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Abstrakt
Matematické modelování komplexních dy-
namických procesů v porézním prostředí
vyžaduje pokročilé metody pro řešení pří-
slušného systému diferenciálních rovnic.
V předložené práci jsou představeny me-
tody pro řešení modelu dvoufázového fil-
tračního proudění v obecné dimenzi, mo-
delu dvoufázového kompozičního proudění
s přestupem hmoty mezi fázemi v po-
rézním prostředí obecné dimenze a mo-
delu elektro-chemické interakce v poréz-
ním prostředí lithiového-iontového elek-
trického článku. Použité matematické me-
tody jsou založené buď na analytickém,
nebo numerickém přístupu.

V prvním případě se jedná o trans-
formaci parciálních nebo obyčejných di-
ferenciálních rovnic na jednu obyčejnou
diferenciální rovnici, která je dále převe-
dena na integrální rovnici. Výsledná in-
tegrální rovnice je poté řešena iteračně
pomocí numerické aproximace integrálu.
Tento přístup je použit pro získání semi-
analytického řešení úlohy dvoufázového
proudění v porézním prostředí obecné di-
menze a pro řešení elektro-chemické in-
terakce v lithiovém-iontovém elektrickém
článku.

Ve druhém případě je uvažován sys-
tém parciálních diferenciálních rovnic s
obecnými koeficienty, pro který je použita
diskretizace pomocí smíšené hybridní me-
tody konečných prvků. Tato diskretizace
je modifikována tak, aby bylo možné řešit
i degenerující úlohy dvoufázového kompo-
zičního proudění v porézním prostředí. Vý-
sledný numerický řešič NumDwarf lze vý-
hodně masivně paralelizovat pro počítání
na grafických akcelerátorech (GPU) nebo
na výpočetních klastrech CPU. V práci
je uveden přehled konkrétních úloh, které
byly a v současné době jsou řešeny pomocí
řešiče NumDwarf.

Abstract
Mathematical modeling of complex dy-
namic processes in porous media requires
advanced methods for solving a corre-
sponding system of differential equations.
The presented work presents methods for
solving the two-phase flow model in multi-
dimensional porous media, the two-phase
compositional flow model with mass trans-
fer between phases in a porous medium of
general dimension, and the electrochemi-
cal interaction model in the porous envi-
ronment of a lithium-ion electric cell. The
mathematical methods used are based on
either an analytical or a numerical ap-
proach.

The first case involves the transforma-
tion of partial or ordinary differential
equations into a single ordinary differen-
tial equation, which is further transformed
into an integral equation. The resulting
integral equation is then solved iteratively
using a numerical approximation of the
integral. This approach is used to ob-
tain a semi-analytical solution of the two-
phase flow problem in a porous medium
of a general dimension to solve the elec-
trochemical interaction in a lithium-ion
cell.

In the second case, a system of partial
differential equations with general coeffi-
cients is considered, for which discretiza-
tion using a mixed finite element hybrid
method is used. This discretization is
modified so that it is possible to solve
degenerative problems of two-phase com-
positional flow in a porous medium. The
resulting numerical solver NumDwarf can
be advantageously massively parallelized
for computing on graphics accelerators
(GPUs) or CPU computational clusters.
The thesis provides an overview of spe-
cific tasks that have been solved using the
NumDwarf solver.
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Kapitola 1
Předmluva

Předkládaná práce shrnuje hlavní výsledky autora v oblasti výzkumu pokro-
čilých metod matematického modelování dynamických procesů v porézním
prostředí. Jak je znázorněno na Obrázku 1.1, tato oblast má interdisciplinární
povahu. Výchozím bodem jsou fyzikální, chemické nebo biologické poznatky
o přírodě, které jsou popsány pomocí matematických rovnic vycházejících ze
základních zákonů a principů. Tyto rovnice jsou dále analyzovány a pro jejich
řešení je navržena vhodná analytická nebo numerická metoda. V případě
numerického modelu je tento dále řešen pomocí vhodné počítačové implemen-
tace, kde je kladen důraz na její efektivitu s ohledem na moderní paralelní
výpočetní možnosti, jako jsou rozsáhlé výpočetní klastry nebo počítání na
grafických akcelerátorech.

Tematicky zapadá předložená práce do náplně oboru Matematického inže-
nýrství, který je tradičním oborem Katedry matematiky Fakulty jaderné a
fyzikálně inženýrské Českého vysokého učení technického v Praze.

Skutečnost Fyzikálně-chemický model Matematický model

Analytické řešení Numerická metoda

Výsledky Simulace Implementace

Obrázek 1.1: Schéma ilustrující proces matematického modelování přírodního
nebo průmyslového jevu se zpětnou vazbou z výsledků matematického modelování,
např. při řízení technologických procesů v průmyslu.

Matematické modelování komplexních dynamických procesů v porézním
prostředí je důležitým nástrojem ve vývoji a výzkumu v mnoha oborech
lidské činnosti, jako například v ekologii (v problematice ochrany zdrojů
pitné podpovrchové vody), ropném průmyslu (simulace ropných rezervoárů),
v lékařství (perfuze cév nebo myokardu) nebo v automobilovém průmyslu
(studium stárnutí lithiových-iontových elektrických článků) [1, 2, 3, 4, 5, 6].

Tato práce se zabývá pokročilými analytickými a numerickými metodami
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1. Předmluva.............................................
pro řešení systémů diferenciálních rovnic, které popisují výše uvedené procesy
v porézním prostředí.

V případě analytických metod je představen způsob transformace parciál-
ních nebo obyčejných diferenciálních rovnic na jednu obyčejnou diferenciální
rovnici, která je dále převedena na integrální rovnici. Výsledná integrální
rovnice je poté řešena iteračně pomocí numerické aproximace integrálu. Tento
přístup je použit pro získání semi-analytického řešení úlohy dvoufázového
proudění v porézním prostředí obecné dimenze a pro řešení elektrochemické
interakce v lithiovém-iontovém elektrickém článku.

Analytická řešení je možné odvodit pouze pro velmi omezenou třídu dife-
renciálních rovnic, pro ostatní případy nezbývá, než navrhnout řešení pomocí
vhodné numerické metody. Jelikož lze většinu řídících parciálních diferenciál-
ních rovnic popisujících dvoufázové kompoziční proudění s přestupem hmoty
v porézním prostředí popsat pomocí systému advekčně-difuzně-reakčních
rovnic, byl autorem této práce navržen numerický řešič NumDwarf pro řešení
systému parciálních diferenciálních rovnic s obecnými koeficienty v obecné
dimenzi, který konkrétní volbou svých koeficientů zahrnuje všechny výše
zmíněné řídící rovnice. Numerický řešič je založen na diskretizaci pomocí
smíšené hybridní metody konečných prvků, která je modifikována tak, aby
bylo možné řešit i degenerující úlohy dvoufázového kompozičního proudění
v porézním prostředí. Implementaci řešiče NumDwarf lze výhodně masivně
paralelizovat pro počítání na grafických akcelerátorech (GPU) nebo na vý-
početních klastrech CPU. V práci je uveden přehled konkrétních úloh, které
byly a v současné době jsou řešeny pomocí tohoto řešiče.
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Kapitola 2
Matematické modelování proudění,
transportu a přestupu veličin v porézním
prostředí

2.1 Dvoufázové proudění v porézním prostředí

V této kapitole jsou shrnuty základy matematicko-fyzikálního popisu dvoufá-
zového proudění v porézním prostředí, které vychází především z [1, 3, 7, 8].
Nechť porézní prostředí vyplňuje oblast Ω ⊆ Rd, kde d značí dimenzi prostoru,
d = 1, 2, 3.

Porézní prostředí

Porézním prostředím lze chápat materiál složený z pevné fáze a volného,
vzájemně propojeného prostoru (póry). V nejobecnějším smyslu lze téměř
každý materiál považovat za porézní, pokud uvnitř obsahuje prázdný prostor.
Velikost (měřítko) a morfologie je klíčem k pochopení procesů v porézním pro-
středí. Proto jsou na geometrii a rozměry porézního média kladeny následující
předpoklady [3]:

A. Pórový prostor je propojen (jinak by nemohla tekutina proudit).

B. Rozměry prázdného prostoru musí být dostatečně velké ve srovnání
s rozměry molekul tekutiny, přičemž pevná fáze může být považována za
hypotetické kontinuum.

C. Rozměry prostoru pórů musí být dostatečně malé, aby tok tekutiny byl
řízen adhezivními silami na rozhraní kapaliny a pevné látky a soudržnými
silami na rozhraní dvou kapalin ve vícefázových systémech.

Při modelování toku v porézním prostředí je důležité brát v úvahu různá
měřítka. Obrázek 2.1 zobrazuje různá zvětšení porézního prostředí od makro-
skopické po mikroskopickou škálu.
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2. Matematické modelování proudění, transportu a přestupu veličin v porézním prostředí ............

ω

kontaktńı
úhel

pevná fáze olej voda

ω
ω

nesmáčivá fáze

smáčivá fáze

Obrázek 2.1: Ilustrace různých měřítek v porézním médiu (první dva obrázky
zleva) a reprezentace kontaktního úhlu na rozhraní tekutin a pevné fáze.

Rovnice dynamiky tekutin musí být doplněny okrajovými a počátečními
podmínkami. Ovšem kvůli složité a komplexní geometrii porézního prostředí
nelze okrajové podmínky na rozhraní pevné fáze a volného prostředí v mikro-
skopickém měřítku předepsat. Za účelem vývoje matematického modelu se
proto používá koncepce porézního média jako kontinua v makroskopickém
měřítku.

V každém bodě kontinua v makroskopickém popisu je uvažována střední
hodnota veličin přes reprezentativní elementární objem (REV). Bear a Verruijt
[1] definují REV jako objem, který je dostatečně velký na to, aby statisticky
odhadl všechny relevantní parametry konfigurace prázdného prostoru, a
zároveň dostatečně malý, aby ho šlo považovat za zanedbatelnou část celkového
objemu z makroskopického pohledu. Pokud takový REV nelze najít, nelze
dané prostředí považovat za kontinuum.

Porozita

Pomocí zvoleného REV se definuje porozita φ [−] jako poměr objemu volného
prostoru porézního prostředí k celému objemu REV:

φ(~x0) = 1
|REV|

∫
REV

γ(~x)d~x, (2.1)

kde ~x0 ∈ REV ⊂ Ω, |REV| je objem REV a γ označuje charakteristic-
kou funkci volného prostoru uvnitř porézního prostředí, která je pro každé
~x ∈ REV zavedená jako

γ(~x) =
{

1 pokud ~x náleží volnému prostoru,
0 pokud ~x náleží pevné fázi.

(2.2)

Porozita je charakteristická vlastnost porézního prostředí a lze ji určit experi-
mentálně [1].
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.............................. 2.1. Dvoufázové proudění v porézním prostředí

V obecném případě se může porozita měnit v čase, např. v důsledku defor-
mace porézního prostředí. V této práci vystačíme s předpokladem konstantní
porozity, což znamená, že porézní prostředí je rigidní.

