

The following spatial discretization of the equation (4.2) is used. Let h be given

size of a uniform grid mesh Ωh with I + 1 nodes that is a subset of the interval

[0,∞)

Ωh =

{

ih : 0 ≤ i ≤ I
}

⊂ [0,∞), (4.5)

and let L be length of the one-dimensional domain such that L = Ih.

Suppose the discrete function s = s j(t) = S(t, jh), which is the pointwise

projection of the solution approximation on the mesh Ωh at a given time t.
The semi-discretized flow equation (4.2) can be written in the form

ϑΦ
ds j(t)

dt
= −

udp j+ 1
2
(t) − udp j− 1

2
(t)

h
, (4.6)

for all j ∈ {0, 1, 2, . . . , I}.
The discrete velocities are computed from (1.65) as

udp j+ 1
2
= f (s∗) u(t) −D j+ 1

2
− G(s∗), (4.7)

for all j ∈ {0, 1, 2, . . . , I−1}, where the variable s∗ is the upwinded saturation w.r.t.

u (see Helmig, 1997) defined as follows:

upwinded discretization: s∗ =





s j if u > 0
s j+1+s j

2
if u = 0

s j+1 if u < 0

.

The term D j+ 1
2

has to be specified separatedly both for the wetting and non-

wetting phase saturation formulation.

WETTING PHASE SATURATION FORMULATION
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According to Section 2.1, the equation (4.2) can be used for the non-wetting

phase displacement problem using the following substitution

S ≡ Sw, (4.8)

f (S) = f (Sw) = fw(Sw), (4.9)

D(S) = D(Sw), (4.10)

together with the definition (4.3) for the gravitational term G(S).

The term D j+ 1
2

reads as

D j+ 1
2
= K

λw(s∗)λn(s∗)

λw(s∗) + λn(s∗)

pc(s j+1) − pc(s j)

h
. (4.11)

WETTING PHASE DISPLACEMENT

In the opposite situation, the substitution is in the form

S ≡ Sn, (4.12)

f (S) = f (Sn) = fw(1 − Sn), (4.13)

D(S) = D(1 − Sn), (4.14)

together with the definition (4.4) for the gravitational term G(S).

The term D j+ 1
2

stands for

D j+ 1
2
= −K

λw(1 − s∗)λn(1 − s∗)

λw(1 − s∗) + λn(1 − s∗)

pc(1 − s j+1) − pc(1 − s j)

h
. (4.15)

4.1.2 Initial and Boundary Conditions

It is possible to prescribe either Dirichlet boundary conditions at x = 0 or x = L,

or the flux of the displacing (or displaced) phase at x = 0 or x = L. If the flux

condition is provided at a boundary, e.g. at x = 0, the respective discretized

velocity, e.g. udp − 1
2
(t) equals directly to the prescribed velocity. The form of

the discretized equation (4.6) does not require the knowledge of the value s0(t) in

such cases. On the other hand, there is no need to compute the discretized velocity

udp − 1
2
(t), resp. udp m+ 1

2
(t), if the Dirichlet boundary condition is prescribed at the

boundary at x = 0, resp. x = L.

The initial condition for the discretized function s is obtained using the point-

wise projection of the initial state of the saturation S(0, x) in the domain [0,∞) on

the discrete subsetΩh , i.e.

s j(0) = S(0, hj) for all j = 0, 1, . . . , I.
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4.1.3 Runge-Kutta Methods for System of ODE

The semi-discretized system of the equations (4.6)

ds j(t)

dt
= −

udp j+ 1
2
(t) − udp j− 1

2
(t)

h
for all j ∈

{

0, 1, 2, . . . ,m
}

, (4.16)

(4.17)

represents a system of ordinary differential equations with the respective initial

and boundary conditions.

Describing this system formally as

s′(t) = Z(t, s(t)), (4.18)

s(0) = σ0, (4.19)

where σ0 is the initial saturation distribution vector, the Runge-Kutta numerical

methods for a system of ODE can be applied, see Vitásek, 1994. The time quantity

is discretized as t = kτ for k = 0, 1, 2, . . . so that the vector s(t) is discretized to

sk
= s(kτ).

RK1 - EULER METHOD

The first order Runge-Kutta method, the Euler method (denoted as RK1) is

exactly the explicit form of the finite difference method. This explicit numerical

scheme reads

sk+1
= sk
+ τZ(kτ, sk). (4.20)

RK4 - STANDARD RUNGE-KUTTA METHOD

The fourth order Runge-Kutta method, commonly referred to as the standard

Runge-Kutta method (denoted as RK4) is represented by the following system of

equations :

sk+1
= sk
+
τ

6

(

κ1 + 2κ2 + 2κ3 + κ4

)

, (4.21)

κ1 = Z
(

kτ, sk
)

, (4.22)

κ2 = Z
(

kτ +
1

2
τ, sk
+

1

2
τκ1

)

, (4.23)

κ3 = Z
(

kτ +
1

2
τ, sk
+

1

2
τκ2

)

, (4.24)

κ4 = Z
(

kτ + τ, sk
+ τκ3

)

. (4.25)
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4.1.4 Interface Implementation

In this subsection, the interface implementation is presented for the case of the

wetting phase displacing problem, i.e. Sn-formulation with udp ≡ un.

At the interface of two porous homogeneous media, the conditions (1.37) and

(1.36) are used in the following way. Assume the interface is placed between the

nodes j and j+ 1 as it is depicted in Figure 4.1. Numerical implementation of the

interface conditions (1.37) and (1.36) is provided by replacing un j+ 1
2

in (4.6) by

the interfacial phase velocity uk int

n j+ 1
2

. Since the total velocity is constant in space,

the continuity of the total velocity across the interface is always satisfied.

sj

pc*

h/2

Interface
medium L medium R

sj+1

uw
R

un
R

uw
L

un
L

h/2

Figure 4.1: Interface between adjacent nodes.

Assume the non-wetting phase flows from the left-hand side to the right-hand

side domain, i.e. un(t, x) ≥ 0 for all x. The interfacial phase velocity uk int

n j+ 1
2

is zero

if

pL
c (1 − s j) ≤ pR

c (1) ∧ s j+1 = 0, (4.26)

which yields from (1.37).

If the condition (4.26) does not hold, the interfacial velocity uk int

n j+ 1
2

is computed

by solving a system of linear equation for p∗c. It is possible to approximate the left-

hand side velocities uL
w and uL

n and the right-hand side velocities uR
w and uR

n as the

function of the capillary pressure p∗c (which is continuous across the interface) as
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uL
w =

λL
w

λL
w + λ

L
n

u + K
λL

wλ
L
n

λL
w + λ

L
n





p∗c − pL
c (si)

h
2

+ (ρw − ρn)g




, (4.27)

uR
w =

λR
w

λR
w + λ

R
n

u + K
λR

wλ
R
n

λR
w + λ

R
n





pc(s
R
i+1

) − p∗c
h
2

+ (ρw − ρn)g




, (4.28)

uL
n =

λL
n

λL
w + λ

L
n

u − K
λL

wλ
L
n

λL
w + λ

L
n





p∗c − pL
c (si)

h
2

+ (ρw − ρn)g




, (4.29)

uR
n =

λR
n

λR
w + λ

R
n

u − K
λR

wλ
R
n

λR
w + λ

R
n





pR
c (si+1) − p∗c

h
2

+ (ρw − ρn)g




, (4.30)

where

λL
w = λw(1 − s j),

λL
n = λn(1 − s j),

λR
w = λw(1 − s j+1),

λR
n = λn(1 − s j+1).

The interface condition (1.36) yields

uL
w = uR

w,

so that the unknown variable p∗c can be expressed and substituted into both expres-

sions of un. The desired interfacial phase velocity is obtained in the form

uk int

n j+ 1
2

= uL
n = uR

n = λ
L
nλ

R
n

(λL
w + λ

R
w)u + 2KλL

wλ
R
w(

pL
c (s j)−pR

c (s j+1)

h
+ (ρn − ρw)g)

λL
wλ

R
w(λL

n + λ
R
n ) + λL

nλ
R
n (λL

w + λ
R
w)

.

(4.31)

4.2 Applicability in Homogeneous Medium

4.2.1 Linearization

Using the numerical schemes in the form (4.6), one can encounter unbounded

values due to infinite value of the limit

lim
S→0

pc(S) = ∞.

The value of the velocity udp j+ 1
2

in (4.7) is infinite and thus numerically undefined

if the non-wetting phase reaches its maximal saturation, i.e. Sn = 1. Taking
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advantage of the zero value of D for Sn = 1 due to λw(0) = 0, the following

linearization of the capillary pressure - saturation relationship is proposed.

Let εpc > 0 be arbitrary selected value, define

plin
c (S) =





pc(S) for all εpc < S ≤ 1,

p′c(εpc)(S − εpc) + pc(εpc) for all 0 ≤ S ≤ εpc ,
(4.32)

Substitution of plin
c for pc in all numerical schemes and choice of εpc = 0.01 is

used in all of the subsequent computations.

4.2.2 Applicability of McWhorter and Sunada Exact Solutions

PROBLEM FORMULATION

The McWhorter and Sunada problem requires the total velocity in the form

u(t) = AR t−
1
2 . The initial condition is discretized as

s j(0) = Si, for all j ∈ {1, 2, . . . , I − 1}, (4.33)

and the boundary conditions for all t > 0 read

s0(t) = S0 (4.34)

sm(t) = Si. (4.35)

The domain length L must be selected such that the front of the numerical solu-

tion does not reach the right hand side boundary at x = L, otherwise the numerical

solution will not respect the semi-infinite McWhorter and Sunada problem formu-

lation (L approximates the infinite boundary). The magnitude parameter A of the

total velocity u is obtained by computing the quasi-analytical solution for a given

parameters R, S0 and Si and thus the numerical solution depends on the analytical

solution through the value of A 1.

EXPERIMENTAL ORDER OF CONVERGENCE

The McWhorter and Sunada exact solution is mainly used to determine the

experimental order of convergence (EOC) of more complex numerical schemes.

Let ha and hb be two different mesh sizes and Sn
h

be numerical solution on a mesh

1The relationship between A and S0 can be determined only by computing the McWhorter and

Sunada exact solution, see Chapter 2.
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with the mesh size h and Sa be analytical solution. Then the experimental order of

convergence is defined as follows (see Mikyška, 2005)

EOC(ha, hb) =
ln ‖Sn

ha
− Sa‖Lp − ln ‖Sn

hb
− Sa‖Lp

ln ha − ln hb
. (4.36)

In the case of explicit numerical schemes like the scheme (4.6) presented in

this chapter, the form of the total velocity term u(t) = ARt−
1
2 causes unwelcome

numerical difficulties in practical applications due to infinite limit

lim
t→0+

u(t).

The numerical implementation is possible only for finite values of u(0), i.e. for

u(t) = AR(t + εt)
− 1

2 . Therefore, the EOC should be regarded as a function of

εt > 0.

4.2.3 Convergence analysis

TEST PROBLEM DESCRIPTION

A test problem is proposed to demonstrate how the numerical precision εt

affects the EOC and to demonstrate applicability of the exact solution proposed

by McWhorter and Sunada. As it was already discussed in Section 4.2.2, the

experimental order of convergence depends on two mesh sizes ha and hb. In this

section, the length of the domain L and the number of divisions I of the interval

[0, L] is used to compute the mesh sizes as

h =
L

I
.

The demonstration starts with I1 = 100 divisions and then the grid is uniformly

refined by doubling the number of divisions in each step.

Denoting EOCk = EOC(hk−1, hk), where

hk =
L

kI1

,

the experimental order of convergence reads

EOCk = log2

‖Sn
hk−1
− Sa‖Lp

‖Sn
hk
− Sa‖Lp

. (4.37)

The unidirectional (R = 1) displacement of the wetting phase is studied with

and without dominant advection term, i.e. for the value of S0 ∈ {0.5, 0.7, 0.8, 0.9}.
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The exact solution is obtained for εA = 10−15 and using 1000 nodes in the dis-

cretization of F.

The Dirichlet boundary conditions at x = 0 and x = L are prescribed in the

numerical problem.

Both van Genuchten and Brooks-Corey model functions are selected with the

following setup:

Brooks-Corey : λ = 2, pd = 1000 Pa,

van Genuchten : m = 0.75, α = 0.001 Pa−1.

Residual saturations : Srw = 0, Srn = 0,

Fluid viscosities : µw = 0.001 Pa s µn = 0.001 Pa s,

Miscellaneous : Φ = 0.4, K = 10−10m−2.

The tests proceed in the following way. First, the exact solution is obtained at

t = 1000 s for a given value of S0, R = 1 and Si = 0. The resulting total velocity

coefficient A is used in the numerical computation. The domain length L is set to a

1.3 multiple of the position of the front of the exact solution at t = 1000 s to assure

the front of the numerical solution will not reach the right hand side boundary at

x = L.

The time step τ is selected heuristically such that the numerical scheme is

stable. The initial time step τ = 0.1 s is selected and the numerical procedure

is restarted with the reduced value of τ every time the instabilities manifest via

oscillations of the numerical solution. Therefore, the time step is constant for

each result. The resulting respective time steps are shown in Tables 4.1 and 4.10.
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BROOKS-COREY MODEL FUNCTIONS
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Figure 4.2: Exact and numerical solutions for the Brooks-Corey model functions at time

t = 1000 s for various S0, homogeneous porous medium. Numerical solutions computed

using the standard Runge Kutta RK4 method with εt = 10−5.