Fáze

Fáze je chemicky homogenní část systému, která je od ostatních takových
částí oddělena určitou fyzickou hranicí a je charakterizovaná dynamickou
viskozitou µ [Pa s], objemovou hmotnostní hustotou % [kg m−3], případně
dalšími veličinami. Nutnost určité fyzické hranice mezi dvěma nebo více
fázemi znamená, že ve vícefázovém systému nemůže být přítomna více než
jedna plynná fáze, protože plyny jsou vždy plně mísitelné.

Ve většině případů je v porézních prostředích předmětem zkoumání prou-
dění vody a dalších fází, jako je olej, chlorované uhlovodíky, CO2 nebo
vzduch. Obecně se pro kapaliny nemísitelné s vodou používá zkratka NAPL
(z angl. Non-Aqueous Phase Liquid). Tyto kapaliny jsou dále děleny na husté
(DNAPL), resp. lehké (LNAPL) s vyšší, resp. nižší hustotou než voda.

Podle kontaktního úhlu rozhraní mezi tekutými fázemi u pevné stěny (viz ω
na Obrázku 2.1) rozlišujeme smáčivou (přísluší k ostrému úhlu) a nesmáčivou
(přísluší k tupému úhlu) fázi. Tato práce se mimo jiné zabývá dynamikou dvou
nemísivých tekutin voda-NAPL, přičemž voda je vždy smáčivá a označována
indexem w (z angl. wetting). Druhá, nesmáčivá fáze je pak značena indexem
n (z angl. non-wetting). Systémy se dvěma tekutými fázemi se nazývají
dvoufázové, tj. pevná fáze, která je v porézním prostředí vždy přítomna, se
do označení nezahrnuje.

Saturace

V mikroskopickém měřítku náleží každý bod REV buď pevné, nebo právě
jedné tekuté fázi α ∈ {w, n}. Pomocí charakteristické funkce γα tekuté fáze
α, definované v čase t pro každý bod ~x ∈ Ω vztahem

γα(t, ~x) =
{

1 pokud ~x náleží fázi α v čase t,
0 jinak,

(2.3)

lze zavést saturaci Sα [−] fáze α:

Sα(t, ~x0) =

∫
REV

γα(t, ~x)d~x∫
REV

γ(t, ~x)d~x , (2.4)

kde ~x0 ∈ REV ⊂ Ω.
Z definice (2.4) plyne, že saturace fáze α je bezrozměrná veličina s hod-

notami mezi 0 a 1, přičemž v případě uvažovaného dvoufázového systému
platí

Sw + Sn = 1. (2.5)

5



2. Matematické modelování proudění, transportu a přestupu veličin v porézním prostředí ............
Je dobře známo, že jednotlivé fáze nelze zcela mechanicky vytlačit z po-

rézního prostředí, např. [9, 10]. Proto se pro každou fázi α ∈ {w, n} zavádí
reziduální (zbytková) saturace Sr,α vyjadřující takové minimální nasycení,
které se v porézním médiu udrží vlivem adheze vůči pevné matrici.

K popisu zbylé, mechanicky vytlačitelné části dané fáze α se používá
efektivní saturace Se,α [−]:

Se,α = Sα − Sr,α
1−

∑
β
Sr,β

, (2.6)

která, stejně jako saturace Sα, nabývá hodnot mezi 0 a 1, a pro niž platí

Se,w + Se,n = 1. (2.7)

Řídící rovnice proudění

Dynamiku fáze α řídí zákon zachování hmoty ve tvaru [1, 3, 7]

∂(φ%αSα)
∂t

+∇ · (%α ~vα) = %αFα, (2.8)

kde filtrační rychlost ~vα je dána Darcyho zákonem

~vα = −λαK(∇pα − %α ~g), (2.9)

kde ~g [m s−2] je vektor gravitačního zrychlení, K [m2] je tenzor vnitřní
propustnosti porézního prostředí, pα [Pa] je tlak, λα [Pa−1s−1] je mobilita a
Fα [kg m−3s−1] je zdrojový člen fáze α.

Darcyho zákon je důsledkem zákona zachování hybnosti, přičemž v případě
dvoufázového (a obecně vícefázového) proudění se v porézním prostředí
zanedbává výměna hybnosti mezi fázemi.

Mobilita fáze α označuje
λα = kr,α

µα
, (2.10)

kde kr,α je relativní propustnost fáze α, která vyjadřuje snížení hydraulické
propustnosti porézního prostředí v důsledku přítomnosti fáze α a nabývá
hodnot mezi 0 a 1.

Kapilární jevy na pórové, mikroskopické úrovni způsobí skok mezi fázovými
tlaky na makroskopické úrovni. Tento skok se nazývá kapilární tlak, značí se
pc [Pa] a je definován vztahem

pc = pn − pw. (2.11)

Empirické modely pro kapilární tlak

V případě dvoufázového proudění se dá experimentálně změřit závislost
pc = pc(Se,w) pro Se,w ∈ (0, 1), přičemž z matematického pohledu lze o této
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závislosti předpokládat, že pc je ostře klesající a spojitě diferencovatelná na
(0, 1) a lim

Se,w→1−
pc(Se,w) ≥ 0, [11].

Pro empirické zjištění závislosti pc = pc(Sw,e) pro dané porézní prostředí a
systém smáčivá-nesmáčivá fáze se nejčastěji používají následující dva modely.

První model byl navržen Brooksem a Coreym [12] ve tvaru

Se,w(pc) =
(
pc
pd

)λ
pro pc ≥ pd, (2.12)

kde λ [−] odpovídá míře variability velikosti zrn v porézním prostředí a
pd [Pa] se nazývá vstupním tlakem a vyjadřuje minimální kapilární tlak, který
je nutný překonat k vytlačení smáčivé fáze v maximální saturaci z největšího
póru.

Za předpokladu invertovatelnosti závislosti Se,w(pc) lze vyjádřit Brooksův
a Coreyův model pro pc ve tvaru

pc(Sw) = pdS
− 1
λ

e,w pro Se,w ∈ (0, 1]. (2.13)

Druhý model byl navržen van Genuchtenem [13] ve tvaru

Se,w(pc) = [1 + (αpc)n]m pro pc ≥ 0, (2.14)

kde α [Pa−1], m a n jsou empiricky určené parametry, přičemž m a n charak-
terizují pórovou strukturu porézního prostředí a někdy se mezi nimi používá
vztah

m = 1− 1
n
. (2.15)

Inverzí (2.14) se odvodí vztah pro pc = pc(Se,w) ve tvaru

pc(Sw) = 1
α

(
S
− 1
m

e,w − 1
) 1
n

pro Se,w ∈ (0, 1]. (2.16)

Parametry těchto modelů se určují experimentálně nejprve při primárním
odvodnění plně nasyceného vzorku porézního prostředí (primary drainage),
poté jsou měřeny parametry druhotného (sekundárního) zavodnění (secondary
imbibition). Výsledné křivky, jejichž příklady jsou ukázány na Obrázku 2.3,
představují horní a dolní mez kapilárního tlaku, který se může v závislosti na
historii dynamiky systému v daném bodě pro danou saturaci nacházet. Taková
situace se označuje jako hystereze kapilárního tlaku [1, 2]. Pro jednoduchost se
v této práci bude uvažovat buď proces primárního odvodnění, nebo druhotného
zavodnění.
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2. Matematické modelování proudění, transportu a přestupu veličin v porézním prostředí ............
Empirické modely pro relativní propustnost

Na základě zvoleného modelu pro kapilární tlak lze odvodit model pro relativní
propustnosti smáčivé a nesmáčivé fáze pomocí vztahů [7]:

kr,w(Se,w) = SAe,w


Se,w∫
0

[pc(ξ)]−Bdξ

1∫
0

[pc(ξ)]−Bdξ


C

, (2.17a)

kr,n(Se,w) = (1− Se,w)A


Se,w∫
0

[pc(ξ)]−Bdξ

1∫
0

[pc(ξ)]−Bdξ


C

, (2.17b)

kde A, B a C jsou parametry. Nejčastěji se používají dva modely.
První, Burdinův model [14, 15] volí A = B = 2 a C = 1 a v propojení

s Brooksovým a Coreyho modelem pro pc má tvar

kr,w(Sw) = S
3+ 2

λ
e,w , (2.18a)

kr,n(Sw) = (1− Se,w)2(1− S1+ 2
λ

e,w ). (2.18b)

Druhý, Mualemův model [16] volí A = 1
2 , B = 1 a C = 2 a v propojení

s van Genuchtenovým modelem pro pc má tvar:

kr,w(Sw) = S
1
2
e,w

(
1− (1− S

1
m
e,w)m

)2
, (2.19a)

kr,n(Sw) = (1− Se,w)
1
3 (1− S

1
m
e,w)2m. (2.19b)

Pro jednoduchost se použití Burdineho, resp. Mualemova modelu nazývá
podle příslušného modelu pro kapilární tlak, tj. Brooksův a Coreyho, resp.
van Genuchtenův model.

V Obrázku 2.2 jsou zobrazeny křivky relativní propustnosti získané experi-
mentálně pro jeden vzorek písku.

2.2 Transport rozpuštěných látek v porézním
prostředí

V porézním prostředí se jednotlivé tekuté fáze mohou skládat z jedné nebo
více chemických komponent (složek). Matematicko-fyzikální popis dynamiky
proudění, transportu a přestupu hmoty vychází z formulace zákona zachování
hmoty každé takové komponenty (označené v této kapitole indexem κ) v dané
fázi (značené indexem α) [17, 18]. V této kapitole budou pro obecnou fázi s
indexem α a její komponentu s indexem κ popsány řídící transportní rovnice.
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Obrázek 2.2: Ilustrace typického průběhu křivek relativních propustností pro
jeden vzorek písku s použitím Brooksova a Coreyho, resp. van Genuchtenova
modelu. Data byla poskytnuta spolupracujícím pracovištěm CESEP, Colorado
School of Mines.
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Obrázek 2.3: Ilustrace typické závislosti kapilárního tlaku na efektivní smáčivé
saturaci pro model podle (a) Brookse a Coreyho a (b) van Genuchtena, změřené
experimentálně pro primární zavodnění a následné odvodnění. Data byla poskyt-
nuta spolupracujícím pracovištěm CESEP, Colorado School of Mines.

Řídící transportní rovnice

Rovnice kontinuity pro komponentu κ ve fázi α lze zapsat ve tvaru

∂(φSαραXκ,α)
∂t

+∇ · (ραXκ,α~vα +~jκ,α) = Fκ,α, (2.20)

kde Xκ,α [−] je hmotnostní zlomek komponenty κ ve fázi α, Fκ,α [kg m−3 s−1]
je zdrojový člen a ~jκ,α označuje difuzní tok, pro který se používá první Fickův
zákon ve tvaru

~jκ,α = −Dκ,α∇(%αxκ,α), (2.21)
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2. Matematické modelování proudění, transportu a přestupu veličin v porézním prostředí ............
kde Dκ,α [m2s−1] je difuzní koeficient, %α [mol m−3] je molární hustota fáze
α a xκ,α [−] je molární zlomek komponenty κ ve fázi α definovaný vztahem

xκ,α = nκ,α∑
ω
nω,α

, (2.22)

kde nω,α [mol] je počet molů složky ω ve fázi α.
Mezi hmotnostní a molární hustotou složky κ ve fázi α platí vztah

ραXκ,α = Mκ%αxκ,α, (2.23)

kde Mκ [kg mol−1] je molární hmotnost složky κ.

Přestup hmoty mezi fázemi

Přestup složky mezi dvěma fázemi probíhá skrz jejich fázové rozhraní a pro
jeho modelování se používají dva základní přístupy: rovnovážný a kinetický.

V případě rovnovážného přístupu se předpokládá, že proudění tekutin je
mnohem pomalejší než přestup hmoty, a systém je tak v každém okamžiku
ve stavu termodynamické rovnováhy. Ze stavových veličin (tlaku, objemu
nebo teploty) lze pak určit zastoupení komponent v jednotlivých fázích. Pro
obecný vícesložkový a vícefázový systém se k výpočtu používají výsledky
teorie fázové stability směsí, viz např. [19, 20, 21]. Pro dvoufázové systémy
kapalina-plyn lze pro výpočet zastoupení molární koncentrace (hustoty) plynu
v kapalině použít Henryho zákon. Například pro systém voda-CO2 je možné
určit rovnovážnou hmotnostní, resp. molární koncentraci ρCO2,w = XCO2,wρw,
resp. %CO2,w = xCO2,w%w komponenty CO2 ve vodě na fázovém rozhraní ze
vztahu

ρCO2,w = %CO2,wMCO2 = pg
KH

MCO2 , (2.24)

kde pg [Pa] označuje tlak plynu a KH [Pa mol−1m3] je Henryho koeficient,
který obecně závisí na teplotě [17, 22, 23]. Koncentrace daná vztahem (2.24)
se nazývá limit rozpustnosti, zkráceně rozpustnost daného plynu v kapalině a
v dalším ji budeme značit symbolem Cs,CO2 [kg m−3], resp. cs,CO2 [mol m−3].

Kinetický přístup se zabývá studiem toku Qκ,α→β [kg m−3s−1] komponenty
κ z fáze α do fáze β, přičemž se tento tok nejčastěji uvažuje ve tvaru lineární
závislosti

Qκ,α→β = kκ,α→β(Cs,β −Xκ,βρβ), (2.25)

kde kκ,α→β [s−1] je efektivní koeficient přestupu. Množství přestupující látky je
přímo úměrné rychlosti přestupu a povrchu fázového rozhraní, jehož velikost
je však v praxi velmi obtížné stanovit. Proto se v (2.25) zavádí efektivní
koeficient přestupu, který kromě rychlosti přestupu skrz rozhraní zahrnuje i
plochu rozhraní v daném REV. Hodnota koeficientu kκ,α→β se v praxi určuje
experimentálně nebo pomocí matematického modelování [18, 23, 24] (Přílohy
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P.7 [str. 168], P.4 [str. 117], P.3 [str. 102]). Tok mezi fázemi je poté zahrnut
do zdrojových členů Fκ,α a Fκ,β [25], přičemž platí bilanční rovnice

Qκ,α→β +Qκ,β→α = 0. (2.26)

2.3 Transport iontů a elektrického náboje v Li-ion
článku

V případě matematického popisu a modelování životnosti elektrických bate-
riových článků je jedním ze základních procesů elektrochemická interakce a
transport iontů a elektrického náboje v porézním prostředí obou elektrod a
separátoru. V této kapitole je předmětem zkoumání lithiový-iontový elektrický
článek (zkráceně Li-ion článek), pro který je stručně shrnut matematický
model těchto procesů v jednorozměrné geometrii vycházející z [5, 6, 26, 27,
28] a [29] (Příloha P.6 [str. 155]).

Cílem matematického modelování je určit vnější i vnitřní napětí článku
při dodávání nebo odebírání proudu o dané intenzitě, a to vše v závislosti na
chemickém stavu článku, který je popsán rozložením koncentrace lithiových
iontů v pevné fázi elektrod a gelovitém elektrolytu. Předepsaný proud je
udáván v podobě proudové hustoty na jednotku plochy Iapp [A m−2] a je
přiveden na jednu z elektrod, přičemž Iapp > 0 odpovídá režimu nabíjení a
Iapp < 0 režimu vybíjení. Pomocí soustavy transportních rovnic v porézním
prostředí pro lithiové ionty a elektrický náboj (níže popsané rovnicemi (2.27a),
(2.28), (2.30) a (2.31)), ve kterých Iapp je předepsán jako toková (Neumannova)
okrajová podmínka, vznikne odezva článku v podobě výsledného napětí mezi
oběma elektrodami.

V 1D je Li-ion článek reprezentován intervalem Ω = [xa, xd], viz Obrá-
zek 2.4, který je rozdělen na tři části Ω = Ω1 ∪ Ω2 ∪ Ω3, kde Ω1 = [xa, xb],
Ω2 = [xb, xc] a Ω3 = [xc, xd] jsou po řadě kladná elektroda, separátor a
záporná elektroda. Elektrody i separátor se skládají z pevného, porézního
materiálu a v dalším jsou veličiny příslušné k této pevné fázi značeny indexem
s (z angl. solid phase). Uvnitř porézního prostředí se v celé oblasti Ω nachází
elektrolyt, jehož příslušné veličiny jsou v dalším značeny indexem e. Veličiny
příslušné k jednotlivým podintervalům Ωi jsou dále indexovány příslušným
číslem i = 1, 2, 3.

Hodnoty všech veličin jsou obecně závislé na prostorové souřadnici x ∈ Ω a
na čase t ∈ J = (0, tf ), kde tf označuje předem zvolený konečný čas.

V Li-ion článku jsou lithiové ionty Li+ v rámci elektrochemických procesů
uvolňovány z porézního materiálu jedné elektrody (deinterkalace), transporto-
vány difuzí elektrolytem přes separátor, až jsou nakonec sloučeny s porézním
materiálem druhé elektrody (interkalace).
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kladná elektroda separátor záporná elektroda

Ω

Ω1 Ω2 Ω3

xa xb xc xd

Obrázek 2.4: Jednorozměrná aproximace lithiového-iontového elektrického článku.

Řídící transportní rovnice lithiových iontů v elektrolytu

Podle [6] lze řídící difuzní rovnice pro lithiové ionty Li+ v elektrolytu zapsat
pro každé i = 1, 2, 3 ve tvaru

φi
∂ce,i
∂t

= ∂

∂x

(
Deτi

∂ce,i
∂x

)
+
(
1− t0+

)
aiji v Ωi × J , (2.27a)

kde ce,i [mol m−3] je molární koncentrace Li+ v elektrolytu, φi [−] je porozita,
De [m2s−1] je difuzní koeficient lithiových iontů v elektrolytu, τ [−] je tortuo-
zita porézního prostředí (charakterizující zvlněnost či zakroucenost porézního
prostoru), t0+ [1] je transferenční číslo Li+, ai [m−1] je povrch porézní elek-
trody na jednotku objemu a ji [mol m−2s−1] je tok iontů z vnitřního povrchu
elektrody do elektrolytu vztažený k jednotce plochy. V případě separátoru je
tok nulový, proto j2 = 0.

Rovnice (2.27a) v jednotlivých částech článku jsou mezi sebou propojeny
okrajovými podmínkami popisujícími jednak spojitost koncentrace, resp.
difuzních toků mezi elektrodami a separátorem:

ce,2|x=xb = ce,1|x=xb a ce,3|x=xc = ce,2|x=xc , (2.27b)

resp.

Deτ2
∂ce,2
∂x

∣∣∣∣
x=xb+

= Deτ1
∂ce,1
∂x

∣∣∣∣
x=xb−

, (2.27c)

Deτ3
∂ce,3
∂x

∣∣∣∣
x=xc+

= Deτ2
∂ce,2
∂x

∣∣∣∣
x=xc−

, (2.27d)

a nulový tok Li+ skrz vnější hranici článku:

∂ce,1
∂x

∣∣∣∣
x=xa+

= ∂ce,3
∂x

∣∣∣∣
x=xd−

= 0. (2.27e)

V čase t = 0 je potom předepsána počáteční podmínka pro koncentraci ve
tvaru

ce,i|t=0 = c0
e,i, v Ωi, ∀i ∈ {1, 2, 3} . (2.27f)

V pevné fázi porézních elektrod dochází k ukládání (interkalaci) a uvolňo-
vání (deinterkalaci) Li+, přičemž jejich množství na povrchu elektrod popisují
koncentrace cs,i [mol m−3], i = 1, 3. Zároveň se symbolem cs,max,i, i = 1, 3,
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označuje maximální možná (saturovaná) koncentrace, kterou mohou lithiové
ionty na povrchu elektrody nabývat.

Dynamiku difuzních procesů lithiových iontů uvnitř pevné fáze porézních
elektrod lze dále modelovat například tak, že se pevná fáze aproximuje
souborem kuliček, přičemž na každou z nich se aplikuje druhý Fickův zákon
ve sférických souřadnicích, viz [6, 29, 30].

Butlerova-Volmerova reakční kinetika

V každém bodě a časovém okamžiku popsané rovnice udávají chemický stav
článku pomocí hodnot koncentrací ce,i v elektrolytu a cs,i v elektrodách,
i = 1, 3. Toky j1 a j3 jsou zodpovědné nejen za přestup aktivní hmoty (iontů)
mezi elektrodami a elektrolytem, ale zároveň popisují klíčové elektroche-
mické interakce, které pak udávají výsledné napětí článku. Podle Butlerovy-
Volmerovy reakční kinetiky [6, 31, 32, 33] lze tyto toky pro i = 1, 3 vyjádřit
ve tvaru

ji = δi

[
exp

(
αa,iF

RT
ηi

)
− exp

(
−αc,iF
RT

ηi

)]
(2.28a)

s
δi = Ki

√
(cs,max,i − cs,i)cs,ice,i, (2.28b)

kde F [C mol−1] je Faradayova konstanta, R [J mol−1K−1] je univerzální
plynová konstanta, T [K] je teplota, Ki [mol−

1
2 m

5
2 s−1] je reakční koeficient,

αa,i [1], resp. αc,i [1] jsou koeficienty přestupu elektrochemické reakce na
anodě, resp. katodě a ηi [V] je interkalační potenciál definovaný vztahem

ηi = ϕs,i − ϕe,i − Ui, (2.29)

kde ϕs,i [V], resp. ϕe,i [V] jsou elektrické potenciály v elektrodách, resp.
v elektrolytu a Ui [V] je napětí otevřeného obvodu (bez zatížení).