94



4.2. APPLICABILITY IN HOMOGENEOUS MEDIUM

S0 εt RK 100 200 400 800 1600

0.5 1e-1 RK1,4 1.0e-1 1.0e-2 5.0e-3 2.0e-3 1.0e-3

1e-2 RK1,4 1.0e-1 1.0e-2 5.0e-3 2.0e-3 1.0e-3

1e-3 RK1 5.0e-2 1.0e-2 5.0e-3 1.0e-3 5.0e-4

RK4 5.0e-2 1.0e-2 5.0e-3 2.0e-3 5.0e-4

1e-4 RK1 2.5e-2 1.0e-2 2.5e-3 1.0e-3 2.5e-4

RK4 2.5e-2 1.0e-2 5.0e-3 1.0e-3 5.0e-4

1e-5 RK1 6.3e-3 2.5e-3 1.3e-3 5.0e-4 2.5e-4

RK4 1.3e-2 5.0e-3 2.5e-3 1.0e-3 2.5e-4

1e-6 RK1 1.6e-3 1.3e-3 6.3e-4 2.5e-4 1.3e-4

RK4 1.3e-2 2.5e-3 1.3e-3 5.0e-4 2.5e-4

0.7 1e-1 RK1,4 1.0e-1 1.0e-2 5.0e-3 2.0e-3 1.0e-3

1e-2 RK1,4 1.0e-1 1.0e-2 5.0e-3 2.0e-3 1.0e-3

1e-3 RK1 2.5e-2 1.0e-2 5.0e-3 2.0e-3 1.0e-3

RK4 5.0e-2 1.0e-2 5.0e-3 2.0e-3 1.0e-3

1e-4 RK1 1.3e-2 5.0e-3 2.5e-3 1.0e-3 5.0e-4

RK4 2.5e-2 1.0e-2 5.0e-3 2.0e-3 1.0e-3

1e-5 RK1 3.1e-3 1.3e-3 6.3e-4 5.0e-4 2.5e-4

RK4 2.5e-2 1.0e-2 5.0e-3 1.0e-3 5.0e-4

1e-6 RK1 7.8e-4 6.3e-4 3.1e-4 1.3e-4 6.3e-5

RK4 6.3e-3 1.3e-3 6.3e-4 1.0e-3 1.3e-4

0.8 1e-1 RK1,4 1.0e-1 1.0e-2 5.0e-3 2.0e-3 1.0e-3

1e-2 RK1,4 1.0e-1 1.0e-2 5.0e-3 2.0e-3 1.0e-3

1e-3 RK1 2.5e-2 1.0e-2 5.0e-3 2.0e-3 1.0e-3

RK4 5.0e-2 1.0e-2 5.0e-3 2.0e-3 1.0e-3

1e-4 RK1 1.3e-2 5.0e-3 2.5e-3 1.0e-3 5.0e-4

RK4 2.5e-2 1.0e-2 5.0e-3 2.0e-3 1.0e-3

1e-5 RK1 3.1e-3 1.3e-3 6.3e-4 5.0e-4 2.5e-4

RK4 6.3e-3 1.0e-2 5.0e-3 1.0e-3 5.0e-4

1e-6 RK1 7.8e-4 6.3e-4 3.1e-4 1.3e-4 6.3e-5

RK4 6.3e-3 1.3e-3 6.3e-4 2.5e-4 1.3e-4

0.9 1e-1 RK1,4 1.0e-1 1.0e-2 5.0e-3 2.0e-3 1.0e-3

1e-2 RK1,4 1.0e-1 1.0e-2 5.0e-3 2.0e-3 1.0e-3

1e-3 RK1 2.5e-2 1.0e-2 5.0e-3 2.0e-3 1.0e-3

RK4 5.0e-2 1.0e-2 5.0e-3 2.0e-3 1.0e-3

1e-4 RK1 1.3e-2 5.0e-3 2.5e-3 1.0e-3 5.0e-4

RK4 2.5e-2 1.0e-2 5.0e-3 2.0e-3 1.0e-3

1e-5 RK1 3.1e-3 1.3e-3 6.3e-4 5.0e-4 2.5e-4

RK4 6.3e-3 1.0e-2 5.0e-3 1.0e-3 5.0e-4

1e-6 RK1 7.8e-4 6.3e-4 3.1e-4 1.3e-4 6.3e-5

RK4 6.3e-3 1.3e-3 6.3e-4 2.5e-4 1.3e-4

Table 4.1: Time steps τ used in the numerical computations, Brooks-Corey model func-

tions.
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Runge Kutta RK1 method, I = 100, 200, 400, 800 and 1600 divisions, L1 norms

εt 100 EOC1 200 EOC2 400 EOC3 800 EOC4 1600

1e-1 2.0e-3 1.02 1.0e-3 0.99 5.0e-4 1.10 2.3e-4 1.23 1.0e-4

1e-2 2.0e-3 0.93 1.1e-3 0.92 5.6e-4 0.97 2.9e-4 1.00 1.4e-4

1e-3 2.2e-3 1.01 1.1e-3 0.89 5.9e-4 0.97 3.0e-4 0.95 1.5e-4

1e-4 2.4e-3 1.01 1.2e-3 1.00 5.8e-4 0.93 3.1e-4 0.96 1.6e-4

1e-5 2.2e-3 0.97 1.1e-3 0.93 5.9e-4 0.95 3.1e-4 0.94 1.6e-4

1e-6 2.2e-3 0.86 1.2e-3 0.95 6.1e-4 0.97 3.1e-4 0.95 1.6e-4

Runge Kutta RK4 method, I = 100, 200, 400, 800 and 1600 divisions, L1 norms

εt 100 EOC1 200 EOC2 400 EOC3 800 EOC4 1600

1e-1 1.9e-3 0.93 1.0e-3 0.99 5.0e-4 1.10 2.3e-4 1.25 9.8e-5

1e-2 2.0e-3 0.92 1.1e-3 0.92 5.5e-4 0.95 2.9e-4 1.00 1.4e-4

1e-3 2.0e-3 0.90 1.1e-3 0.91 5.7e-4 0.92 3.0e-4 0.95 1.5e-4

1e-4 2.0e-3 0.90 1.1e-3 0.90 5.8e-4 0.95 3.0e-4 0.93 1.6e-4

1e-5 2.0e-3 0.91 1.1e-3 0.91 5.8e-4 0.93 3.0e-4 0.95 1.6e-4

1e-6 2.2e-3 1.03 1.1e-3 0.92 5.8e-4 0.94 3.0e-4 0.93 1.6e-4

Table 4.2: Experimental order of convergence computed from the L1 norms for the

Brooks-Corey model functions and S0 = 0.5.

Runge Kutta RK1 method, I = 100, 200, 400, 800 and 1600 divisions, L1 norms

εt 100 EOC1 200 EOC2 400 EOC3 800 EOC4 1600

1e-1 5.8e-3 1.01 2.9e-3 0.85 1.6e-3 0.24 1.3e-3 -0.26 1.6e-3

1e-2 7.2e-3 1.16 3.2e-3 0.99 1.6e-3 1.02 8.0e-4 0.85 4.4e-4

1e-3 7.2e-3 0.99 3.6e-3 0.96 1.9e-3 1.02 9.2e-4 1.02 4.5e-4

1e-4 8.1e-3 1.01 4.0e-3 0.96 2.1e-3 1.02 1.0e-3 0.99 5.1e-4

1e-5 7.9e-3 1.00 3.9e-3 0.95 2.0e-3 0.86 1.1e-3 0.98 5.7e-4

1e-6 7.5e-3 0.80 4.3e-3 0.95 2.2e-3 1.01 1.1e-3 0.97 5.7e-4

Runge Kutta RK4 method, I = 100, 200, 400, 800 and 1600 divisions, L1 norms

εt 100 EOC1 200 EOC2 400 EOC3 800 EOC4 1600

1e-1 5.6e-3 0.97 2.9e-3 0.84 1.6e-3 0.23 1.4e-3 -0.26 1.6e-3

1e-2 6.1e-3 0.95 3.1e-3 0.98 1.6e-3 1.00 7.9e-4 0.81 4.5e-4

1e-3 6.4e-3 0.95 3.3e-3 0.94 1.7e-3 0.98 8.7e-4 1.02 4.3e-4

1e-4 6.7e-3 0.94 3.5e-3 0.93 1.8e-3 0.96 9.4e-4 0.96 4.8e-4

1e-5 8.2e-3 1.00 4.1e-3 0.96 2.1e-3 1.09 9.8e-4 0.96 5.0e-4

1e-6 8.0e-3 1.13 3.6e-3 0.93 1.9e-3 0.75 1.1e-3 1.16 5.1e-4

Table 4.3: Experimental order of convergence computed from the L1 norms for the

Brooks-Corey model functions and S0 = 0.7.
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Runge Kutta RK1 method, I = 100, 200, 400, 800 and 1600 divisions, L1 norms

εt 100 EOC1 200 EOC2 400 EOC3 800 EOC4 1600

1e-1 1.8e-2 0.96 9.3e-3 0.63 6.0e-3 -0.10 6.5e-3 -0.12 7.0e-3

1e-2 2.2e-2 1.02 1.1e-2 0.97 5.4e-3 0.97 2.8e-3 0.56 1.9e-3

1e-3 2.4e-2 0.94 1.2e-2 0.94 6.4e-3 1.01 3.2e-3 1.03 1.5e-3

1e-4 2.4e-2 0.89 1.3e-2 0.92 6.8e-3 0.94 3.5e-3 0.98 1.8e-3

1e-5 2.5e-2 0.89 1.3e-2 0.91 7.1e-3 0.97 3.6e-3 0.95 1.9e-3

1e-6 2.5e-2 0.92 1.3e-2 0.91 7.0e-3 0.88 3.8e-3 0.94 2.0e-3

Runge Kutta RK4 method, I = 100, 200, 400, 800 and 1600 divisions, L1 norms

εt 100 EOC1 200 EOC2 400 EOC3 800 EOC4 1600

1e-1 1.8e-2 0.93 9.3e-3 0.62 6.1e-3 -0.10 6.5e-3 -0.12 7.1e-3

1e-2 2.0e-2 0.92 1.0e-2 0.96 5.4e-3 0.95 2.8e-3 0.53 1.9e-3

1e-3 2.1e-2 0.92 1.1e-2 0.92 5.9e-3 0.96 3.0e-3 1.00 1.5e-3

1e-4 2.2e-2 0.91 1.2e-2 0.91 6.3e-3 0.95 3.3e-3 0.96 1.7e-3

1e-5 2.2e-2 0.79 1.3e-2 0.92 6.7e-3 0.96 3.5e-3 0.95 1.8e-3

1e-6 2.4e-2 0.97 1.2e-2 0.90 6.7e-3 0.94 3.5e-3 0.93 1.8e-3

Table 4.4: Experimental order of convergence computed from the L1 norms for the

Brooks-Corey model functions and S0 = 0.8.

Runge Kutta RK1 method, I = 100, 200, 400, 800 and 1600 divisions, L1 norms

εt 100 EOC1 200 EOC2 400 EOC3 800 EOC4 1600

1e-1 9.1e-2 1.01 4.5e-2 0.53 3.1e-2 -0.19 3.6e-2 -0.10 3.8e-2

1e-2 1.1e-1 1.00 5.6e-2 0.98 2.8e-2 1.03 1.4e-2 0.46 1.0e-2

1e-3 1.2e-1 0.90 6.6e-2 0.92 3.5e-2 0.99 1.8e-2 1.05 8.5e-3

1e-4 1.4e-1 1.05 6.9e-2 0.91 3.7e-2 0.88 2.0e-2 0.96 1.0e-2

1e-5 1.3e-1 0.87 7.2e-2 0.88 3.9e-2 0.91 2.1e-2 0.96 1.1e-2

1e-6 1.3e-1 0.75 7.8e-2 0.93 4.1e-2 0.98 2.1e-2 0.92 1.1e-2

Runge Kutta RK4 method, I = 100, 200, 400, 800 and 1600 divisions, L1 norms

εt 100 EOC1 200 EOC2 400 EOC3 800 EOC4 1600

1e-1 8.9e-2 0.97 4.5e-2 0.52 3.2e-2 -0.18 3.6e-2 -0.10 3.8e-2

1e-2 1.0e-1 0.90 5.5e-2 0.97 2.8e-2 1.00 1.4e-2 0.43 1.0e-2

1e-3 1.1e-1 0.90 5.9e-2 0.89 3.2e-2 0.94 1.7e-2 1.01 8.3e-3

1e-4 1.2e-1 0.89 6.4e-2 0.88 3.5e-2 0.91 1.9e-2 0.93 9.7e-3

1e-5 1.2e-1 0.74 7.1e-2 0.92 3.7e-2 0.91 2.0e-2 0.91 1.1e-2

1e-6 1.3e-1 0.99 6.8e-2 0.86 3.7e-2 0.91 2.0e-2 0.90 1.1e-2

Table 4.5: Experimental order of convergence computed from the L1 norms for the

Brooks-Corey model functions and S0 = 0.9.
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Runge Kutta RK1 method, I = 100, 200, 400, 800 and 1600 divisions, L2 norms

εt 100 EOC1 200 EOC2 400 EOC3 800 EOC4 1600

1e-1 1.3e-2 0.69 8.2e-3 0.69 5.1e-3 0.75 3.0e-3 0.83 1.7e-3

1e-2 1.3e-2 0.64 8.5e-3 0.66 5.4e-3 0.69 3.3e-3 0.72 2.0e-3

1e-3 1.4e-2 0.69 8.6e-3 0.65 5.5e-3 0.70 3.4e-3 0.70 2.1e-3

1e-4 1.4e-2 0.69 8.9e-3 0.70 5.5e-3 0.68 3.4e-3 0.70 2.1e-3

1e-5 1.4e-2 0.67 8.8e-3 0.67 5.5e-3 0.69 3.4e-3 0.69 2.1e-3

1e-6 1.4e-2 0.61 9.0e-3 0.68 5.6e-3 0.70 3.5e-3 0.70 2.1e-3

Runge Kutta RK4 method, I = 100, 200, 400, 800 and 1600 divisions, L2 norms

εt 100 EOC1 200 EOC2 400 EOC3 800 EOC4 1600

1e-1 1.3e-2 0.65 8.2e-3 0.69 5.1e-3 0.75 3.0e-3 0.84 1.7e-3

1e-2 1.3e-2 0.64 8.4e-3 0.66 5.3e-3 0.69 3.3e-3 0.72 2.0e-3

1e-3 1.3e-2 0.63 8.5e-3 0.65 5.4e-3 0.67 3.4e-3 0.70 2.1e-3

1e-4 1.3e-2 0.63 8.5e-3 0.65 5.4e-3 0.68 3.4e-3 0.69 2.1e-3

1e-5 1.3e-2 0.63 8.6e-3 0.65 5.4e-3 0.67 3.4e-3 0.70 2.1e-3

1e-6 1.4e-2 0.70 8.6e-3 0.66 5.5e-3 0.68 3.4e-3 0.69 2.1e-3

Table 4.6: Experimental order of convergence computed from the L2 norms for the

Brooks-Corey model functions and S0 = 0.5.