Rovnice pro výpočet elektrického potenciálu

Podle Ohmova zákona [6] lze rovnice zákona zachování elektrického náboje
v porézních elektrodách, resp. elektrolytu v Ωi × J zapsat ve tvaru

σeff
i

∂2ϕs,i
∂x2 = aiFji pro i = 1, 3, (2.30)

resp.

∂

∂x

(
κeff
i

∂ϕe,i
∂x

)
= −aiFji + 2RT

F
(1− t0+) ∂

∂x

(
κeff
i

∂ ln ce,i
∂x

)
pro i = 1, 2, 3,

(2.31)
kde σeff

i [S m−1] je efektivní elektronická vodivost v porézním prostředí a
κeff
i [S m−1] je efektivní iontová vodivost elektrolytu.
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2. Matematické modelování proudění, transportu a přestupu veličin v porézním prostředí ............
V každém časovém okamžiku lze rovnice (2.31), resp. (2.30) interpretovat

jako systém obyčejných diferenciálních rovnic druhého řádu, které je nutné
doplnit o následující okrajové podmínky pro ϕs,i:

−σeff
1

∂ϕs,1
∂x

∣∣∣∣
x=xa+

= Iapp, (2.32a)

−σeff
1

∂ϕs,1
∂x

∣∣∣∣
x=xb−

= 0, (2.32b)

−σeff
3

∂ϕs,3
∂x

∣∣∣∣
x=xc+

= 0, (2.32c)

−σeff
3

∂ϕs,3
∂x

∣∣∣∣
x=xd−

= Iapp, (2.32d)

ϕs,3|x=xd = 0, (2.32e)

resp. pro ϕe,i:

−κeff
1
∂ϕe,1
∂x

∣∣∣∣
x=xa+

= 0, (2.33a)

−κeff
1
∂ϕe,1
∂x

∣∣∣∣
x=xb−

= −κeff
2
∂ϕe,2
∂x

∣∣∣∣
x=xb+

, (2.33b)

−κeff
2
∂ϕe,2
∂x

∣∣∣∣
x=xc−

= −κeff
3
∂ϕe,3
∂x

∣∣∣∣
x=xc+

, (2.33c)

−κeff
3
∂ϕe,3
∂x

∣∣∣∣
x=xd−

= 0, (2.33d)

ϕe,1|x=xb = ϕe,2|x=xb , (2.33e)
ϕe,2|x=xc = ϕe,3|x=xc . (2.33f)

Výpočet napětí článku

V daném časovém okamžiku je při znalosti Iapp a chemického stavu článku (tj.
prostorového rozložení koncentrace lithiových iontů cs,i pro i = 1, 3 a ce,i pro
i = 1, 2, 3) možné vyřešit soustavu obyčejných diferenciálních rovnic (2.30) a
(2.31), jak je ukázáno v [29] a v Kapitole 5. Výstupem řešení těchto rovnic
jsou nejen toky j1 a j3, které vystupují ve zdrojových členech transportních
rovnic pro lithiové ionty (2.27a), ale též hodnoty potenciálů η1 a η3, z nichž
se určí hodnota ϕs,1|x=xa jako výsledné napětí článku. Detaily výpočtu jsou
uvedeny v Kapitole 5.
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Kapitola 3
Přesná řešení úlohy dvoufázového proudění
s kapilaritou v obecné dimenzi

Za předpokladu nestlačitelného dvoufázového proudění v rigidním, homogen-
ním a izotropním porézním prostředí bez zdrojů a gravitace lze v obecném
prostoru Rd, d ∈ N, formulovat úlohu tak, že pro ni existuje přesné, semi-
analytické řešení. Tato úloha se nazývá McWhorterova a Sunadova úloha [34,
35, 36, 37, 38].

Úloha představuje situaci, kdy je jedna z fází vtláčena v počátku souřadné
soustavy do oblasti vyplněné druhou fází (s jistou saturací), přičemž se před-
pokládá, že výsledný profil saturace bude symetrický okolo bodu vtláčení
umístěného v počátku soustavy souřadnic. V této práci budeme pro jedno-
duchost uvažovat pouze případ vtláčení smáčivé fáze (se saturací Sw = S0)
do oblasti naplněné fází nesmáčivou (se saturací Sw = Si < S0). Odvození
přesného řešení pro opačnou situaci je analogické [34, 36].

Principem odvození přesného řešení je transformace parciální diferenciální
rovnice dvoufázového proudění na obyčejnou diferenciální rovnici (ODR),
která je následně převedena na rovnici integrální. Pro řešení integrální rovnice
je pak použita numerická iterační metoda, proto se výsledné řešení nazývá
semi-analytické.

3.1 Formulace úlohy

Za výše uvedených předpokladů se rovnice kontinuity (2.8) pro fázi α ∈ {w, n}
zjednoduší na

φ
∂Sα
∂t

+∇ · ~vα = 0, (3.1a)

kde Darcyho rychlost fáze α je dána vztahem

~vα = −λαK∇pα, (3.1b)

kde K [m2] označuje izotropní (skalární) vnitřní propustnost porézního pro-
středí.
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3. Přesná řešení úlohy dvoufázového proudění s kapilaritou v obecné dimenzi .................
Formulace v kartézských souřadnicích

Zavedením celkové rychlosti ~vT = ~vw + ~vn a použitím definice kapilárního
tlaku (2.11) lze rovnice (3.1b) pro α = w a α = n zkombinovat a vyjádřit tak
Darcyho rychlost smáčivé fáze ve tvaru

~vw = f(Sw)~vT −D(Sw)∇Sw, (3.2)

kde f [−] je frakční funkce smáčivé fáze

f(Sw) = λw(Sw)
λw(Sw) + λn(Sw) (3.3)

a D [m2s−1] je funkce zahrnující jevy kapilární difuze

D(Sw) = −K λw(Sw)λn(Sw)
λw(Sw) + λn(Sw)

dpc
dSw

(Sw). (3.4)

Rovnice kontinuity (3.1a) pro obě fáze lze s využitím zavedeného značení
přeformulovat na soustavu rovnic

∇ · ~vT = 0, (3.5a)

φ
∂Sw
∂t

+∇ · (f(Sw)~vT −D(Sw)∇Sw) = 0, (3.5b)

pro neznámé funkce Sw = Sw(t, ~x) a ~vT = ~vT (t, ~x), ∀t > 0, ∀~x ∈ Rd.

Formulace ve sférických souřadnicích

Předpoklad symetrie hledaného přesného řešení vzhledem k počátku umožňuje
převést soustavu rovnic (3.5) z kartézských souřadnic do sférických souřadnic
v Rd, tj. předpokládají se funkční závislosti ~vT = ~vT (t, r) a Sw = Sw(t, r),
kde r [m] označuje (nezápornou) radiální souřadnici.

Rovnici (3.5a) splňuje

~vT (t, r) = Q0(t)
γdrd−1~ι, (3.6)

kde Q0 [mds−1] je obecně časově závislý objemový tok a ~ι je jednotkový vektor
v kladné směru radiální souřadnice. V rovnici (3.6) ještě vystupuje γd [md−1],
což je povrch jednotkové koule v Rd daný vztahem

γd = dπ
d
2

Γ
(
d
2 + 1

) , (3.7)

kde Γ označuje gama funkci.
Zavedením bezrozměrné funkce F = F (t, r) vztahem

F = Fw −
γdr

d−1

(1− f(Si))Q0
D
∂Sw
∂r

, (3.8)
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....................................... 3.2. Transformace na ODR

kde Fw [−] označuje normalizovanou frakční funkci smáčivé fáze

Fw(Sw) = f(Sw)− f(Si)
1− f(Si)

, (3.9)

lze rovnici (3.5b) pro všechna r > 0 a t > 0 převést do tvaru

γdr
d−1φ

∂Sw(t, r)
∂t

+ (1− f(Si))Q0(t)∂F (t, r)
∂r

= 0. (3.10)

Počáteční a okrajové podmínky

Rovnice (3.10) je doplněna následujícími počátečními a okrajovými podmín-
kami pro funkci Sw = Sw(t, r)

Sw(0, r) = Si, ∀r > 0, (3.11a)
Sw(t, 0) = S0, ∀t > 0, (3.11b)

lim
r→+∞

Sw(t, r) = Si, ∀t > 0, (3.11c)

které pro S0 > Si vyjadřují bodové vtláčení smáčivé fáze v počátku souřad-
ného systému.

V [38] je podrobně popsáno, že funkce F = F (t, r) splňuje okrajové pod-
mínky

F (t, 0) = 1, ∀t > 0, (3.12a)
lim

r→+∞
F (t, r) = 0, ∀t > 0. (3.12b)

První podmínka (3.12a) souvisí s rovností celkového toku a toku smáčivé
fáze v počátku souřadného systému. Podmínka (3.12b) platí při splnění
dodatečného předpokladu

lim
r→+∞

rd−1∂Sw
∂r

(t, r) = 0, ∀t > 0. (3.13)

3.2 Transformace na ODR

Substituce

Pokud vstupní tok Q0 splňuje časovou závislost

Q0(t) = At
d−2

2 , (3.14)

kde A [mds−
d
2 ] je konstanta, lze ukázat, že F je funkcí pouze saturace, tj.

F = F (Sw), [38] a pomocí podobnostní substituce

Sw(t, r) = Sw(λ), (3.15)
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3. Přesná řešení úlohy dvoufázového proudění s kapilaritou v obecné dimenzi .................
kde

λ = rt−
1
2 , (3.16)

lze redukovat parciální diferenciální rovnici (3.10) na ODR druhého řádu pro
neznámou funkci F = F (Sw). Tato rovnice je ve tvaru

F ′′(Sw)
[
F ′(Sw)

] 2
d
−2 = −A−

2
d

CdD(Sw)
F (Sw)− Fw(Sw) , ∀Sw ∈ [Si, S0], (3.17)

kde

Cd = d

(
γd

1− f(Si)

) 2
d
(
φ

2

) 2
d
−1
, (3.18)

přičemž výsledné řešení Sw = Sw(t, r) se pro všechna t > 0 a r > 0 získá z
implicitní rovnice

rdt−
d
2 = 2A(1− f(Si))

γdφ
F ′(Sw(t, r)). (3.19)

Okrajové podmínky

V důsledku transformačního vztahu (3.16) plynou z počáteční a okrajových
podmínek (3.11) a (3.12) následující okrajové podmínky pro F

lim
Sw→S+

i

F (Sw) = 0, (3.20a)

F (S0) = 1. (3.20b)

Navíc platí následující okrajové podmínky i pro F ′:

F ′(S+
i ) := lim

Sw→S+
i

F ′(Sw) = λd∗
γdφ

2A(1− f(Si))
, (3.21a)

F ′(S0) = 0, (3.21b)

kde λ∗ označuje limitu inverzního vztahu λ = λ(Sw)

lim
Sw→S+

i

λ(Sw) = λ∗ (3.22)

o které lze dokázat, že je konečná, viz [38].
Přestože by se mohlo zdát, že úloha (3.17) má o dvě okrajové podmínky

více, než je pro ODR druhého řádu přípustné z hlediska existence řešení, není
tomu tak. Vztah (3.21a) nelze považovat za okrajovou podmínku, protože
pouze přiřazuje význam neznámé hodnoty λ∗ k limitní hodnotě F ′(S+

i ). Druhá
podmínka (3.21b) má přímý dopad na možnost volby buď parametru A, nebo
vstupní saturace S0 v závislosti na d, jak bude ukázáno v další kapitole.
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....................................... 3.3. Integrální řešení ODR

3.3 Integrální řešení ODR

V původních článcích McWhortera a Sunady [34, 35] byl pro d = 1 a d = 2
navržen způsob řešení rovnice (3.17) pomocí jejího převodu na integrální
rovnici, která je posléze řešena iteračně a pomocí numerické aproximace
integrálů. V článku [38] (Příloha P.1 [str.51]) byl autorem této práce navržen
způsob získání řešení (3.17) i pro d ≥ 3. Všechny výsledné integrální rovnice
a iterační schémata k jejich řešení jsou shrnuty v následujících sekcích. Inte-
grální rovnice, ekvivalentní rovnici (3.17), se odvodí z (3.17) dvojnásobnou
postupnou integrací a použitím okrajových podmínek (3.20) a (3.21b).

Řešení pro d = 1

Věta 3.1. Pro d = 1 je řešení úlohy (3.17) s okrajovými podmínkami (3.20)
a při splnění podmínky (3.21b) ekvivalentní řešení integrální rovnice

F (Sw) = 1−

S0∫
Sw

(β−Sw)D(β)
F (β)−Fw(β) dβ

S0∫
Si

(β−Si)D(β)
F (β)−Fw(β)dβ

, (3.23)

pokud platí vztah mezi A a S0 ve tvaru

A2 = C1

S0∫
Si

(β − Si)D(β)
F (β)− Fw(β)dβ. (3.24)

Důkaz. Integrací (3.17) od Sw do S0 a použitím podmínky (3.21b) vznikne
vztah pro F ′ ve tvaru

F ′(Sw) = A−2C1

S0∫
Sw

D(β)
F (β)− Fw(β)dβ, ∀Sw ∈ (Si, S0). (3.25a)

Další integrací (3.25) od Sw do S0 a použitím podmínky (3.20b) vznikne

1− F (Sw) = A−2C1

S0∫
Sw

S0∫
η

D(β)
F (β)− Fw(β)dβdη, ∀Sw ∈ (Si, S0). (3.25b)

Integrál na pravé straně (3.25b) se pomocí integrace per partes převede na
[34]

1− F (Sw) = A−2C1

S0∫
Sw

(β − Sw)D(β)
F (β)− Fw(β)dβ, ∀Sw ∈ (Si, S0). (3.25c)
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3. Přesná řešení úlohy dvoufázového proudění s kapilaritou v obecné dimenzi .................
Limitním přechodem Sw → S+

i v (3.25c) a použitím podmínky (3.20a) do-
staneme požadovaný vztah mezi A a S0 daný rovnicí (3.24).

Posledním krokem je dosazení vztahu (3.24) pro A2 do (3.25c), čímž vznikne
(3.23).

Derivace rovnice (3.23) podle Sw umožní explicitně vyjádřit F ′:

F ′(Sw) =

S0∫
Sw

D(β)
F (β)−Fw(β)dβ

S0∫
Si

(β−Si)D(β)
F (β)−Fw(β)dβ

, ∀Sw ∈ (Si, S0). (3.26)

Integrální rovnici (3.23) lze vyřešit iteračně pomocí numerické integrace ve
tvaru navrženém v [34]:

Fk+1(Sw) = 1−

S0∫
Sw

(β−Sw)D(β)
Fk(β)−Fw(β)dβ

S0∫
Si

(Si−Sw)D(β)
Fk(β)−Fw(β)dβ

, (3.27)

kde Fk značí k-tou iteraci F , přičemž F0 ≡ 1 je doporučená počáteční hodnota.
Iterační schéma (3.27) je konvergentní, pouze pokud je vstupní saturace S0
dostatečně daleko od maximální smáčivé saturace Smaxw := 1− Sn,r [36, 38,
34, 35]. Pokud S0 → Smaxw , pak dochází v původně navrženém iteračním
schématu k významnému nárustu iterací, až k divergenci.

V článku [36] byly autorem této práce navrženy dvě různé modifikace
iteračního schématu (varianty A a B), které umožňují získat řešení pro
podstatně vyšší hodnoty S0. Obě varianty modifikované iterační metody jsou
založené na substituci

G(Sw) = D(Sw)
F (Sw)− Fw(Sw) , (3.28)

přičemž varianty A, resp. B jsou ve tvaru

Gk+1(Sw) = D(Sw) +Gk(Sw)

Fw(Sw) +

S0∫
Sw

(β − Sw) Gk(β) dβ

S0∫
Si

(β − Si) Gk(β) dβ

 , (3.29)
resp.

Gk+1(Sw) = [D(Sw) +Gk(Sw) Fw(Sw)]

1−

S0∫
Sw

(β − Sw) Gk(β) dβ

S0∫
Si

(β − Si) Gk(β) dβ


−1

,

(3.30)
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....................................... 3.3. Integrální řešení ODR

s doporučenou počáteční hodnotou G0 ≡ 0 [36].
Iterační schémata jsou zastavena, pokud je velikost rozdílu po sobě jdoucích

iterací menší než předem stanovená mez.
Analýzu této problematiky lze nalézt i v pozdějším článku [39], kde je

rovnice (3.17) řešena pomocí spektrálních metod.

Řešení pro d = 2

Věta 3.2. Pro d = 2 je řešení úlohy (3.17) s okrajovými podmínkami (3.20)
a při splnění podmínky (3.21b) ekvivalentní řešení integrální rovnice

F (Sw) =

Sw∫
Si

exp
(
−C2

A

β∫
Si

D(η)
F (η)−Fw(η)dη

)
dβ

S0∫
Si

exp
(
−C2

A

β∫
Si

D(η)
F (η)−Fw(η)dη

)
dβ

, ∀Sw ∈ (Si, S0), (3.31)

pokud S0 = Smaxw .

Důkaz. Integrací (3.17) od Si do Sw vznikne

F ′(Sw) = F ′(S+
i ) exp

−C2
A

Sw∫
Si

D(η)
F (η)− Fw(η)dη

 , ∀Sw ∈ (Si, S0),

(3.32a)
kde F ′(S+

i ) := limSw→S+
i
F ′(Sw) je zatím neznámá, ale konečná hodnota

odpovídající λ∗ z podmínky (3.21a). Podmínka (3.21b) je splněna jen tehdy,
pokud je integrál na pravé straně rovnice (3.32a) nekonečný při Sw → S−0 .
Vzhledem k omezenosti funkce D = D(Sw) to znamená, že musí platit

0 = lim
Sw→S−0

F (Sw)− Fw(S0) = 1− Fw(S0), (3.32b)

tj. Fw(S0) = 1, což je podle definice Fw v rovnici (3.9) a frakční funkce f v
rovnici (3.3) splněno právě tehdy, když S0 = Smaxw .

Další integrací rovnice (3.32a) od Si do Sw a při použití okrajové podmínky
(3.20a) vznikne

F (Sw) = F ′(S+
i )

Sw∫
Si

exp

−C2
A

β∫
Si

D(η)
F (η)− Fw(η)dη

dβ, ∀Sw ∈ (Si, S0).

(3.32c)
Z rovnice (3.32c) je zřejmé, že k splnění poslední okrajové podmínky (3.20b)
musí F ′(S+

i ) splňovat

F ′(S+
i ) =

 S0∫
Si

exp

−C2
A

β∫
Si

D(η)
F (η)− Fw(η)dη

 dβ


−1

, (3.32d)
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3. Přesná řešení úlohy dvoufázového proudění s kapilaritou v obecné dimenzi .................
odkud již v kombinaci s (3.32c) plyne tvrzení (3.31).

Derivace rovnice (3.31) podle Sw umožní explicitně vyjádřit F ′:

F ′(Sw) =
exp

(
−C2

A

Sw∫
Si

D(η)
F (η)−Fw(η)dη

)
S0∫
Si

exp
(
−C2

A

β∫
Si

D(η)
F (η)−Fw(η)dη

)
dβ
. (3.33)

Řešení integrální rovnice (3.31), navržené v [34], je opět založené na iterač-
ním schématu a numerické aproximaci integrálů ve tvaru

Fk+1(Sw) =

Sw∫
Si

exp
(
−C2

A

β∫
Si

D(η)
Fk(η)−Fw(η)dη

)
dβ

S0∫
Si

exp
(
−C2

A

β∫
Si

D(η)
Fk(η)−Fw(η)dη

)
dβ

, (3.34)

přičemž F0 ≡ 1 je doporučená počáteční hodnota. Iterační schéma je zastaveno,
pokud je velikost rozdílu po sobě jdoucích iterací menší než předem stanovená
mez.

Řešení pro d ≥ 3

Věta 3.3. Pokud S0 = Smaxw , je řešení úlohy (3.17) pro d ≥ 3 s okrajo-
vými podmínkami (3.20) a při splnění podmínky (3.21b) ekvivalentní řešení
integrální rovnice

F (Sw) =
Sw∫
Si

(F ′(S+
i )
) 2−d

d + d− 2
d

CdA
− 2
d

β∫
Si

D(η)
F (η)− Fw(η)dη


d

2−d

dβ,

(3.35)
kde F ′(S+

i ) splňuje

1 =
S0∫
Si

(F ′(S+
i )
) 2−d

d + d− 2
d

CdA
− 2
d

β∫
Si

D(η)
F (η)− Fw(η)dη


d

2−d

dβ. (3.36)

Důkaz. Integrací (3.17) od Si do Sw vznikne

F ′(Sw) =

(F ′(S+
i )
) 2−d

d + d− 2
d

CdA
− 2
d

Sw∫
Si

D(η)
F (η)− Fw(η)dη


d

2−d

, (3.37)

∀Sw ∈ (Si, S0), kde F ′(S+
i ) je zatím neznámá, ale konečná hodnota z pod-

mínky (3.21a). Dále se postupuje analogicky jako v důkazu Věty 3.2, tj.
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podmínka (3.21b) je splněna jen tehdy, pokud je integrál na pravé straně
rovnice (3.37) nekonečný při Sw → S−0 , odkud plyne nutnost S0 = Smaxw .

Další integrací (3.37) od Si do Sw při použití okrajové podmínky (3.20a)
rovnou vznikne rovnice (3.35), přičemž je zřejmé, že poslední okrajová pod-
mínka (3.20b) je splněna právě tehdy, když F ′(S+

i ) splňuje rovnici (3.36).