Runge Kutta RK1 method, I = 100, 200, 400, 800 and 1600 divisions, L2 norms

εt 100 EOC1 200 EOC2 400 EOC3 800 EOC4 1600

1e-1 2.6e-2 0.89 1.4e-2 1.11 6.5e-3 1.07 3.1e-3 -1.04 6.3e-3

1e-2 3.3e-2 0.88 1.8e-2 0.72 1.1e-2 0.87 6.0e-3 1.17 2.7e-3

1e-3 3.3e-2 0.68 2.1e-2 0.66 1.3e-2 0.73 7.9e-3 0.75 4.7e-3

1e-4 3.7e-2 0.69 2.3e-2 0.67 1.4e-2 0.72 8.7e-3 0.70 5.3e-3

1e-5 3.6e-2 0.68 2.2e-2 0.65 1.4e-2 0.60 9.4e-3 0.70 5.8e-3

1e-6 3.5e-2 0.53 2.4e-2 0.66 1.5e-2 0.71 9.3e-3 0.69 5.8e-3

Runge Kutta RK4 method, I = 100, 200, 400, 800 and 1600 divisions, L2 norms

εt 100 EOC1 200 EOC2 400 EOC3 800 EOC4 1600

1e-1 2.4e-2 0.82 1.4e-2 1.12 6.4e-3 1.01 3.2e-3 -1.02 6.4e-3

1e-2 2.8e-2 0.66 1.8e-2 0.73 1.1e-2 0.87 5.8e-3 1.19 2.5e-3

1e-3 3.0e-2 0.66 1.9e-2 0.65 1.2e-2 0.70 7.4e-3 0.77 4.3e-3

1e-4 3.1e-2 0.64 2.0e-2 0.64 1.3e-2 0.68 8.1e-3 0.68 5.0e-3

1e-5 3.7e-2 0.69 2.3e-2 0.67 1.5e-2 0.79 8.4e-3 0.68 5.2e-3

1e-6 3.6e-2 0.80 2.1e-2 0.64 1.3e-2 0.51 9.4e-3 0.84 5.3e-3

Table 4.7: Experimental order of convergence computed from the L2 norms for the

Brooks-Corey model functions and S0 = 0.7.
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Runge Kutta RK1 method, I = 100, 200, 400, 800 and 1600 divisions, L2 norms

εt 100 EOC1 200 EOC2 400 EOC3 800 EOC4 1600

1e-1 5.0e-2 1.06 2.4e-2 1.18 1.1e-2 -0.95 2.1e-2 -0.45 2.8e-2

1e-2 7.1e-2 0.88 3.9e-2 0.78 2.3e-2 1.08 1.1e-2 1.39 4.1e-3

1e-3 7.4e-2 0.65 4.8e-2 0.65 3.0e-2 0.75 1.8e-2 0.85 1.0e-2

1e-4 7.9e-2 0.59 5.3e-2 0.62 3.4e-2 0.69 2.1e-2 0.71 1.3e-2

1e-5 8.0e-2 0.61 5.3e-2 0.60 3.5e-2 0.60 2.3e-2 0.68 1.4e-2

1e-6 7.9e-2 0.52 5.5e-2 0.60 3.6e-2 0.64 2.3e-2 0.66 1.5e-2

Runge Kutta RK4 method, I = 100, 200, 400, 800 and 1600 divisions, L2 norms

εt 100 EOC1 200 EOC2 400 EOC3 800 EOC4 1600

1e-1 4.7e-2 0.98 2.4e-2 1.14 1.1e-2 -0.95 2.1e-2 -0.44 2.8e-2

1e-2 5.8e-2 0.65 3.7e-2 0.77 2.2e-2 1.08 1.0e-2 1.30 4.2e-3

1e-3 6.4e-2 0.62 4.1e-2 0.62 2.7e-2 0.71 1.6e-2 0.85 9.2e-3

1e-4 6.9e-2 0.60 4.5e-2 0.60 3.0e-2 0.66 1.9e-2 0.68 1.2e-2

1e-5 6.9e-2 0.37 5.3e-2 0.62 3.5e-2 0.76 2.0e-2 0.66 1.3e-2

1e-6 8.1e-2 0.74 4.8e-2 0.59 3.2e-2 0.65 2.1e-2 0.65 1.3e-2

Table 4.8: Experimental order of convergence computed from the L2 norms for the

Brooks-Corey model functions and S0 = 0.8.

Runge Kutta RK1 method, I = 100, 200, 400, 800 and 1600 divisions, L2 norms

εt 100 EOC1 200 EOC2 400 EOC3 800 EOC4 1600

1e-1 1.3e-1 1.11 6.0e-2 0.22 5.2e-2 -0.85 9.4e-2 -0.26 1.1e-1

1e-2 1.9e-1 0.78 1.1e-1 0.72 6.6e-2 1.17 2.9e-2 0.17 2.6e-2

1e-3 2.0e-1 0.55 1.4e-1 0.55 9.4e-2 0.67 5.9e-2 0.81 3.4e-2

1e-4 2.1e-1 0.49 1.5e-1 0.51 1.1e-1 0.56 7.2e-2 0.61 4.7e-2

1e-5 2.1e-1 0.50 1.5e-1 0.49 1.1e-1 0.51 7.6e-2 0.56 5.1e-2

1e-6 2.1e-1 0.44 1.6e-1 0.49 1.1e-1 0.51 7.8e-2 0.54 5.4e-2

Runge Kutta RK4 method, I = 100, 200, 400, 800 and 1600 divisions, L2 norms

εt 100 EOC1 200 EOC2 400 EOC3 800 EOC4 1600

1e-1 1.2e-1 0.99 6.0e-2 0.17 5.3e-2 -0.83 9.4e-2 -0.26 1.1e-1

1e-2 1.5e-1 0.57 1.0e-1 0.73 6.3e-2 1.17 2.8e-2 0.04 2.7e-2

1e-3 1.7e-1 0.53 1.2e-1 0.52 8.2e-2 0.61 5.4e-2 0.81 3.1e-2

1e-4 1.9e-1 0.51 1.3e-1 0.50 9.3e-2 0.56 6.3e-2 0.59 4.2e-2

1e-5 1.8e-1 0.29 1.5e-1 0.51 1.1e-1 0.62 6.9e-2 0.56 4.7e-2

1e-6 2.1e-1 0.62 1.4e-1 0.48 1.0e-1 0.53 6.9e-2 0.54 4.8e-2

Table 4.9: Experimental order of convergence computed from the L2 norms for the

Brooks-Corey model functions and S0 = 0.9.
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VAN GENUCHTEN MODEL FUNCTIONS
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Figure 4.3: Exact and numerical solutions for the van Genuchten model functions at time

t = 1000 s for various S0, homogeneous porous medium. Numerical solutions computed

using the standard Runge Kutta RK4 method with εt = 10−5.
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4.2. APPLICABILITY IN HOMOGENEOUS MEDIUM

S0 εt RK 100 200 400 800 1600

0.5 1e-1 RK1,4 1.0e-1 1.0e-2 5.0e-3 2.0e-3 1.0e-3

1e-2 RK1,4 1.0e-1 1.0e-2 5.0e-3 2.0e-3 1.0e-3

1e-3 RK1 5.0e-2 1.0e-2 5.0e-3 2.0e-3 1.0e-3

RK4 1.0e-1 1.0e-2 5.0e-3 2.0e-3 5.0e-4

1e-4 RK1 2.5e-2 1.0e-2 5.0e-3 2.0e-3 5.0e-4

RK4 5.0e-2 1.0e-2 5.0e-3 2.0e-3 5.0e-4

1e-5 RK1 6.3e-3 2.5e-3 1.3e-3 1.0e-3 2.5e-4

RK4 5.0e-2 5.0e-3 2.5e-3 2.0e-3 5.0e-4

1e-6 RK1 3.1e-3 1.3e-3 6.3e-4 2.5e-4 1.3e-4

RK4 6.3e-3 2.5e-3 1.3e-3 2.0e-3 2.5e-4

0.7 1e-1 RK1,4 1.0e-1 1.0e-2 5.0e-3 2.0e-3 1.0e-3

1e-2 RK1,4 1.0e-1 1.0e-2 5.0e-3 2.0e-3 1.0e-3

1e-3 RK1 5.0e-2 1.0e-2 5.0e-3 2.0e-3 1.0e-3

RK4 1.0e-1 1.0e-2 5.0e-3 2.0e-3 1.0e-3

1e-4 RK1 1.3e-2 5.0e-3 2.5e-3 2.0e-3 5.0e-4

RK4 2.5e-2 1.0e-2 5.0e-3 2.0e-3 1.0e-3

1e-5 RK1 3.1e-3 2.5e-3 1.3e-3 5.0e-4 2.5e-4

RK4 2.5e-2 5.0e-3 2.5e-3 1.0e-3 5.0e-4

1e-6 RK1 1.6e-3 6.3e-4 3.1e-4 1.3e-4 6.3e-5

RK4 3.1e-3 5.0e-3 2.5e-3 1.0e-3 5.0e-4

0.8 1e-1 RK1,4 1.0e-1 1.0e-2 5.0e-3 2.0e-3 1.0e-3

1e-2 RK1,4 1.0e-1 1.0e-2 5.0e-3 2.0e-3 1.0e-3

1e-3 RK1 2.5e-2 1.0e-2 5.0e-3 2.0e-3 1.0e-3

RK4 5.0e-2 1.0e-2 5.0e-3 2.0e-3 1.0e-3

1e-4 RK1 1.3e-2 5.0e-3 2.5e-3 1.0e-3 5.0e-4

RK4 2.5e-2 1.0e-2 5.0e-3 2.0e-3 1.0e-3

1e-5 RK1 3.1e-3 1.3e-3 6.3e-4 5.0e-4 2.5e-4

RK4 2.5e-2 1.0e-2 5.0e-3 1.0e-3 5.0e-4

1e-6 RK1 7.8e-4 6.3e-4 3.1e-4 1.3e-4 6.3e-5

RK4 6.3e-3 1.3e-3 6.3e-4 1.0e-3 5.0e-4

0.9 1e-1 RK1,4 1.0e-1 1.0e-2 5.0e-3 2.0e-3 1.0e-3

1e-2 RK1,4 1.0e-1 1.0e-2 5.0e-3 2.0e-3 1.0e-3

1e-3 RK1 2.5e-2 1.0e-2 5.0e-3 2.0e-3 1.0e-3

RK4 5.0e-2 1.0e-2 5.0e-3 2.0e-3 1.0e-3

1e-4 RK1 1.3e-2 5.0e-3 2.5e-3 1.0e-3 5.0e-4

RK4 2.5e-2 1.0e-2 5.0e-3 2.0e-3 1.0e-3

1e-5 RK1 3.1e-3 1.3e-3 6.3e-4 5.0e-4 2.5e-4

RK4 2.5e-2 1.0e-2 5.0e-3 1.0e-3 5.0e-4

1e-6 RK1 7.8e-4 6.3e-4 3.1e-4 1.3e-4 6.3e-5

RK4 6.3e-3 1.3e-3 6.3e-4 1.0e-3 1.3e-4

Table 4.10: Time steps τ used in the numerical computations, van Genuchten model

functions.
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Runge Kutta RK1 method, I = 100, 200, 400, 800 and 1600 divisions, L1 norms

εt 100 EOC1 200 EOC2 400 EOC3 800 EOC4 1600

1e-1 3.4e-3 1.06 1.6e-3 1.06 7.8e-4 1.23 3.3e-4 1.40 1.3e-4

1e-2 3.8e-3 1.10 1.8e-3 0.93 9.4e-4 0.98 4.8e-4 1.09 2.2e-4

1e-3 4.0e-3 1.08 1.9e-3 0.91 1.0e-3 0.93 5.2e-4 1.01 2.6e-4

1e-4 4.3e-3 1.03 2.1e-3 0.95 1.1e-3 0.97 5.6e-4 1.02 2.8e-4

1e-5 4.1e-3 1.01 2.0e-3 0.95 1.1e-3 0.89 5.7e-4 1.05 2.7e-4

1e-6 4.6e-3 1.06 2.2e-3 0.98 1.1e-3 1.01 5.5e-4 0.97 2.8e-4

Runge Kutta RK4 method, I = 100, 200, 400, 800 and 1600 divisions, L1 norms

εt 100 EOC1 200 EOC2 400 EOC3 800 EOC4 1600

1e-1 3.1e-3 0.97 1.6e-3 1.07 7.7e-4 1.23 3.3e-4 1.37 1.3e-4

1e-2 3.4e-3 0.93 1.8e-3 0.94 9.1e-4 0.99 4.6e-4 1.04 2.2e-4

1e-3 3.6e-3 0.99 1.8e-3 0.92 9.5e-4 0.94 5.0e-4 0.97 2.5e-4

1e-4 3.6e-3 0.98 1.8e-3 0.91 9.8e-4 0.93 5.1e-4 0.97 2.6e-4

1e-5 4.3e-3 1.22 1.9e-3 0.92 9.9e-4 0.90 5.3e-4 0.98 2.7e-4

1e-6 3.7e-3 0.96 1.9e-3 0.93 1.0e-3 0.82 5.7e-4 1.09 2.7e-4

Table 4.11: Experimental order of convergence computed from the L1 norms for the van

Genuchten model functions and S0 = 0.5.