Autorem této práce bylo v [38] navrženo nejen odvození obecné ODR (3.17)
a ekvivalentní integrální rovnice ve Větě 3.3, ale též iterační způsob řešení
této integrální rovnice (3.35) při splnění požadované vazby (3.36) ve tvaru

F
(B)
k+1(Sw) = min


Sw∫
Si

B 2−d
d + d− 2

d
CdA

− 2
d

β∫
Si

D(η)dη
F

(B)
k (η)− Fw(η)


d

2−d

dβ; 1

 ,
(3.38)

kde parametr B ∈ R zastupuje neznámou hodnotu F ′(S+
i ) a F (B)

k je k-tá
iterace aproximace funkce F při dané hodnotě B. Jako počáteční hodnotu je
doporučeno zvolit F (B)

0 ≡ 1 pro každé B ∈ R.
Samotný algoritmus výpočtu je navržen tak, že pro dané B je iterační

schéma (3.38) zastaveno po k(B) krocích, pokud je velikost rozdílu po sobě
jdoucích iterací menší než předem stanovená mez.

Dále je zaveden funkcionál

HB(ξ) := 1−
S0∫
Si

B 2−d
d + d− 2

d
CdA

− 2
d

β∫
Si

D(η)
ξ(η)− Fw(η)dη


d

2−d

dβ, (3.39)

jehož nulová hodnota pro nějaké B a ξ ≡ F (B) odpovídá splnění podmínky
(3.36). Výsledná hodnota funkcionálu HB je pro dané B a F (B)

k(B) označena
H(B) := HB(F (B)

k(B)). Numerické simulace v článku [38] naznačují, že funkce
H = H(B) je monotonní a má právě jeden kořen B∗, který odpovídá hledané
hodnotě F ′(S+

i ), tj. B∗ splňuje rovnici

B∗ =
(
F (B∗)

)′
(S+
i ). (3.40)

3.4 Výsledky a aplikace

Pro d = 1 jsou numerické řešiče pro původní schéma a obě varianty modifiko-
vaného iteračního schématu volně k dispozici v podobě webové aplikace na
webové stránce autora http://mmg.fjfi.cvut.cz/~fucik/mcwhorter.

V článku [37] bylo navíc autorem ukázano, že dvě jednorozměrná přesná ře-
šení se dají použít k odvození přesného řešení pro úlohu dvoufázového proudění
v porézním prostředí s materiálovou nespojitostí. Numerický řešič pro tuto
úlohu autor taktéž implementoval v podobě volně dostupné webové aplikace
na webové stránce http://mmg.fjfi.cvut.cz/~fucik/exacthetero.
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3. Přesná řešení úlohy dvoufázového proudění s kapilaritou v obecné dimenzi .................
Nakonec i numerická řešení iteračních schémat (3.34) pro d = 2 a (3.38)

pro d ≥ 3 jsou ve formě webové aplikace volně k dispozici na webové stránce
autora http://mmg.fjfi.cvut.cz/~fucik/exact .

Ukázky přesných řešení jsou uvedeny v [38] (Příloha P.1 [str. 51]). Přesná
řešení byla použita k testování implementace numerických metod například
v [40] (Příloha P.2 [str. 58]) nebo též v publikaci [41] odeslané k recenzi do
Computer Physics Communications v únoru 2021.

3.5 Shrnutí autorova přínosu

Autorův přínos v této kapitole lze shrnout v těchto bodech:

. Formulace úlohy (3.1) ve zobecněných sférických souřadnicích
v Rd, d ∈ N ve tvaru (3.10).. Vyjasnění konečnosti limity (3.22).. Odvození přesného řešení pro d ≥ 3 jako řešení integrální rovnice.. Návrh iteračních numerických metod pro řešení integrálních rovnic. pro d = 1 v [36, 37],. pro d ≥ 3 v [38].. Odvození přesného řešení pro úlohu dvoufázového proudění v po-
rézním prostředí s materiálovou nespojitostí v [37].. Implementace iteračních řešičů integrálních rovnic ve formě webo-
vých aplikací volně dostupných vědecké komunitě na webových
stránkách autora:. pro d = 1 na adrese

http://mmg.fjfi.cvut.cz/~fucik/mcwhorter,. pro d ≥ 2 na adrese
http://mmg.fjfi.cvut.cz/~fucik/exact,. pro jednorozměrnou úlohu v porézním prostředí s materiálo-
vou nespojitostí na adrese
http://mmg.fjfi.cvut.cz/~fucik/exacthetero.
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Kapitola 4
Numerické řešení metodou smíšených
hybridních konečných prvků

Řešení úloh dvoufázového proudění v porézním prostředí s transportem
rozpuštěných látek vyžaduje netriviálních matematických postupů, protože se
jedná o úlohy s obecně nelineárními koeficienty a někdy i s degenerující difuzí
například v případech, kdy se z dvoufázového systému stane lokálně systém
jednofázový. Ve vzácných případech formulací úloh lze nalézt analytické nebo
semi-analytické řešení takových úloh, viz například semi-analytická řešení
popsaná v Kapitole 3.

V obecném případě vzniká potřeba nalézt robustní a efektivní numerickou
metodu, která by se dala aplikovat na kompletní systém dvoufázových rovnic
s transportem rozpuštěných látek, případně s přestupem hmoty mezi fázemi.
V současné době je k dispozici nesčetné množství softwarových balíků pro
numerickou simulaci těchto úloh založených na metodách konečných diferencí,
konečných objemů nebo konečných prvků, jako například DUNE [42], TOUGH2
[43] nebo COMSOL Multiphysics, které však mají svá omezení použitelnosti.

V této kapitole bude popsán autorem navržený numerický řešič NumDwarf,
který je založen na numerické smíšené hybridní metodě konečných prvků
(MHFEM, z angl. Mixed-Hybrid Finite Element Method) a je navržen pro ře-
šení obecného systému časově proměnného systému parciálních diferenciálních
rovnic (PDR) s obecnými koeficienty v 1D, 2D a 3D. Konkrétní úlohy dvou-
fázového nebo dvoufázového kompozičního proudění v porézním prostředí
se potom formulují jen pomocí volby koeficientů a okrajových podmínek.
Název NumDwarf je složen z jednotlivých symbolů, které označují volitelné
koeficienty v obecném systému parciálních diferenciálních rovnic, viz rovnice
(4.1) níže.

Mezi hlavní přednosti navrženého řešiče NumDwarf patří schopnost simu-
lovat již zmíněné degenerované dvoufázové úlohy, nízká numerická difuze
v MHFEM [44, 45, 46] v aproximaci advekce a možnost efektivní paralelizace
na výpočetních klastrech CPU nebo GPU.

Stěžejní publikace [40] popisující numerický řešič NumDwarf je uvedena
včetně doplňujících materiálů v Příloze P.2 [str. 58]. V současné době existují
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4. Numerické řešení metodou smíšených hybridních konečných prvků.....................
celkem tři implementace numerického řešiče NumDwarf:

. První byla implementována autorem této práce v C++ pro počítání na
jednom výpočetním uzlu nebo vícejádrovém PC (pomocí OpenMP). Pro
řešení soustavy lineárních rovnic s řídkou maticí byly použity knihovny
UMFPACK [47] (přímý řešič) a PETSc [48] nebo TNL [49] (iterační řešiče).
Účelem této varianty bylo především ověření konceptu numerického
schématu pro simulaci úloh s degenerujícím dvoufázovým prouděním
v porézním prostředí a úloh s transportem rozpuštěných látek. Poprvé
byla tato metoda použita v článku [24], viz Příloha P.3 [str. 102]..Druhá implementace je určena pro paralelní počítání na výpočetních
klastrech CPU a využívá metod rozkladu oblasti (domain decomposition)
a MPI. Byla implementována pod autorovým vedením diplomantem (a
později doktorandem) J. Solovským v C++ [50, 51, 41]. Tato implementace
byla použita v článcích [23, 52], první z nich viz Příloha P.4 [str. 117].. Třetí implementace je masivně paralelní pro počítání na GPU, přičemž
kompletní výpočetní kód běží na GPU, tj. neprovádí se řádově pomalejší
kopírování dat mezi pamětí GPU a pamětí počítače. Byla implemen-
tována pod autorovým vedením diplomantem (a později doktorandem)
J. Klinkovským v C++ a CUDA v rámci numerické knihovny Template
numerical library (TNL), která vzniká na KM FJFI ČVUT v Praze
pod vedením T. Oberhubera, http://www.tnl-project.org [53, 49].
V současné době je v přípravě publikace popisující propojení MHFEM
a mřížkové Boltzmannovy metody a jejich kompletní implementaci na
GPU.

4.1 Formulace obecné úlohy

Systém PDR je uvažován ve tvaru rovnic s obecnými koeficienty Ni,j , ~u, mi,
Di,j , ~wi, ~ai,j , ri,j a fi, i, j ∈ n̂, n̂ := {1, 2, . . . , n}:

n∑
j=1

Ni,j
∂Zj
∂t

+
n∑
j=1

~ui,j · ∇Zj+

∇ ·

mi

− n∑
j=1

Di,j∇Zj + ~wi

+
n∑
j=1

Zj~ai,j

+
n∑
j=1

ri,jZj = fi,

(4.1)

pro neznámé funkce Z1, Z2, . . . , Zn, které závisí na čase t ∈ [0, T ] a prostorové
souřadnici ~x ∈ Ω ⊂ Rd, kde T označuje konečný čas simulace, Ω je polygonální
oblast a d je dimenze prostoru. Předpokladem je, že funkce Zj(t, ~x) jsou
alespoň spojitě diferencovatelné vzhledem k času a slabě diferencovatelné
vzhledem k prostorové souřadnici ~x v Ω. Význam koeficientů v (4.1) je detailně
popsán v [40].
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........................................... 4.2. Diskretizace

Podle potřeb řešené úlohy jsou rovnice (4.1) doplněny počátečními, resp.
okrajovými podmínkami, viz [40, 23], které lze obecně zapsat

Zj(0, ~x) = Zinij (~x), ∀~x ∈ Ω, j ∈ n̂, (4.2a)

resp.

Zj = ZDj , ∀~x ∈ ΓZj ⊂ ∂Ω, j ∈ n̂, (4.2b)
~qi · ~n = qNi , ∀~x ∈ Γ~qi ⊂ ∂Ω, i ∈ n̂, (4.2c)

∀t ∈ (0, T ), kde symbol ~qi označuje konzervativní tok

~qi = mi

− n∑
j=1

Di,j∇Zj + ~wi

 . (4.3)

Matematický tvar toku zavedený rovnicí (4.3) je autorem navržen tak, aby
umožnil simulaci úloh (nejen) dvoufázového proudění s degenerující difuzí,
kdy difuzní koeficient se blíží k nule při lokálním přechodu z dvoufázového
do jednofázového proudění (případ mizející fáze), viz například difuzní koefi-
cient daný rovnicí (3.4). V těchto případech lze difuzní koeficient zapsat ve
tvaru mDi,j , kde m je koeficient zahrnující mobilitu dané fáze (který nabývá
kladných i nulových hodnot) a na část nenulovou (odraženou od nuly nějakou
kladnou konstantou), která odpovídá řádu velikosti difuze.