Runge Kutta RK1 method, I = 100, 200, 400, 800 and 1600 divisions, L1 norms

εt 100 EOC1 200 EOC2 400 EOC3 800 EOC4 1600

1e-1 7.5e-3 1.03 3.7e-3 0.95 1.9e-3 0.48 1.4e-3 -0.19 1.6e-3

1e-2 9.1e-3 1.14 4.1e-3 1.00 2.1e-3 1.05 9.9e-4 1.00 5.0e-4

1e-3 1.0e-2 1.17 4.6e-3 0.96 2.4e-3 1.02 1.2e-3 1.02 5.7e-4

1e-4 1.0e-2 1.01 5.0e-3 0.96 2.6e-3 0.87 1.4e-3 1.13 6.5e-4

1e-5 9.9e-3 0.81 5.6e-3 0.97 2.9e-3 1.03 1.4e-3 0.98 7.2e-4

1e-6 1.1e-2 1.02 5.5e-3 0.95 2.8e-3 1.02 1.4e-3 0.97 7.1e-4

Runge Kutta RK4 method, I = 100, 200, 400, 800 and 1600 divisions, L1 norms

εt 100 EOC1 200 EOC2 400 EOC3 800 EOC4 1600

1e-1 7.2e-3 0.98 3.7e-3 0.94 1.9e-3 0.47 1.4e-3 -0.19 1.6e-3

1e-2 7.8e-3 0.95 4.0e-3 0.99 2.0e-3 1.04 9.8e-4 0.97 5.0e-4

1e-3 8.5e-3 1.02 4.2e-3 0.95 2.2e-3 0.99 1.1e-3 1.03 5.4e-4

1e-4 8.5e-3 0.94 4.4e-3 0.94 2.3e-3 0.97 1.2e-3 0.97 6.1e-4

1e-5 1.0e-2 1.15 4.7e-3 0.94 2.4e-3 0.98 1.2e-3 0.96 6.3e-4

1e-6 8.9e-3 0.64 5.7e-3 0.97 2.9e-3 1.03 1.4e-3 0.99 7.2e-4

Table 4.12: Experimental order of convergence computed from the L1 norms for the van

Genuchten model functions and S0 = 0.7.
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Runge Kutta RK1 method, I = 100, 200, 400, 800 and 1600 divisions, L1 norms

εt 100 EOC1 200 EOC2 400 EOC3 800 EOC4 1600

1e-1 1.8e-2 0.92 9.4e-3 0.81 5.4e-3 0.24 4.5e-3 -0.15 5.0e-3

1e-2 2.0e-2 0.98 1.0e-2 0.95 5.2e-3 0.97 2.7e-3 0.80 1.5e-3

1e-3 2.1e-2 0.92 1.1e-2 0.93 5.7e-3 0.98 2.9e-3 1.00 1.5e-3

1e-4 2.1e-2 0.87 1.2e-2 0.92 6.1e-3 0.96 3.1e-3 0.97 1.6e-3

1e-5 2.2e-2 0.91 1.2e-2 0.91 6.2e-3 0.91 3.3e-3 0.95 1.7e-3

1e-6 2.2e-2 0.87 1.2e-2 0.90 6.3e-3 0.93 3.3e-3 0.94 1.7e-3

Runge Kutta RK4 method, I = 100, 200, 400, 800 and 1600 divisions, L1 norms

εt 100 EOC1 200 EOC2 400 EOC3 800 EOC4 1600

1e-1 1.8e-2 0.90 9.4e-3 0.80 5.4e-3 0.24 4.6e-3 -0.15 5.1e-3

1e-2 1.9e-2 0.90 1.0e-2 0.94 5.2e-3 0.96 2.7e-3 0.78 1.6e-3

1e-3 1.9e-2 0.90 1.0e-2 0.91 5.5e-3 0.95 2.8e-3 0.99 1.4e-3

1e-4 2.0e-2 0.90 1.1e-2 0.91 5.7e-3 0.95 3.0e-3 0.95 1.5e-3

1e-5 2.1e-2 0.85 1.2e-2 0.92 6.1e-3 0.98 3.1e-3 0.95 1.6e-3

1e-6 2.2e-2 0.97 1.1e-2 0.90 5.9e-3 0.87 3.2e-3 0.95 1.7e-3

Table 4.13: Experimental order of convergence computed from the L1 norms for the van

Genuchten model functions and S0 = 0.8.

Runge Kutta RK1 method, I = 100, 200, 400, 800 and 1600 divisions, L1 norms

εt 100 EOC1 200 EOC2 400 EOC3 800 EOC4 1600

1e-1 6.1e-2 0.87 3.3e-2 0.82 1.9e-2 0.23 1.6e-2 -0.12 1.7e-2

1e-2 6.3e-2 0.80 3.6e-2 0.90 1.9e-2 0.95 1.0e-2 0.84 5.6e-3

1e-3 6.9e-2 0.84 3.9e-2 0.88 2.1e-2 0.93 1.1e-2 0.97 5.6e-3

1e-4 7.0e-2 0.86 3.8e-2 0.86 2.1e-2 0.86 1.2e-2 0.93 6.1e-3

1e-5 6.9e-2 0.79 4.0e-2 0.86 2.2e-2 0.99 1.1e-2 0.91 5.9e-3

1e-6 7.2e-2 0.88 3.9e-2 0.89 2.1e-2 0.83 1.2e-2 0.91 6.3e-3

Runge Kutta RK4 method, I = 100, 200, 400, 800 and 1600 divisions, L1 norms

εt 100 EOC1 200 EOC2 400 EOC3 800 EOC4 1600

1e-1 6.1e-2 0.87 3.3e-2 0.82 1.9e-2 0.23 1.6e-2 -0.11 1.7e-2

1e-2 6.5e-2 0.85 3.6e-2 0.89 1.9e-2 0.94 1.0e-2 0.82 5.7e-3

1e-3 6.7e-2 0.85 3.7e-2 0.86 2.0e-2 0.91 1.1e-2 0.95 5.6e-3

1e-4 6.9e-2 0.85 3.8e-2 0.86 2.1e-2 0.89 1.1e-2 0.92 6.0e-3

1e-5 7.2e-2 0.92 3.8e-2 0.86 2.1e-2 0.82 1.2e-2 0.91 6.3e-3

1e-6 6.9e-2 0.80 4.0e-2 0.85 2.2e-2 0.97 1.1e-2 0.82 6.3e-3

Table 4.14: Experimental order of convergence computed from the L1 norms for the van

Genuchten model functions and S0 = 0.9.
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Runge Kutta RK1 method, I = 100, 200, 400, 800 and 1600 divisions, L2 norms

εt 100 EOC1 200 EOC2 400 EOC3 800 EOC4 1600

1e-1 8.4e-3 0.94 4.4e-3 0.96 2.3e-3 1.08 1.1e-3 1.32 4.3e-4

1e-2 9.1e-3 0.97 4.7e-3 0.89 2.5e-3 0.93 1.3e-3 1.01 6.6e-4

1e-3 9.4e-3 0.96 4.8e-3 0.87 2.6e-3 0.90 1.4e-3 0.97 7.2e-4

1e-4 9.9e-3 0.93 5.2e-3 0.90 2.8e-3 0.93 1.5e-3 0.97 7.4e-4

1e-5 9.6e-3 0.92 5.1e-3 0.90 2.7e-3 0.88 1.5e-3 1.00 7.4e-4

1e-6 1.0e-2 0.95 5.3e-3 0.92 2.8e-3 0.96 1.5e-3 0.95 7.5e-4

Runge Kutta RK4 method, I = 100, 200, 400, 800 and 1600 divisions, L2 norms

εt 100 EOC1 200 EOC2 400 EOC3 800 EOC4 1600

1e-1 8.0e-3 0.88 4.4e-3 0.96 2.2e-3 1.09 1.1e-3 1.30 4.3e-4

1e-2 8.4e-3 0.86 4.6e-3 0.89 2.5e-3 0.94 1.3e-3 0.98 6.6e-4

1e-3 8.7e-3 0.90 4.7e-3 0.88 2.5e-3 0.91 1.4e-3 0.95 7.0e-4

1e-4 8.8e-3 0.89 4.8e-3 0.87 2.6e-3 0.91 1.4e-3 0.94 7.2e-4

1e-5 1.0e-2 1.05 4.8e-3 0.88 2.6e-3 0.89 1.4e-3 0.95 7.3e-4

1e-6 9.0e-3 0.88 4.9e-3 0.89 2.6e-3 0.83 1.5e-3 1.02 7.3e-4

Table 4.15: Experimental order of convergence computed from the L2 norms for the van

Genuchten model functions and S0 = 0.5.

Runge Kutta RK1 method, I = 100, 200, 400, 800 and 1600 divisions, L2 norms

εt 100 EOC1 200 EOC2 400 EOC3 800 EOC4 1600

1e-1 1.7e-2 1.03 8.4e-3 1.17 3.7e-3 1.02 1.8e-3 -0.23 2.2e-3

1e-2 2.1e-2 1.05 1.0e-2 0.93 5.4e-3 1.07 2.6e-3 1.26 1.1e-3

1e-3 2.4e-2 1.03 1.2e-2 0.88 6.4e-3 0.95 3.3e-3 0.98 1.7e-3

1e-4 2.4e-2 0.89 1.3e-2 0.88 7.0e-3 0.83 3.9e-3 1.06 1.9e-3

1e-5 2.3e-2 0.72 1.4e-2 0.88 7.6e-3 0.95 3.9e-3 0.94 2.0e-3

1e-6 2.5e-2 0.89 1.4e-2 0.87 7.4e-3 0.95 3.9e-3 0.93 2.0e-3

Runge Kutta RK4 method, I = 100, 200, 400, 800 and 1600 divisions, L2 norms

εt 100 EOC1 200 EOC2 400 EOC3 800 EOC4 1600

1e-1 1.6e-2 0.97 8.3e-3 1.17 3.7e-3 1.00 1.9e-3 -0.24 2.2e-3

1e-2 1.8e-2 0.85 1.0e-2 0.93 5.3e-3 1.07 2.5e-3 1.27 1.0e-3

1e-3 2.0e-2 0.92 1.1e-2 0.87 5.9e-3 0.93 3.1e-3 1.00 1.5e-3

1e-4 2.0e-2 0.83 1.1e-2 0.86 6.3e-3 0.91 3.3e-3 0.92 1.8e-3

1e-5 2.4e-2 1.01 1.2e-2 0.86 6.6e-3 0.91 3.5e-3 0.92 1.8e-3

1e-6 2.1e-2 0.58 1.4e-2 0.88 7.6e-3 0.95 3.9e-3 0.94 2.0e-3

Table 4.16: Experimental order of convergence computed from the L2 norms for the van

Genuchten model functions and S0 = 0.7.
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Runge Kutta RK1 method, I = 100, 200, 400, 800 and 1600 divisions, L2 norms

εt 100 EOC1 200 EOC2 400 EOC3 800 EOC4 1600

1e-1 3.3e-2 1.03 1.6e-2 1.22 7.0e-3 0.45 5.1e-3 -0.51 7.3e-3

1e-2 4.3e-2 0.99 2.2e-2 0.92 1.2e-2 1.13 5.3e-3 1.38 2.0e-3

1e-3 4.5e-2 0.80 2.6e-2 0.83 1.4e-2 0.95 7.5e-3 1.03 3.7e-3

1e-4 4.8e-2 0.78 2.8e-2 0.82 1.6e-2 0.91 8.5e-3 0.93 4.5e-3

1e-5 4.8e-2 0.79 2.8e-2 0.80 1.6e-2 0.79 9.3e-3 0.91 4.9e-3

1e-6 4.7e-2 0.66 3.0e-2 0.80 1.7e-2 0.88 9.3e-3 0.89 5.0e-3

Runge Kutta RK4 method, I = 100, 200, 400, 800 and 1600 divisions, L2 norms

εt 100 EOC1 200 EOC2 400 EOC3 800 EOC4 1600

1e-1 3.2e-2 0.97 1.6e-2 1.21 7.0e-3 0.43 5.2e-3 -0.50 7.3e-3

1e-2 3.7e-2 0.80 2.1e-2 0.92 1.1e-2 1.12 5.2e-3 1.36 2.0e-3

1e-3 3.9e-2 0.78 2.3e-2 0.82 1.3e-2 0.91 7.0e-3 1.03 3.4e-3

1e-4 4.2e-2 0.76 2.5e-2 0.80 1.4e-2 0.88 7.7e-3 0.91 4.1e-3

1e-5 4.9e-2 0.77 2.8e-2 0.82 1.6e-2 0.98 8.2e-3 0.90 4.4e-3

1e-6 4.9e-2 0.90 2.6e-2 0.79 1.5e-2 0.70 9.3e-3 0.91 4.9e-3

Table 4.17: Experimental order of convergence computed from the L2 norms for the van

Genuchten model functions and S0 = 0.8.

Runge Kutta RK1 method, I = 100, 200, 400, 800 and 1600 divisions, L2 norms

εt 100 EOC1 200 EOC2 400 EOC3 800 EOC4 1600

1e-1 8.7e-2 0.89 4.7e-2 1.25 2.0e-2 -0.01 2.0e-2 -0.71 3.3e-2

1e-2 1.1e-1 0.76 6.6e-2 0.76 3.9e-2 1.04 1.9e-2 1.53 6.6e-3

1e-3 1.2e-1 0.61 7.7e-2 0.66 4.9e-2 0.79 2.8e-2 0.93 1.5e-2

1e-4 1.2e-1 0.57 8.3e-2 0.63 5.4e-2 0.73 3.3e-2 0.80 1.9e-2

1e-5 1.2e-1 0.58 8.4e-2 0.61 5.5e-2 0.67 3.4e-2 0.77 2.0e-2

1e-6 1.2e-1 0.51 8.7e-2 0.61 5.7e-2 0.69 3.5e-2 0.75 2.1e-2

Runge Kutta RK4 method, I = 100, 200, 400, 800 and 1600 divisions, L2 norms

εt 100 EOC1 200 EOC2 400 EOC3 800 EOC4 1600

1e-1 8.3e-2 0.84 4.7e-2 1.25 2.0e-2 -0.03 2.0e-2 -0.70 3.3e-2

1e-2 9.8e-2 0.62 6.4e-2 0.75 3.8e-2 1.03 1.9e-2 1.51 6.5e-3

1e-3 1.0e-1 0.59 7.0e-2 0.64 4.5e-2 0.75 2.6e-2 0.92 1.4e-2

1e-4 1.1e-1 0.58 7.5e-2 0.62 4.9e-2 0.71 3.0e-2 0.79 1.7e-2

1e-5 1.2e-1 0.56 8.4e-2 0.63 5.4e-2 0.77 3.2e-2 0.76 1.9e-2

1e-6 1.3e-1 0.67 7.9e-2 0.60 5.2e-2 0.58 3.5e-2 0.87 1.9e-2

Table 4.18: Experimental order of convergence computed from the L2 norms for the van

Genuchten model functions and S0 = 0.9.
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DISCUSSION OF RESULTS

Tables 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8 and 4.9 resp. Tables 4.11, 4.12, 4.13,

4.14, 4.15, 4.16, 4.17 and 4.18 show results obtained using the Brooks-Corey,

resp. van Genuchten model functions using the L1 and the L2 norms.

As expected, the experimental order of convergence depends on εt, but this

dependence can be neglected, approximately by the value of εt = 10−3. If εt is

not small enough, a negative experimental order of convergence is obtained as it

can be observed for example in Table 4.2 in the case of EOC4. In such a case, the

numerical solution does not converge to the quasi-analytical solution.

The numerical method uses the first order spatial discretization, which is in

agreement with the presented results and also with the results in Bastian, 1999.

Figures 4.2 and 4.3 illustrate the convergence of the numerical solution to the

exact solution.

4.3 Applicability in Heterogeneous Media

4.3.1 Convergence analysis

PROBLEM FORMULATION

The following parameters and boundary and initial conditions has to be setup

in order to be able to compare the numerical solution to the exact solution obtained

by the method described in Chapter 3, Sections 3.2.2 and 3.3.3. Suppose the

one-dimensional non-wetting phase intrusion problem (4.2) without gravity (e.g.

G ≡ 0) with the mirror boundary conditions

un − 1
2
= un 1

2
, (4.38)

un m+ 1
2
= un m− 1

2
. (4.39)

The interface is placed at x = 0 as it is depicted in Figure 4.4. The discretized

function s is defined as s j(t) = Sn

(

t, hj− 1
2
L
)

, where L is a sufficiently large length

of the domain Ω such that the numerical solution preserves its initial state in the

vicinity of the boundary ∂Ω, i.e. at x = − 1
2
L and x = 1

2
L, for all t ∈ [0,T], where

T is the final time of the numerical simulation. The initial state is described as

s j(0) = SL
i for all 0 ≤ j <

1

2
I, (4.40)

s j(0) = SR
i for all

1

2
I ≤ j ≤ I. (4.41)
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Figure 4.4: Initial state of the porous medium with a discontinuity.

The product of the magnitude parameter A and the ratio parameter R of the

total velocity

u(t) = ARt−
1
2 ,

is equal in both subdomains L and R, i.e.

ARRR
= ALRL,

and must be computed using the exact solution obtention algorithm.

The unrealistic sands already used in Section 3.4.1 are selected to demonstrate

convergence and to determine experimental order of convergence EOC of the nu-

merical scheme in the heterogeneous case.

The exact solution is obtained for a given initial saturation setup SL
i
= 0.9

and SR
i
= 0.1 for the non-wetting phase formulation, i.e. the non-wetting phase

intrusion problem. 1000 nodes are used to discretize the functions F, resp. G
in the exact solution computation and the parameter εA = 10−15 is set. The

numerical solutions are computed on a series of mesh sizes characterised by

I ∈ {100, 200, 400, 800, 1600} and compared to the exact solution in the L1 norm.

Based on the previous study of the influence of the initial numerical time εt,

εt = 10−5 is selected in all numerical computations in this section.

The time step τ is selected heuristically such that the numerical stability is

assured in the same way as in the homogeneous case (see Section 4.2.3). The

time steps τ for the respective cases are shown in Tables 4.20, 4.23, 4.26 and 4.29.
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Par. Units fine sand (FS) coarse sand (CS)

Porosity Φ [−] 0.38 0.40

Intrinsic Permeability K [m2] 10−11 10−10

Residual Water Sat. Swr [−] 0.10 0.08

Residual NAPL Sat. Snr [−] 0 0

Water Viscosity µw [kg m−1s−1] 0.001 0.001

DNAPL Viscosity µn [kg m−1s−1] 0.001 0.001

Brooks-Corey Pd [Pa] 1000 900

λ [-] 3.86 3.86

van Genuchten 1
α [Pa] 1500 800

m [-] 0.60 0.40

Table 4.19: Parameter setup for two unrealistic porous materials - coarse and fine sands.
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BROOKS-COREY MODEL FUNCTIONS, CS→ FS

RL RK 100 200 400 800 1600

-1000.0 RK1 6.3e-3 3.1e-3 1.6e-3 6.3e-4 5.0e-4

RK4 5.0e-2 2.5e-2 1.3e-2 5.0e-3 1.0e-3

-100.0 RK1 6.3e-3 3.1e-3 1.6e-3 1.3e-3 5.0e-4

RK4 5.0e-2 2.5e-2 1.3e-2 2.5e-3 1.0e-3

-10.0 RK1 1.3e-2 6.3e-3 3.1e-3 1.3e-3 1.0e-3

RK4 2.5e-2 1.3e-2 6.3e-3 1.0e-2 2.0e-3

-1.0 RK1 2.5e-2 1.3e-2 6.3e-3 5.0e-3 2.0e-3

RK4 5.0e-2 2.5e-2 1.3e-2 5.0e-3 2.0e-3

0.0 RK1 1.0e-1 5.0e-2 5.0e-2 1.0e-2 2.0e-3

RK4 1.0e-1 5.0e-2 5.0e-2 1.0e-2 2.0e-3

0.1 RK1 2.5e-2 1.3e-2 6.3e-3 2.5e-3 2.0e-3

RK4 1.0e-1 5.0e-2 2.5e-2 1.0e-2 2.0e-3

Table 4.20: Time steps τ used in the numerical computations, Brooks-Corey model func-

tions, CS→ FS.
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Runge Kutta RK1 method, I = 100, 200, 400, 800 and 1600 divisions, L1 norms

RL 100 EOC1 200 EOC2 400 EOC3 800 EOC4 1600

0.1 3.8e-3 0.51 2.7e-3 0.67 1.7e-3 0.74 1.0e-3 0.82 5.7e-4

0 4.0e-3 0.53 2.8e-3 0.68 1.7e-3 0.76 1.0e-3 0.81 5.8e-4

-1 5.1e-3 0.59 3.4e-3 0.76 2.0e-3 0.69 1.2e-3 1.12 5.7e-4

-10 4.8e-3 0.51 3.4e-3 0.77 2.0e-3 1.03 9.6e-4 0.66 6.1e-4

-100 1.6e-2 1.13 7.3e-3 0.91 3.9e-3 0.91 2.1e-3 0.89 1.1e-3

-1000 3.7e-2 0.81 2.1e-2 0.89 1.2e-2 0.89 6.2e-3 0.97 3.2e-3

-1942 4.5e-2 0.81 2.6e-2 0.86 1.4e-2 0.89 7.6e-3 0.98 3.9e-3

Runge Kutta RK4 method, I = 100, 200, 400, 800 and 1600 divisions, L1 norms

RL 100 EOC1 200 EOC2 400 EOC3 800 EOC4 1600

0.1 3.9e-3 0.52 2.7e-3 0.67 1.7e-3 0.74 1.0e-3 0.79 5.9e-4

0 4.0e-3 0.53 2.8e-3 0.68 1.7e-3 0.76 1.0e-3 0.81 5.8e-4

-1 4.2e-3 0.55 2.9e-3 0.73 1.7e-3 0.84 9.7e-4 0.89 5.3e-4

-10 2.9e-3 0.36 2.2e-3 0.66 1.4e-3 0.42 1.1e-3 1.35 4.1e-4

-100 1.6e-2 1.14 7.2e-3 0.93 3.8e-3 0.93 2.0e-3 0.91 1.1e-3

-1000 3.3e-2 0.82 1.9e-2 0.90 1.0e-2 0.79 5.8e-3 0.86 3.2e-3

-1942 4.0e-2 0.86 2.2e-2 0.88 1.2e-2 0.78 7.1e-3 0.84 3.9e-3

Table 4.21: Experimental order of convergence computed from the L1 norms for the

Brooks-Corey model functions, coarse to fine sand flow (CS→ FS).
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Runge Kutta RK1 method, I = 100, 200, 400, 800 and 1600 divisions, L2 norms

RL 100 EOC1 200 EOC2 400 EOC3 800 EOC4 1600

0.1 1.1e-2 0.48 7.7e-3 0.61 5.0e-3 0.66 3.2e-3 0.69 2.0e-3

0 1.1e-2 0.49 7.9e-3 0.62 5.1e-3 0.67 3.2e-3 0.69 2.0e-3

-1 1.4e-2 0.53 9.4e-3 0.69 5.8e-3 0.65 3.7e-3 0.93 2.0e-3

-10 1.6e-2 0.51 1.1e-2 0.68 7.0e-3 0.89 3.8e-3 0.68 2.3e-3

-100 4.2e-2 0.72 2.5e-2 0.71 1.5e-2 0.62 1.0e-2 0.90 5.4e-3

-1000 8.4e-2 0.53 5.8e-2 0.58 3.9e-2 0.69 2.4e-2 0.62 1.6e-2

-1942 9.5e-2 0.51 6.7e-2 0.56 4.5e-2 0.66 2.9e-2 0.60 1.9e-2

Runge Kutta RK4 method, I = 100, 200, 400, 800 and 1600 divisions, L2 norms

RL 100 EOC1 200 EOC2 400 EOC3 800 EOC4 1600

0.1 1.1e-2 0.48 7.7e-3 0.62 5.1e-3 0.66 3.2e-3 0.68 2.0e-3

0 1.1e-2 0.49 7.9e-3 0.62 5.1e-3 0.67 3.2e-3 0.69 2.0e-3

-1 1.2e-2 0.50 8.4e-3 0.67 5.3e-3 0.74 3.2e-3 0.75 1.9e-3

-10 1.1e-2 0.35 8.7e-3 0.63 5.6e-3 0.49 4.0e-3 1.11 1.8e-3

-100 4.4e-2 0.72 2.7e-2 0.72 1.6e-2 1.00 8.0e-3 0.86 4.4e-3

-1000 8.3e-2 0.54 5.7e-2 0.60 3.8e-2 0.65 2.4e-2 0.83 1.4e-2

-1942 9.4e-2 0.53 6.5e-2 0.58 4.4e-2 0.63 2.8e-2 0.79 1.6e-2

Table 4.22: Experimental order of convergence computed from the L2 norms for the

Brooks-Corey model functions, coarse to fine sand flow (CS→ FS).
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Figure 4.5: Exact and numerical solutions for the Brooks-Corey model functions at time

t = 1000 s for various S0, heterogeneous porous medium, coarse to fine sand flow (CS

→ FS). Numerical solutions computed using the standard Runge Kutta RK4 method with

εt = 10−5.
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4.3. APPLICABILITY IN HETEROGENEOUS MEDIA