4.2 Diskretizace

Oblast Ω ⊂ Rd je diskretizována pomocí konečně prvkové sítě Kh ⊂ Rd, která
se skládá z úseček v R1, trojúhelníků nebo obdélníků v R2 a čtyřstěnů nebo
kvádrů v R3. Symbol h > 0 označuje velikost dané sítě a jedná se o průměr
největší z koulí opsaných prvkům z Kh. Předpokládá se, že síť Kh je konformní
(tj. průnikem dvou prvků je buď společná stěna, společná hrana, společný
vrchol, nebo prázdná množina). Symboly Vh, resp. Eh označují množinu všech
vrcholů, resp. hran sítě Kh, přičemž E inth , resp. Eexth jsou podmnožiny Eh
obsahující vnitřní, resp. vnější (hraniční) hrany. Množina všech hran prvku
K ∈ Kh je označena symbolem EK . Index i bude v dalším vždy odpovídat
i-té rovnici nebo proměnné Zi pro i ∈ n̂.

Z hlediska časové diskretizace je časový interval [0, T ] rozdělen diskrét-
ními body 0 = t0 < t1 < · · · < tM = T , přičemž diskrétní časový interval je
∆tk = tk+1 − tk. V dalším je exponent k použit k označení hodnoty na časové
hladině tk, např. Zkj,K je diskrétní hodnota funkce Zj na elementu K v čase
tk.
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4. Numerické řešení metodou smíšených hybridních konečných prvků.....................
Diskretizace vektorových veličin

V rovnici (4.1) je dále možné označit tok bez mobility (nebo též rychlost)
symbolem ~vi jako

~vi = −
n∑
j=1

Di,j∇Zj + ~wi, (4.4)

tudíž ~qi = mi~vi.
Při diskretizaci vektorů ~vi a ~qi se vychází z předpokladu, že oba patří do

funkčního prostoru H(div,Ω). Potom na každém prvku K ∈ Kh je uvažována
diskretizace ~vi v Raviartově–Thomasově–Nédélecově prostoru nejnižšího řádu
RTN0(K) ⊂ H(div,K) [40, 54, 55] ve tvaru

vki,K,E =
∑

j∈σi,K

bi,j,K,EZkj,K − ∑
F∈EK

bi,j,K,E,FZ
k
j,F

+ wki,K,E , (4.5)

∀k ∈ N, ∀E ∈ EK , ∀K ∈ Kh, kde vki,K,E , resp. wki,K,E označují koeficienty
projekce ~vi, resp. ~wi do RTN0(K) v čase tk, bi,j,K,E,F a bi,j,K,E jsou koeficienty
vztažené ke geometrii daného prvku a difuznímu koeficientu (viz jejich definice
v [40]) a σi,K ⊆ n̂ je množina všech indexů j, pro které je Di,j nenulový na
K ∈ Kh.

Diskretizace skalárních veličin

Hodnota skalární neznámé funkce Zj je na každém prvku K ∈ Kh aproxi-
mována konstantní hodnotou Zj,K , kterou lze interpretovat buď jako střední
hodnotu funkce Zj na prvku K z metody konečných objemů, nebo jako
výsledek projekce funkce Zj do prostoru po částech konstantních funkcí z ne-
spojité Galerkinovy metody konečných prvků. Druhý přístup je bližší označení
MHFEM, tj. jedná se míšení dvou různých konečně-prvkových aproximací
vektorových a skalárních veličin.

Časová derivace funkce Zj v (4.1) je na elementu K ∈ Kh v čase tk
nahrazena diferencí

dZj,K
dt ≈

Zk+1
j,K − Zkj,K

∆tk
, (4.6)
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4.3 Diskretizace PDR

Pomocí zavedených diskretizací lze i-tou PDR (4.1) zapsat v čase tk na prvku
K ∈ Kh ve tvaru

|K|d
∆tk

n∑
j=1

Ni,j,K(Zk+1
j,K − Z

k
j,K) +

n∑
j=1

∑
E∈EK

Zk,upwi,j,E (ai,j,K,E + ui,j,K,E)

+
∑
E∈EK

mk,upw
i,E vk+1

i,K,E +
n∑
j=1

ri,j,K |K|d − ∑
E∈EK

ui,j,K,E

Zk+1
j,K = |K|dfi,K ,

(4.7)

kde dolní indexy K, resp. E označují střední hodnotu příslušné veličiny přes
prvek K, resp. hranu E ∈ EK . Hodnoty Zk+1

j,E představují stopy Zj příslušné
hraně E ∈ EK , přičemž díky předpokladu spojitosti Zj v Ω se vynechává
index K, protože je tato hodnota společná sousedícím prvkům. Symboly
ui,j,K,E a ai,j,K,E označují koeficienty projekce vektorových koeficientů ~ui,j
a ~ai,j do báze prostoru RTN0(K). Hodnoty mk,upw

i,E a Zk,upwi,j,E jsou určeny
pomocí upwindové stabilizace na základě hodnot toků z předchozí časové
vrstvy, detaily viz [40] (Příloha P.2 [str. 58]).

Lokální soustava rovnic pro Zk+1
j,K

Dosazením výrazu pro vk+1
i,K,E z (4.5) do (4.7) vznikne lineární soustava rovnic

pro Zk+1
j,K , kterou lze maticově reprezentovat ve tvaru

~Zk+1
K =

∑
F∈EK

Q−1
K RK,F

~Zk+1
F + Q−1

K
~RK , (4.8)

kde ~Zk+1
K je vektor tvořený neznámými Zk+1

j,K , j = 1, . . . , n. Prvky matic QK

a RK,F jsou dány vztahy

{QK}i,j = |K|d∆tk
Ni,j,K −

∑
E∈EK

ui,j,K,E +
∑
E∈EK

mk,upw
i,E bi,j,K,E + |K|dri,j,K ,

(4.9a)

{RK,F }i,j =
∑
E∈EK

mk,upw
i,E bi,j,K,E,F , (4.9b)

a složky vektoru ~RK jsou{
~RK
}
i

=|K|dfi,K + |K|d∆tk

n∑
j=1

Ni,j,KZ
k
j,K −

∑
E∈EK

mk,upw
i,E wi,K,E

−
n∑
j=1

∑
E∈EK

Zk,upwi,j,E (ai,j,K,E + ui,j,K,E) .
(4.9c)
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4. Numerické řešení metodou smíšených hybridních konečných prvků.....................
Z rovnice (4.8) plyne, že koeficienty v obecném systému PDR (4.1) musí

být předepsány tak, aby matice QK byla nesingulární [40].

4.4 Bilance toku na hranách

Bilance normálové složky toku ~q na vnitřních hranách E ∈ E inth lze za před-
pokladu nulových zdrojů na hraně E zapsat v diskrétní podobě

2∑
`=1

mk
i,K`,E

 ∑
j∈σi,K`

bi,j,K,EZk+1
j,K`
−

∑
F∈EK`

bi,j,K`,E,FZ
k+1
j,F

+ wi,K`,E

 = 0.

(4.10)
Pokud je ovšem alespoň jedna z hodnot mi,K`,E nulová, systém lineárních

rovnic (4.10) se stane singulárním. Jelikož se jedná o bilanci numerického toku
přes hranu E, byla autorem této práce navržena regularizace rovnic (4.10)
zavedením upwindové stabilizace tak, že obě hodnoty mi,K`,E jsou nahrazeny
jednou hodnotou mk,upw

i,E na dané hraně E.

V případě mk,upw
i,E > 0 lze tuto hodnotu z (4.10) vydělit, čímž vznikne

2∑
`=1

 ∑
j∈σi,K`

bi,j,K`,EZk+1
j,K`
−

∑
F∈EK`

bi,j,K`,E,FZ
k+1
j,F

+ wi,K`,E

 = 0. (4.11)

Pokud mk,upw
i,E = 0, je bilanční podmínka (4.10) triviálně splněna pro

libovolné hodnoty vki,K`,E . Odtud plyne, že výsledek není poškozen předepsá-
ním dodatečné podmínky (4.11), která slouží čistě pro regularizaci výsledné
lineární soustavy.

Poznamenejme, že uvedený postup regularizace je výhodný i pro případy
mizející fáze, kdy hodnoty koeficientu mk,upw

i,E jsou sice kladná, ale velmi malá
čísla.

Globální soustava rovnic pro Zk+1
j,E

Rovnice (4.8) umožňuje eliminovat Zkj,K z (4.5), čímž z (4.11) vznikne soustava
lineárních rovnic pouze pro stopy Zk+1

j,E , ∀E ∈ E inth . Pro hrany E ∈ Eexth ležící
na hranici oblasti ∂Ω se hodnoty Zj,E předepisují podle příslušných okrajových
podmínek (4.2b), detaily viz [40] (Příloha P.2 [str. 58]).

Výslednou (globální) soustavu lineárních rovnic pro Zk+1
j,E lze zapsat v ma-

ticovém tvaru
M~Zk+1 = ~b, (4.12)

kde ~Zk+1 =
{
~Zk+1
F

}
F∈Eh

=
{
{Zk+1

j,F }nj=1

}
F∈Eh

je vektor n× nE neznámých,
kde nE označuje počet hran v Eh. Matice M ∈ Rn×nE ,n×nE je řídká, nesingu-
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lární a je pozitivně definitní, pokud i matice tenzorů {Di,j}ni,j=1 je pozitivně
definitní [40].

V každém časovém kroku tk je soustava (4.12) jedinou soustavou, kterou
je nutné vyřešit. Na základě vypočítaných hodnot ~Zk+1 = M−1~b se z (4.8)
spočítají hodnoty na prvcích Zk+1

j,K , ∀K ∈ Kh, čímž se uzavře jedna časová
iterace tk → tk+1.

4.5 Výpočetní algoritmus

Výpočetní algoritmus lze shrnout v následujících krocích:..1. Polož k = 0 a použij (4.2a) k inicializaci Z0
j,K , ∀K ∈ Kh a ∀j ∈ n̂...2. Opakuj následující kroky, dokud není dosaženo konečného času T :..a. Spočítej Ni,j,K , ui,j,K,E , mi,K , wi,K,E , ai,j,K,E , ri,j,K , fi,K , ∀i, j ∈ n̂,

∀K ∈ Kh a ∀E ∈ EK ...b. Spočítej koeficienty dané upwindovou stabilizací mupw
i,E a Zupwi,j,E ,

∀E ∈ Eh a ∀i, j ∈ n̂...c. Spočítej koeficienty bi,j,K , ∀K ∈ Kh a ∀i, j ∈ n̂...d. Na základě hodnot Zkj,K z předchozí časové vrstvy tk použij (4.9)
k výpočtu QK , RK,F , ~RK , Q−1

K RK,F a Q−1
K
~RK , které jsou potřeba

v (4.8), ∀K ∈ Kh a ∀F ∈ EK ...e. Sestav M a ~b v (4.12) pomocí (4.11) a okrajových podmínek (4.2b)...f. Vyřeš řídký systém lineárních rovnic (4.12) k výpočtu Zk+1
j,E , ∀E ∈ Eh

a ∀j ∈ n̂...g. Spočítej Zk+1
j,K pomocí (4.8), ∀K ∈ Kh a ∀j ∈ n̂...h. Polož tk+1 = tk + ∆tk a k := k + 1.