BROOKS-COREY MODEL FUNCTIONS, FS→ CS

RL RK 100 200 400 800 1600

-1000.0 RK1 1.6e-3 7.8e-4 3.9e-4 1.6e-4 6.3e-5

RK4 3.1e-3 1.6e-3 7.8e-4 3.1e-4 5.0e-4

-100.0 RK1 1.6e-3 7.8e-4 3.9e-4 1.6e-4 6.3e-5

RK4 3.1e-3 1.6e-3 7.8e-4 3.1e-4 5.0e-4

-10.0 RK1 1.6e-3 7.8e-4 3.9e-4 3.1e-4 1.3e-4

RK4 1.3e-2 6.3e-3 3.1e-3 1.3e-3 2.5e-4

-1.0 RK1 6.3e-3 3.1e-3 1.6e-3 1.3e-3 5.0e-4

RK4 5.0e-2 2.5e-2 1.3e-2 2.5e-3 1.0e-3

0.0 RK1 1.0e-1 5.0e-2 5.0e-2 1.0e-2 2.0e-3

RK4 1.0e-1 5.0e-2 5.0e-2 1.0e-2 2.0e-3

0.1 RK1 1.0e-1 5.0e-2 2.5e-2 1.0e-2 2.0e-3

RK4 1.0e-1 5.0e-2 5.0e-2 1.0e-2 2.0e-3

0.2 RK1 5.0e-2 2.5e-2 1.3e-2 5.0e-3 2.0e-3

RK4 1.0e-1 5.0e-2 5.0e-2 1.0e-2 2.0e-3

0.3 RK1 2.5e-2 1.3e-2 6.3e-3 5.0e-3 2.0e-3

RK4 1.0e-1 5.0e-2 5.0e-2 1.0e-2 2.0e-3

0.4 RK1 2.5e-2 1.3e-2 6.3e-3 2.5e-3 2.0e-3

RK4 1.0e-1 5.0e-2 2.5e-2 1.0e-2 2.0e-3

0.5 RK1 2.5e-2 1.3e-2 6.3e-3 2.5e-3 1.0e-3

RK4 1.0e-1 5.0e-2 2.5e-2 1.0e-2 2.0e-3

0.6 RK1 1.3e-2 6.3e-3 3.1e-3 2.5e-3 1.0e-3

RK4 1.0e-1 5.0e-2 2.5e-2 1.0e-2 2.0e-3

0.8 RK1 1.3e-2 6.3e-3 3.1e-3 1.3e-3 5.0e-4

RK4 5.0e-2 2.5e-2 1.3e-2 5.0e-3 2.0e-3

0.9 RK1 6.3e-3 3.1e-3 1.6e-3 6.3e-4 5.0e-4

RK4 5.0e-2 2.5e-2 1.3e-2 5.0e-3 2.0e-3

Table 4.23: Time steps τ used in the numerical computations, Brooks-Corey model func-

tions, FS→ CS.
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Runge Kutta RK1 method, I = 100, 200, 400, 800 and 1600 divisions, L1 norms

RL 100 EOC1 200 EOC2 400 EOC3 800 EOC4 1600

0.9 1.4e-3 1.17 6.0e-4 0.70 3.7e-4 0.69 2.3e-4 1.06 1.1e-4

0.8 5.6e-3 2.88 7.6e-4 0.88 4.1e-4 0.80 2.4e-4 1.02 1.2e-4

0.6 1.2e-3 0.63 7.4e-4 0.69 4.6e-4 0.84 2.6e-4 0.92 1.4e-4

0.5 4.5e-3 2.56 7.7e-4 0.83 4.3e-4 0.70 2.7e-4 0.96 1.4e-4

0.4 1.5e-3 0.97 7.5e-4 0.63 4.8e-4 0.85 2.7e-4 0.87 1.5e-4

0.3 6.1e-3 2.62 9.8e-4 1.25 4.2e-4 0.59 2.8e-4 0.93 1.5e-4

0.2 1.2e-3 0.57 8.2e-4 0.70 5.1e-4 0.93 2.7e-4 0.90 1.4e-4

0.1 1.2e-3 0.50 8.6e-4 0.72 5.2e-4 0.88 2.8e-4 1.01 1.4e-4

0 1.4e-3 0.70 8.8e-4 0.84 4.9e-4 0.90 2.6e-4 0.94 1.4e-4

-1 1.2e-3 0.79 6.8e-4 0.63 4.4e-4 0.73 2.7e-4 0.87 1.5e-4

-10 1.9e-3 0.76 1.1e-3 0.83 6.2e-4 0.96 3.2e-4 0.83 1.8e-4

-100 4.0e-3 0.83 2.3e-3 0.83 1.3e-3 0.83 7.2e-4 0.87 4.0e-4

-1000 9.1e-3 0.87 5.0e-3 0.86 2.7e-3 0.85 1.5e-3 0.87 8.3e-4

-8906 1.1e-2 0.87 6.2e-3 0.86 3.4e-3 0.85 1.9e-3 0.87 1.0e-3

Runge Kutta RK4 method, I = 100, 200, 400, 800 and 1600 divisions, L1 norms

RL 100 EOC1 200 EOC2 400 EOC3 800 EOC4 1600

0.9 3.6e-3 2.56 6.1e-4 0.72 3.7e-4 0.91 2.0e-4 1.07 9.4e-5

0.8 1.5e-3 1.23 6.3e-4 0.64 4.0e-4 0.91 2.1e-4 1.02 1.1e-4

0.6 2.7e-3 2.09 6.4e-4 0.60 4.2e-4 0.76 2.5e-4 1.06 1.2e-4

0.5 1.2e-3 0.75 7.4e-4 0.67 4.6e-4 0.87 2.5e-4 1.04 1.2e-4

0.4 1.1e-3 0.47 8.1e-4 1.13 3.7e-4 0.53 2.6e-4 1.01 1.3e-4

0.3 1.3e-3 0.57 8.5e-4 0.82 4.8e-4 0.89 2.6e-4 0.99 1.3e-4

0.2 1.3e-3 0.64 8.6e-4 0.78 5.0e-4 0.95 2.6e-4 0.97 1.3e-4

0.1 1.4e-3 0.68 8.7e-4 0.80 5.0e-4 0.94 2.6e-4 0.96 1.3e-4

0 1.4e-3 0.70 8.8e-4 0.84 4.9e-4 0.91 2.6e-4 0.94 1.4e-4

-1 1.3e-3 0.59 8.5e-4 0.77 5.0e-4 0.79 2.9e-4 0.92 1.5e-4

-10 1.7e-3 0.71 1.0e-3 0.80 5.9e-4 0.76 3.5e-4 0.89 1.9e-4

-100 4.2e-3 0.80 2.4e-3 0.84 1.4e-3 0.87 7.4e-4 0.96 3.8e-4

-1000 8.6e-3 0.80 5.0e-3 0.83 2.8e-3 0.86 1.5e-3 0.94 8.1e-4

-8906 1.1e-2 0.80 6.2e-3 0.82 3.5e-3 0.85 1.9e-3 0.93 1.0e-3

Table 4.24: Experimental order of convergence computed from the L1 norms for the

Brooks-Corey model functions, fine to coarse sand flow (FS→ CS).
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Runge Kutta RK1 method, I = 100, 200, 400, 800 and 1600 divisions, L2 norms

RL 100 EOC1 200 EOC2 400 EOC3 800 EOC4 1600

0.9 6.1e-3 0.89 3.3e-3 0.51 2.3e-3 0.57 1.6e-3 0.60 1.0e-3

0.8 2.2e-2 2.68 3.5e-3 0.70 2.1e-3 0.54 1.5e-3 0.63 9.4e-4

0.6 4.6e-3 0.50 3.2e-3 0.54 2.2e-3 0.72 1.4e-3 0.63 8.8e-4

0.5 1.6e-2 2.36 3.1e-3 0.67 2.0e-3 0.51 1.4e-3 0.67 8.7e-4

0.4 5.2e-3 0.75 3.1e-3 0.50 2.2e-3 0.64 1.4e-3 0.74 8.5e-4

0.3 2.1e-2 2.53 3.7e-3 0.99 1.9e-3 0.44 1.4e-3 0.67 8.6e-4

0.2 4.5e-3 0.42 3.4e-3 0.56 2.3e-3 0.85 1.3e-3 0.55 8.7e-4

0.1 4.6e-3 0.39 3.5e-3 0.59 2.3e-3 0.70 1.4e-3 0.72 8.8e-4

0 6.5e-3 0.59 4.3e-3 0.72 2.6e-3 0.78 1.5e-3 0.77 8.9e-4

-1 5.9e-3 0.42 4.4e-3 0.65 2.8e-3 0.76 1.7e-3 0.80 9.5e-4

-10 9.4e-3 0.64 6.1e-3 0.74 3.6e-3 0.83 2.0e-3 0.81 1.2e-3

-100 1.8e-2 0.59 1.2e-2 0.65 7.8e-3 0.72 4.7e-3 0.80 2.7e-3

-1000 3.2e-2 0.52 2.2e-2 0.57 1.5e-2 0.63 9.7e-3 0.70 6.0e-3

-8906 3.7e-2 0.50 2.6e-2 0.54 1.8e-2 0.61 1.2e-2 0.67 7.5e-3

Runge Kutta RK4 method, I = 100, 200, 400, 800 and 1600 divisions, L2 norms

RL 100 EOC1 200 EOC2 400 EOC3 800 EOC4 1600

0.9 1.7e-2 2.28 3.4e-3 0.57 2.3e-3 0.55 1.6e-3 0.59 1.0e-3

0.8 5.9e-3 0.91 3.1e-3 0.49 2.2e-3 0.59 1.5e-3 0.64 9.4e-4

0.6 9.7e-3 1.74 2.9e-3 0.50 2.1e-3 0.55 1.4e-3 0.66 8.9e-4

0.5 4.7e-3 0.55 3.2e-3 0.52 2.2e-3 0.64 1.4e-3 0.69 8.8e-4

0.4 4.6e-3 0.39 3.5e-3 0.97 1.8e-3 0.34 1.4e-3 0.71 8.8e-4

0.3 5.2e-3 0.46 3.8e-3 0.78 2.2e-3 0.60 1.5e-3 0.73 8.8e-4

0.2 5.8e-3 0.53 4.0e-3 0.73 2.4e-3 0.71 1.5e-3 0.74 8.8e-4

0.1 6.2e-3 0.56 4.2e-3 0.72 2.5e-3 0.75 1.5e-3 0.76 8.9e-4

0 6.5e-3 0.59 4.3e-3 0.72 2.6e-3 0.78 1.5e-3 0.77 8.9e-4

-1 7.0e-3 0.56 4.7e-3 0.71 2.9e-3 0.81 1.6e-3 0.81 9.4e-4

-10 8.9e-3 0.61 5.8e-3 0.72 3.5e-3 0.79 2.0e-3 0.82 1.2e-3

-100 1.8e-2 0.58 1.2e-2 0.65 7.7e-3 0.73 4.7e-3 0.82 2.6e-3

-1000 3.1e-2 0.51 2.2e-2 0.56 1.5e-2 0.63 9.5e-3 0.70 5.8e-3

-8906 3.6e-2 0.49 2.5e-2 0.54 1.8e-2 0.60 1.2e-2 0.67 7.3e-3

Table 4.25: Experimental order of convergence computed from the L2 norms for the

Brooks-Corey model functions, fine to coarse sand flow (FS→ CS).
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Figure 4.6: Exact and numerical solutions for the Brooks-Corey model functions at time

t = 1000 s for various S0, heterogeneous porous medium, coarse to fine sand flow (FS

→ CS). Numerical solutions computed using the standard Runge Kutta RK4 method with

εt = 10−5.
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VAN GENUCHTEN MODEL FUNCTIONS, CS→ FS

RL RK 100 200 400 800 1600

-10.0 RK1 5.0e-2 2.5e-2 1.3e-2 5.0e-3 2.0e-3

RK4 1.0e-1 5.0e-2 2.5e-2 1.0e-2 2.0e-3

-1.0 RK1 1.0e-1 5.0e-2 5.0e-2 1.0e-2 2.0e-3

RK4 1.0e-1 5.0e-2 5.0e-2 1.0e-2 2.0e-3

0.0 RK1 1.0e-1 5.0e-2 5.0e-2 1.0e-2 2.0e-3

RK4 1.0e-1 5.0e-2 5.0e-2 1.0e-2 2.0e-3

0.1 RK1 1.0e-1 5.0e-2 2.5e-2 1.0e-2 2.0e-3

RK4 1.0e-1 5.0e-2 5.0e-2 1.0e-2 2.0e-3

0.2 RK1 5.0e-2 2.5e-2 1.3e-2 1.0e-2 2.0e-3

RK4 1.0e-1 5.0e-2 5.0e-2 1.0e-2 2.0e-3

0.3 RK1 5.0e-2 2.5e-2 1.3e-2 5.0e-3 2.0e-3

RK4 1.0e-1 5.0e-2 5.0e-2 1.0e-2 2.0e-3

0.4 RK1 2.5e-2 1.3e-2 6.3e-3 2.5e-3 2.0e-3

RK4 1.0e-1 5.0e-2 5.0e-2 1.0e-2 2.0e-3

0.5 RK1 2.5e-2 1.3e-2 6.3e-3 2.5e-3 1.0e-3

RK4 1.0e-1 5.0e-2 5.0e-2 1.0e-2 2.0e-3

0.6 RK1 1.3e-2 6.3e-3 3.1e-3 2.5e-3 1.0e-3

RK4 1.0e-1 5.0e-2 2.5e-2 1.0e-2 2.0e-3

0.8 RK1 1.3e-2 6.3e-3 3.1e-3 1.3e-3 5.0e-4

RK4 5.0e-2 2.5e-2 1.3e-2 1.0e-2 2.0e-3

0.9 RK1 6.3e-3 3.1e-3 1.6e-3 1.3e-3 5.0e-4

RK4 5.0e-2 2.5e-2 1.3e-2 1.0e-2 2.0e-3

Table 4.26: Time steps τ used in the numerical computations, van Genuchten model

functions, CS→ FS.
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Runge Kutta RK1 method, I = 100, 200, 400, 800 and 1600 divisions, L1 norms

RL 100 EOC1 200 EOC2 400 EOC3 800 EOC4 1600

0.9 1.5e-2 2.09 3.5e-3 1.97 8.9e-4 1.34 3.5e-4 1.05 1.7e-4

0.8 2.6e-2 2.32 5.3e-3 2.18 1.2e-3 1.82 3.3e-4 0.44 2.4e-4

0.6 1.2e-1 2.35 2.3e-2 2.37 4.4e-3 2.41 8.3e-4 1.90 2.2e-4

0.5 1.1e-1 2.16 2.5e-2 2.40 4.8e-3 2.52 8.3e-4 1.52 2.9e-4

0.4 1.1e-1 2.08 2.6e-2 2.42 4.8e-3 2.53 8.4e-4 1.49 3.0e-4

0.3 1.1e-1 1.97 2.7e-2 2.44 5.0e-3 2.56 8.4e-4 1.42 3.2e-4

0.2 1.0e-1 1.89 2.8e-2 2.45 5.1e-3 2.57 8.6e-4 1.37 3.3e-4

0.1 1.0e-1 1.81 2.8e-2 2.44 5.2e-3 2.54 9.0e-4 1.35 3.5e-4

0 9.6e-2 1.71 2.9e-2 2.42 5.5e-3 2.45 1.0e-3 1.42 3.7e-4

-1 6.8e-2 1.04 3.3e-2 2.10 7.7e-3 2.07 1.8e-3 1.83 5.2e-4

-10 4.0e-2 0.08 3.8e-2 1.66 1.2e-2 0.94 6.2e-3 2.28 1.3e-3

-100 1.2e-1 1.01 5.8e-2 1.00 2.9e-2 1.14 1.3e-2 1.45 4.8e-3

-1000 2.0e-1 1.05 9.5e-2 1.02 4.7e-2 0.50 3.3e-2 1.21 1.4e-2

-2079 2.6e-1 1.04 1.3e-1 1.03 6.3e-2 0.53 4.4e-2 1.31 1.8e-2

Runge Kutta RK4 method, I = 100, 200, 400, 800 and 1600 divisions, L1 norms

RL 100 EOC1 200 EOC2 400 EOC3 800 EOC4 1600

0.9 1.7e-2 2.12 3.8e-3 2.02 9.4e-4 1.21 4.1e-4 1.50 1.4e-4

0.8 2.3e-2 2.29 4.7e-3 2.11 1.1e-3 1.56 3.7e-4 1.05 1.8e-4

0.6 1.1e-1 2.41 2.2e-2 2.43 4.0e-3 2.54 6.9e-4 1.80 2.0e-4

0.5 1.1e-1 2.26 2.3e-2 2.52 4.1e-3 2.51 7.1e-4 1.67 2.2e-4

0.4 1.1e-1 2.05 2.6e-2 2.60 4.3e-3 2.34 8.5e-4 1.71 2.6e-4

0.3 1.0e-1 1.96 2.7e-2 2.56 4.6e-3 2.38 8.7e-4 1.58 2.9e-4

0.2 1.0e-1 1.88 2.8e-2 2.43 5.1e-3 2.49 9.1e-4 1.49 3.2e-4

0.1 9.8e-2 1.80 2.8e-2 2.43 5.2e-3 2.48 9.4e-4 1.43 3.5e-4

0 9.6e-2 1.71 2.9e-2 2.42 5.5e-3 2.45 1.0e-3 1.42 3.7e-4

-1 7.7e-2 1.12 3.5e-2 2.38 6.8e-3 2.24 1.4e-3 1.47 5.2e-4

-10 4.5e-2 0.08 4.3e-2 1.80 1.2e-2 2.14 2.8e-3 1.50 9.9e-4

-100 5.4e-2 0.54 3.7e-2 0.43 2.8e-2 0.87 1.5e-2 1.44 5.6e-3

-1000 1.4e-1 0.78 8.4e-2 0.61 5.5e-2 1.04 2.7e-2 0.61 1.8e-2

-2079 1.9e-1 0.78 1.1e-1 0.55 7.5e-2 1.15 3.4e-2 0.67 2.1e-2

Table 4.27: Experimental order of convergence computed from the L1 norms for the van

Genuchten model functions, coarse to fine sand flow (CS→ FS).
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Runge Kutta RK1 method, I = 100, 200, 400, 800 and 1600 divisions, L2 norms

RL 100 EOC1 200 EOC2 400 EOC3 800 EOC4 1600

0.9 2.7e-2 1.90 7.3e-3 1.12 3.4e-3 0.65 2.2e-3 0.58 1.4e-3

0.8 4.8e-2 2.18 1.1e-2 1.58 3.6e-3 0.71 2.2e-3 0.53 1.5e-3

0.6 2.0e-1 2.13 4.4e-2 2.28 9.1e-3 1.84 2.6e-3 0.77 1.5e-3

0.5 1.9e-1 1.96 4.9e-2 2.30 9.9e-3 1.93 2.6e-3 0.75 1.5e-3

0.4 1.9e-1 1.91 4.9e-2 2.36 9.6e-3 1.93 2.5e-3 0.69 1.6e-3

0.3 1.8e-1 1.81 5.1e-2 2.36 1.0e-2 1.97 2.6e-3 0.70 1.6e-3

0.2 1.8e-1 1.75 5.2e-2 2.39 1.0e-2 1.98 2.5e-3 0.67 1.6e-3

0.1 1.7e-1 1.67 5.4e-2 2.41 1.0e-2 1.96 2.6e-3 0.70 1.6e-3

0 1.7e-1 1.57 5.6e-2 2.34 1.1e-2 2.04 2.7e-3 0.75 1.6e-3

-1 1.4e-1 0.99 7.0e-2 1.89 1.9e-2 2.26 3.9e-3 1.22 1.7e-3

-10 7.7e-2 -0.09 8.2e-2 1.68 2.6e-2 1.43 9.5e-3 2.39 1.8e-3

-100 1.2e-1 0.99 6.0e-2 0.68 3.7e-2 0.85 2.1e-2 2.51 3.6e-3

-1000 7.2e-2 0.94 3.8e-2 0.89 2.0e-2 -0.21 2.3e-2 1.09 1.1e-2

-2079 8.5e-2 0.92 4.5e-2 0.85 2.5e-2 -0.32 3.1e-2 1.62 1.0e-2

Runge Kutta RK4 method, I = 100, 200, 400, 800 and 1600 divisions, L2 norms

RL 100 EOC1 200 EOC2 400 EOC3 800 EOC4 1600

0.9 3.2e-2 1.94 8.3e-3 1.27 3.4e-3 0.65 2.2e-3 0.62 1.4e-3

0.8 4.2e-2 2.18 9.3e-3 1.43 3.5e-3 0.66 2.2e-3 0.60 1.4e-3

0.6 1.9e-1 2.19 4.2e-2 2.31 8.6e-3 1.80 2.5e-3 0.73 1.5e-3

0.5 1.9e-1 2.05 4.6e-2 2.46 8.3e-3 1.73 2.5e-3 0.73 1.5e-3

0.4 1.8e-1 1.87 5.1e-2 2.51 8.9e-3 1.74 2.7e-3 0.79 1.5e-3

0.3 1.8e-1 1.79 5.2e-2 2.46 9.4e-3 1.83 2.7e-3 0.77 1.6e-3

0.2 1.8e-1 1.72 5.3e-2 2.34 1.1e-2 1.98 2.7e-3 0.76 1.6e-3

0.1 1.7e-1 1.65 5.4e-2 2.34 1.1e-2 2.01 2.7e-3 0.74 1.6e-3

0 1.7e-1 1.57 5.6e-2 2.34 1.1e-2 2.04 2.7e-3 0.75 1.6e-3

-1 1.4e-1 1.06 6.8e-2 2.34 1.3e-2 2.16 3.0e-3 0.82 1.7e-3

-10 7.9e-2 -0.09 8.4e-2 1.90 2.2e-2 2.52 3.9e-3 1.31 1.6e-3

-100 3.2e-2 -0.02 3.2e-2 -0.16 3.6e-2 1.01 1.8e-2 2.33 3.5e-3

-1000 6.5e-2 0.65 4.2e-2 0.26 3.5e-2 1.01 1.7e-2 0.35 1.4e-2

-2079 7.7e-2 0.63 5.0e-2 0.18 4.4e-2 1.23 1.9e-2 0.45 1.4e-2

Table 4.28: Experimental order of convergence computed from the L2 norms for the van

Genuchten model functions, coarse to fine sand flow (CS→ FS).
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Figure 4.7: Exact and numerical solutions for the van Genuchten model functions at time

t = 1000 s for various S0, heterogeneous porous medium, coarse to fine sand flow (CS

→ FS). Numerical solutions computed using the standard Runge Kutta RK4 method with

εt = 10−5.
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VAN GENUCHTEN MODEL FUNCTIONS, FS→ CS

RL RK 100 200 400 800 1600

-100.0 RK1 1.3e-2 6.3e-3 3.1e-3 1.3e-3 1.0e-3

RK4 1.0e-1 5.0e-2 2.5e-2 1.0e-2 2.0e-3

-10.0 RK1 2.5e-2 1.3e-2 6.3e-3 2.5e-3 1.0e-3

RK4 5.0e-2 2.5e-2 1.3e-2 5.0e-3 2.0e-3

-1.0 RK1 5.0e-2 2.5e-2 1.3e-2 1.0e-2 2.0e-3

RK4 1.0e-1 5.0e-2 2.5e-2 1.0e-2 2.0e-3

0.0 RK1 1.0e-1 5.0e-2 5.0e-2 1.0e-2 2.0e-3

RK4 1.0e-1 5.0e-2 5.0e-2 1.0e-2 2.0e-3

0.1 RK1 5.0e-2 2.5e-2 1.3e-2 5.0e-3 2.0e-3

RK4 1.0e-1 5.0e-2 5.0e-2 1.0e-2 2.0e-3

0.2 RK1 2.5e-2 1.3e-2 6.3e-3 2.5e-3 1.0e-3

RK4 1.0e-1 5.0e-2 2.5e-2 1.0e-2 2.0e-3

0.3 RK1 1.3e-2 6.3e-3 3.1e-3 1.3e-3 5.0e-4

RK4 5.0e-2 2.5e-2 1.3e-2 1.0e-2 2.0e-3

0.4 RK1 6.3e-3 3.1e-3 1.6e-3 1.3e-3 5.0e-4

RK4 5.0e-2 2.5e-2 1.3e-2 5.0e-3 2.0e-3

0.5 RK1 6.3e-3 3.1e-3 1.6e-3 6.3e-4 2.5e-4

RK4 2.5e-2 1.3e-2 6.3e-3 5.0e-3 2.0e-3

0.6 RK1 6.3e-3 3.1e-3 7.8e-4 6.3e-4 2.5e-4

RK4 2.5e-2 1.3e-2 6.3e-3 2.5e-3 2.0e-3

0.8 RK1 3.1e-3 1.6e-3 7.8e-4 3.1e-4 1.3e-4

RK4 1.3e-2 6.3e-3 3.1e-3 1.3e-3 1.0e-3

0.9 RK1 1.6e-3 7.8e-4 3.9e-4 3.1e-4 1.3e-4

RK4 1.3e-2 6.3e-3 3.1e-3 1.3e-3 5.0e-4

Table 4.29: Time steps τ used in the numerical computations, van Genuchten model

functions, FS→ CS.
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Runge Kutta RK1 method, I = 100, 200, 400, 800 and 1600 divisions, L1 norms

RL 100 EOC1 200 EOC2 400 EOC3 800 EOC4 1600

0.9 8.0e-4 1.00 4.0e-4 1.02 2.0e-4 1.23 8.5e-5 1.14 3.8e-5

0.8 7.4e-3 1.00 3.7e-3 1.00 1.8e-3 1.01 9.2e-4 0.94 4.8e-4

0.6 7.7e-4 0.68 4.8e-4 0.84 2.7e-4 1.02 1.3e-4 0.97 6.7e-5

0.5 9.1e-4 1.17 4.1e-4 0.66 2.6e-4 0.60 1.7e-4 1.00 8.5e-5

0.4 1.4e-3 1.53 4.7e-4 0.62 3.1e-4 0.92 1.6e-4 0.91 8.7e-5

0.3 4.2e-3 2.46 7.5e-4 1.90 2.0e-4 0.55 1.4e-4 0.45 1.0e-4

0.2 1.3e-2 2.39 2.4e-3 2.39 4.6e-4 2.06 1.1e-4 0.11 1.0e-4

0.1 1.4e-2 2.36 2.8e-3 2.35 5.4e-4 2.22 1.2e-4 0.47 8.4e-5

0 1.5e-2 2.32 3.0e-3 2.34 5.9e-4 2.34 1.2e-4 0.72 7.1e-5

-1 1.4e-2 2.08 3.4e-3 1.42 1.3e-3 0.30 1.0e-3 2.28 2.1e-4

-10 2.3e-2 1.59 7.7e-3 1.24 3.2e-3 1.28 1.3e-3 1.17 5.9e-4

-100 3.3e-2 0.50 2.3e-2 0.99 1.2e-2 0.84 6.5e-3 1.10 3.0e-3

-666 8.3e-2 0.68 5.2e-2 0.63 3.3e-2 0.66 2.1e-2 0.97 1.1e-2

Runge Kutta RK4 method, I = 100, 200, 400, 800 and 1600 divisions, L1 norms

RL 100 EOC1 200 EOC2 400 EOC3 800 EOC4 1600

0.9 5.9e-4 0.99 3.0e-4 1.02 1.5e-4 1.17 6.5e-5 1.08 3.1e-5

0.8 7.5e-3 1.06 3.6e-3 1.00 1.8e-3 0.96 9.2e-4 1.01 4.6e-4

0.6 6.4e-4 0.74 3.8e-4 0.78 2.2e-4 0.68 1.4e-4 1.02 6.9e-5

0.5 9.1e-4 0.95 4.7e-4 0.74 2.8e-4 0.97 1.4e-4 0.94 7.5e-5

0.4 1.7e-3 2.23 3.5e-4 0.52 2.5e-4 0.47 1.8e-4 1.16 7.9e-5

0.3 3.4e-3 2.41 6.5e-4 1.38 2.5e-4 0.72 1.5e-4 0.95 7.8e-5

0.2 1.2e-2 2.42 2.3e-3 2.63 3.8e-4 1.92 9.9e-5 0.54 6.8e-5

0.1 1.4e-2 2.36 2.8e-3 2.47 5.0e-4 2.23 1.1e-4 0.61 6.9e-5

0 1.5e-2 2.32 3.0e-3 2.34 5.9e-4 2.33 1.2e-4 0.71 7.1e-5

-1 1.7e-2 2.17 3.7e-3 2.12 8.5e-4 1.85 2.4e-4 1.19 1.0e-4

-10 2.5e-2 1.80 7.3e-3 1.52 2.6e-3 1.23 1.1e-3 0.84 6.1e-4

-100 3.3e-2 0.76 2.0e-2 0.91 1.0e-2 0.86 5.7e-3 0.55 3.9e-3

-666 1.0e-1 0.79 6.0e-2 0.53 4.1e-2 1.13 1.9e-2 0.52 1.3e-2

Table 4.30: Experimental order of convergence computed from the L1 norms for the van

Genuchten model functions, fine to coarse sand flow (FS→ CS).
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Runge Kutta RK1 method, I = 100, 200, 400, 800 and 1600 divisions, L2 norms

RL 100 EOC1 200 EOC2 400 EOC3 800 EOC4 1600

0.9 3.4e-3 0.69 2.1e-3 0.61 1.4e-3 0.60 9.0e-4 0.59 6.0e-4

0.8 1.9e-2 0.85 1.0e-2 0.81 5.9e-3 0.75 3.5e-3 0.63 2.3e-3

0.6 2.8e-3 0.71 1.7e-3 0.66 1.1e-3 0.67 6.7e-4 0.62 4.4e-4

0.5 2.5e-3 0.83 1.4e-3 0.59 9.5e-4 0.52 6.6e-4 0.70 4.1e-4

0.4 2.9e-3 1.06 1.4e-3 0.57 9.4e-4 0.71 5.8e-4 0.67 3.6e-4

0.3 9.4e-3 2.42 1.7e-3 1.32 7.0e-4 0.56 4.8e-4 0.48 3.4e-4

0.2 2.8e-2 2.36 5.5e-3 2.40 1.0e-3 1.37 4.0e-4 0.38 3.1e-4

0.1 3.1e-2 2.32 6.3e-3 2.41 1.2e-3 1.71 3.6e-4 0.56 2.5e-4

0 3.3e-2 2.22 7.1e-3 2.27 1.5e-3 2.11 3.4e-4 0.77 2.0e-4

-1 3.8e-2 1.76 1.1e-2 1.52 3.9e-3 0.78 2.3e-3 2.45 4.1e-4

-10 4.5e-2 1.68 1.4e-2 1.29 5.8e-3 1.24 2.4e-3 0.94 1.3e-3

-100 4.4e-2 0.38 3.4e-2 0.94 1.8e-2 0.80 1.0e-2 0.85 5.6e-3

-666 7.9e-2 0.41 5.9e-2 0.42 4.4e-2 0.52 3.1e-2 0.62 2.0e-2

Runge Kutta RK4 method, I = 100, 200, 400, 800 and 1600 divisions, L2 norms

RL 100 EOC1 200 EOC2 400 EOC3 800 EOC4 1600

0.9 3.1e-3 0.65 2.0e-3 0.59 1.3e-3 0.57 9.0e-4 0.58 6.0e-4

0.8 1.9e-2 0.90 1.0e-2 0.81 5.8e-3 0.72 3.5e-3 0.65 2.2e-3

0.6 2.5e-3 0.73 1.5e-3 0.61 1.0e-3 0.55 6.9e-4 0.64 4.4e-4

0.5 2.5e-3 0.74 1.5e-3 0.63 9.9e-4 0.69 6.1e-4 0.64 3.9e-4

0.4 3.7e-3 1.58 1.2e-3 0.57 8.3e-4 0.47 6.0e-4 0.78 3.5e-4

0.3 7.6e-3 2.36 1.5e-3 0.97 7.6e-4 0.61 4.9e-4 0.68 3.1e-4

0.2 2.8e-2 2.37 5.4e-3 2.69 8.4e-4 1.10 3.9e-4 0.57 2.6e-4

0.1 3.2e-2 2.27 6.5e-3 2.50 1.2e-3 1.70 3.6e-4 0.63 2.3e-4

0 3.3e-2 2.22 7.1e-3 2.27 1.5e-3 2.10 3.4e-4 0.77 2.0e-4

-1 3.8e-2 1.98 9.6e-3 1.89 2.6e-3 2.00 6.5e-4 1.65 2.1e-4

-10 4.9e-2 2.02 1.2e-2 1.56 4.1e-3 1.04 2.0e-3 0.71 1.2e-3

-100 4.4e-2 0.51 3.1e-2 0.84 1.7e-2 0.85 9.6e-3 0.76 5.6e-3

-666 9.4e-2 0.57 6.3e-2 0.51 4.4e-2 0.58 3.0e-2 0.57 2.0e-2

Table 4.31: Experimental order of convergence computed from the L2 norms for the van

Genuchten model functions, fine to coarse sand flow (FS→ CS).
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Figure 4.8: Exact and numerical solutions for the van Genuchten model functions at time

t = 1000 s for various S0, heterogeneous porous medium, coarse to fine sand flow (FS

→ CS). Numerical solutions computed using the standard Runge Kutta RK4 method with

εt = 10−5.
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DISCUSSION OF RESULTS

Tables 4.21, 4.22, 4.24 and 4.25, resp. Tables 4.27, 4.28, 4.30 and 4.31 con-

tain the experimental orders of convergence for various RL and mesh division I
computed using the L1 and L2 norms and using the Brooks and Corey, resp. van

Genuchten model functions.

The fluid behaviour at the interface between the two subdomains is imple-

mented in the numerical scheme via the continuous velocity of the displaced phase

(4.31). The exact solution obtained using the algorithm described in Section 3.2.2,

resp. Section 3.3.3 is using a couple of the Dirichlet boundary conditions SR
0

and

S
L
0

at x = 0 and the solution is composed of two exact solutions for the homoge-

neous porous media. The numerical solution depends on the exact solution only

through the value of A R. With this respect, the interface implementation is inde-

pendent of the exact solution. The resulting EOCs presented in Tables 4.21 to 4.31

confirm that the interface implementation (4.31) is correct.

The numerical method uses first order of the spatial discretization, which agree

to the presented results.

4.3.2 Two Phase Flow in Heterogeneous Porous Media

The example used in Helmig, 1997 on the page 275 is selected in order to demon-

strate applicability of the numerical scheme discussed in this chapter. A DNAPL

is injected into a vertically placed fully water-saturated column consisting of two

different sands. The situation is depicted in Figure 4.9. Note that the vertical axis

x is oriented in the direction of the gravitational acceleration vector g and the ori-

gin x = 0 corresponds to the top of the column. The gravitational acceleration

value is set as g = 9.81 ms−2.

The fluid and sand properties are shown in Table 4.32. According to Helmig,

1997, the van Genuchten and the Brooks and Corey model parameters correspond

to the same soils 2.

The input flux of the DNAPL, prescribed at x = 0, is given by

qn(t, 0) = 0.05 kg s−1 m−2,

i.e. the input velocity of the DNAPL is given by

un(t, 0) =
qn(t, 0)

ρn

.

2The issue concerning the van Genuchten and the Brooks-Corey parameter equivalence is de-

scribed in Morel-Seytoux et al., 1996
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Par. Units fine sand (FS) coarse sand (CS)

Porosity Φ [−] 0.39 0.40

Intrinsic Permeability K [m2] 5.26 · 10−11 5.04 · 10−10

Residual Water Sat. Swr [−] 0.10 0.08

Residual NAPL Sat. Snr [−] 0 0

Water Viscosity µw [kg m−1s−1] 0.001 0.001

DNAPL Viscosity µn [kg m−1s−1] 0.001 0.001

Water Density ρw [kg m−3] 1000 1000

DNAPL Density ρn [kg m−3] 1400 1400

Brooks-Corey Pd [Pa] 1324 370

λ [-] 2.49 3.86

van Genuchten α [Pa−1] 5.81 · 10−4 2.25 · 10−3

m [-] 5.34 8.06

Table 4.32: Parameter setup : coarse and fine sands (see Helmig, 1997, pages 276-277).

Coarse Sand

0

0.145

0.345

0.5

Gravity

vector g

X

Input

flux qn

Coarse Sand

Fine  Sand

Figure 4.9: Test problem setup

The solutions are plotted in Figures 4.10 and 4.11 at the same time periods as

in Helmig, 1997. Although both the Brooks-Corey and van Genuchten functions

model the same soils, the barrier effect captured by the Brooks and Corey model

functions causes the front of the solutions to be at different distances at t = 1650 s.

These figures illustrate the fundamental difference between the two approaches to

the modeling of the capillary pressure - saturation relationships.
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4.3. APPLICABILITY IN HETEROGENEOUS MEDIA

Both Brooks-Corey and van Genuchten solutions agree to the results depicted

in Helmig, 1997 on the pages 283-289. Consequently, the interface implementa-

tion (4.31) gives correct interface approximation in numerical schemes.
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Figure 4.10: Numerical solutions at time t = 150 s and t = 250 s.
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Figure 4.11: Numerical solutions at time t = 500 s, t = 750 s and t = 1650 s.
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Conclusions

The presented work is devoted to a detailed discussion of the benchmark solution

based on the work by McWhorter and Sunada (1990). The author proposes a

reliable procedure of resolution of the implicit functional relationship which is

the result of the analytical treatment of the advection - diffusion equation. This

algorithm extends the use of the semi-analytical approach for a wider range of

entry saturations compared to the original algorithm proposed by McWhorter and

Sunada (1990). The use of the algorithm is limited by the round-off errors of the

numerical computations only for the case S0 → 1 and R→ 1 simultaneously.

From the author’s analysis, it follows that the original iterative method pro-

posed by McWhorter and Sunada (1990) can be used to obtain solutions of the

unidirectional displacement problem (R=1) only in a restricted interval of the en-

try saturations S0. This restriction is given by complications encountered in the

first iteration. The modified iterative method removes this issue and offers the

solution for larger range of entry saturations.

If R ∈ [0, 1], the variant A (equation (2.72)) of the modified iterative scheme

can be used to compute the solution for any admissible parameters except the val-

ues of S0 extremely close to 1 while the variant B (equation (2.73)) occasionally

fails if Si > 0. Therefore the iterative method described by the variant A (equa-

tion (2.72)) can be used exclusively for safe computation of the McWhorter and

Sunada quasi-analytical solution for R ∈ [0, 1].

The author concludes that the McWhorter and Sunada exact solution can be

derived for negative values of R as a consequence of the problem formulation and

the definition of the ratio parameter R. In this situation, both variants A and B

(equations (2.72) and (2.73) of the modified iterative scheme fails for R < Rcrit <
0, but the original iterative scheme works and thus can be used exclusively for safe

obtention of the McWhorter and Sunada quasi-analytical solution for negative R.

The comparison of the McWhorter-Sunada fractional flow function F with the

Buckley-Leverett fractional flow function FBL allows us to determine the limit of

A as S0 → 1 and therefore to confirm the statement given by McWhorter and

Sunada (1990) compared to the results by Chen et al. (1992) and McWhorter and

Sunada (1992).
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The McWhorter and Sunada exact solutions can be applied to the two-phase

flow heterogeneous porous medium problem discussed in van Duijn & de Neef,

1998. We developed a method that allows to obtain quasi-analytical solutions

for the advection and diffusion governed two-phase flow in porous media with a

discontinuity and verified its applicability using the first order numerical methods.

The results contribute to a detailed analysis of the analytical benchmark solu-

tion often useful for verification of more complex numerical models and in pro-

viding a tool for comparison under conditions of high wetting-phase high satu-

rations. Such a code verification was conducted by Mikyška and Illangasekare

(2005) where this improved solution was used.
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Mikyška, J., & Illangasekare, T. H. 2005. Application of a Multiphase Flow Model

for Simulations of NAPL Behavior at Inclined Material Interfaces. Pages

117–127 of: Proceedings of Czech-Japanese Seminar in Applied Mathemat-
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