4.6 Výsledky a aplikace

Numerický řešič NumDwarf byl použit k řešení řady úloh jednofázového a
dvoufázového kompozičního proudění v porézním prostředí.

Publikované výsledky

. První publikace [44, 45] využívaly v té době teprve vyvíjený výpočetní
kód založený na MHFEM a zabývaly se především otázkou správné
simulace podmínek na materiálových rozhraních v porézním prostředí.
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. V článku [24] (Příloha P.3 [str. 102]) byl numerický řešič MHFEM použit

k simulaci rozpouštění DNAPLu do proudící vody ve spolupráci s CESEP,
Colorado School of Mines, Golden, CO (T. H. Illangasekare, B. Petri, K.
Smits).. V článcích [23] (Příloha P.4 [str. 117]) a [56] byl řešič NumDwarf použit
ke zkoumání vývinu a zpětného rozpouštění CO2 ve vodě v dvoufázovém
proudění v porézním prostředí, přičemž byly uvažovány mezní případy,
kdy plynná fáze vznikala nebo zanikala, tj. situace, pro které byla auto-
rem této práce primárně navržena výše popsaná regularizace soustavy
lineárních rovnic. Práce vznikla ve spolupráci s CESEP, Colorado School
of Mines, Golden, CO (T. H. Illangasekare) a U.S. Geological Survey,
Eastern Energy Resources Science Center, Reston, VA (M. R. Plampin).. V článku [57] (Příloha P.5 [str. 141]) byl řešič NumDwarf použit pro
simulaci adsorbce a desorbce vodní páry v zeolitu 13X.

Publikace v přípravě

V současné době probíhají práce na dalších aplikacích využívajících řešič
NumDwarf.. První z nich již byla zmíněna na začátku této kapitoly a jedná se o propo-

jení modelu dvoufázového kompozičního proudění (využívající NumDwarf
implementovaný na GPU) a modelu proudění a transportu ve volném
prostředí (využívající mřížkovou Boltzmannovu metodu pro simulaci
Navierových-Stokesových rovnic a NumDwarf pro simulaci transportu,
oboje implementované na GPU). Cílem je simulovat odpařování vody
z rostlin (aproximovaných pískovcovým blokem) ve větrném tunelu (v 3D
geometrii). Model vyvíjí J. Klinkovský pod autorovým vedením ve spo-
lupráci s CESEP, Colorado School of Mines, Golden, CO (T. H. Illan-
gasekare) a U.S. Army Engineer Research and Development Center,
Geotechnical and Structures Laboratory, Vicksburg, MS (A. Trautz).
V přípravě je publikace plánovaná k podání do impaktovaného časopisu
v průběhu roku 2021.. Dalším použitím NumDwarf je simulace unikajícího CO2 z komplexního
heterogenního podloží v jednofázovém systému. Model vyvíjí J. Solov-
ský jakožto doktorand pod autorovým vedením ve spolupráci s CESEP,
Colorado School of Mines, Golden, CO (T. H. Illangasekare, A. Askar).
Výstupem této spolupráce je článek [58] podaný k recenzi do impaktova-
ného časopisu Water Resources Research v lednu 2021.. Dílčí oblastí výzkumu numerického modelu J. Solovského, který princi-
piálně vychází z řešiče NumDwarf, je paralelní implementace využívající
pokročilou variantu metody rozdělení výpočetní oblasti. Dosažené vý-
sledky jsou shrnuty v článku [41], který byl odeslán k recenzi do Computer
Physics Communications v únoru 2021.
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. Posledním matematickým modelem využívajícím NumDwarf je model
perfuze myokardu, který je vyvíjen studentem J. Kovářem pod autorovým
vedením ve spolupráci s IKEM Praha (J. Tintěra) a R. Chabiniokem
(INRIA Paris-Saclay, King’s College London, UTSW Medical Center
Dallas a FJFI ČVUT v Praze). První výsledky jsou shrnuty v článku
[59] podaném k recenzi do impaktovaného časopisu Japan Journal of
Industrial and Applied Mathematics v březnu 2021.
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4. Numerické řešení metodou smíšených hybridních konečných prvků.....................
4.7 Shrnutí autorova přínosu

Autorův přínos v této kapitole by se dal shrnout v těchto bodech:

. Návrh koncepce numerického řešiče systému parciálních diferen-
ciálních rovnic s obecnými nelineárními koeficienty (4.1), které
by byly vhodné primárně pro popis vícefázového kompozičního
proudění v porézním prostředí.. Použití smíšené hybridní metody konečných prvků k diskretizaci
(4.1) a návrh způsobu regularizace výsledné soustavy zejména pro
případy mizející fáze, tj. přechod od bilanční podmínky (4.10)
k podmínce (4.11).. Sériová implementace numerického schématu pomocí vlastního
kódu v C++.. Návrh způsobu paralelní implementace numerického schématu
na GPU. Samotný algoritmus a jeho implementace na GPU byl
zpracován studentem J. Klinkovským pod autorovým vedením
v diplomové práci obhájené v roce 2017.. Aplikace řešiče NumDwarf v různých oblastech výzkumu v rámci
řešení výzkumných projektů a ve spolupráci s domácími i meziná-
rodními pracovišti:. simulace dvoufázového kompozičního proudění v porézním

prostředí [24] (Příloha P.3 [str. 102]), [23] (Příloha P.4
[str. 117]), [56],. simulaci adsorbce a desorbce vodní páry v zeolitu 13X [57]
(Příloha P.5 [str. 141]),. propojení modelu dvoufázového kompozičního proudění a
modelu proudění a transportu ve volném prostředí (publikace
je v přípravě),. simulace unikajícího CO2 z komplexního heterogenního pod-
loží v jednofázovém systému [58],.matematické modelování perfuze myokardu [59],. výzkum paralelizace numerického řešiče pomocí metody roz-
kladu oblastí [41].
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Kapitola 5
Integrální řešení elektrochemických
interakcí v Li-Ion článku

5.1 Formulace úlohy

Při modelování elektrochemických procesů v Lithiovém-iontovém elektrickém
článku je základem řešení elektrochemických interakcí reprezentovaných toky
j1 a j3. V každém čase t jsou tyto toky řešením soustavy dvou diferenciálních
rovnic (2.30) a (2.31), spolu s nelineární algebraickou vazbou (2.28a) pro
neznámé veličiny φe,i, φs,i, ηi, a ji, i ∈ {1, 3} a při respektování okrajových
podmínek uvedených v Kapitole 2.3.

Autorovi této práce se podařilo ukázat, že systém těchto rovnic lze převést
na soustavu dvou obyčejných diferenciálních rovnic (ODR) pro ηi a Ji, kde
Ji je definována jako

Ji(x) =
x∫

x`,i

ji(ξ)dξ, ∀x ∈ [x`,i, xr,i], i ∈ {1, 3} , (5.1)

kde x`,i, resp. xr,i označují levou, resp. pravou souřadnici hranice Ωi. Odvození
těchto rovnic je detailně popsáno v [29] (Příloha P.6 [str. 155]).

Výsledné ODR lze zapsat ve tvaru ODR s obecnými koeficienty

η′(x) = α(x)J(x) + β(x), (5.2a)
J ′(x) = B(η(x), x), (5.2b)

kde

B(η(x), x) = δ(x) (exp(αaγ(x)η(x))− exp(−αcγ(x)η(x))) , (5.2c)

∀x ∈ (xl, xr) s následujícími okrajovými podmínkami:

J(xl) = 0, (5.2d)
J(xr) = ε, (5.2e)
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přičemž se na každé podoblasti Ωi s indexem i = 1 nebo i = 3 používá:
xl = xl,i, xr = xr,i, αa = αa,i, αc = αc,i, δ = δi ze vztahu (2.28b) a koeficienty
α = αi, β = βi a ε = εi jsou dány vztahy:

α1 = a1F
σ1 + κeff

1
σ1κeff

1
, α3 = a3F

σ3 + κeff
3

σ3κeff
3

,

β1 = −Iapp
σ1
− 2RT

F
(1− t0+)

c′e,1
ce,1
− U ′1, β3 = Iapp

κeff
3
− 2RT

F
(1− t0+)

c′e,3
ce,3
− U ′3,

γ1 = F

RT
, γ3 = F

RT
,

ε1 = Iapp
a1F

, ε3 = −Iapp
a3F

.

5.2 Odvození integrální rovnice

Autorem této práce bylo dále zjištěno, že soustavu dvou ODR s obecnými
koeficienty je možné převést na integrání rovnici, kterou lze posléze vyřešit
iteračně pomocí numerické aproximace integrálů (podobně jako v Kapitole 3)
[29] (viz Příloha P.6 [str. 155]).

Integrací rovnic (5.2) od xl do x ∈ [xl, xr] vznikne

η(x) = λ+
x∫

xl

α(ζ)J(ζ) + β(ζ)dζ, (5.3a)

J(x) =
x∫

xl

B(η(ζ), ζ)dζ, (5.3b)

přičemž okrajová podmínka (5.2d) je zahrnutá v (5.3b) a λ = η(xl) označuje
neznámou integrační konstantu v (5.3a).

Kombinací rovnic (5.3a) a (5.3b) lze získat dvě různé integrální rovnice

η(x) = λ+
x∫

xl

α(ζ)
ζ∫

xl

B(η(ξ), ξ)dξ + β(ζ)dζ, (5.4)

resp.

J(x) =
x∫

xl

B

λ+
ζ∫

xl

α(ξ)J(ξ) + β(ξ)dξ, ζ

 dζ, (5.5)

přičemž každá z nich obsahuje pouze jednu neznámou funkci η, resp. J .
Jak je ukázáno v [29] (Příloha P.6 [str. 155]), lze hodnotu konstanty λ určit

pomocí (5.5) a okrajové podmínky (5.2e) jako řešení nelineární rovnice

ε = exp(γαaλ)Ia − exp(−γαcλ)Ic, (5.6)

36



..............................5.3. Iterační schéma pro řešení integrální rovnice

kde Ia a Ic označují

Ia =
xr∫
xl

δ(ζ) exp

αaγ ζ∫
xl

α(ξ)J(ξ) + β(ξ)dξ

 dζ, (5.7a)

Ic =
xr∫
xl

δ(ζ) exp

−αcγ ζ∫
xl

α(ξ)J(ξ) + β(ξ)dξ

dζ. (5.7b)

Pokud αa = αc, lze rovnici (5.6) vyřešit analyticky jako

λ = 1
γ

ln
(
ε+
√
ε2 + 4IaIc
2Ia

)
. (5.8)

5.3 Iterační schéma pro řešení integrální rovnice

Integrální rovnici (5.5) lze řešit iteračně pomocí rovnice

J̃n+1(x) =
x∫

xl

B

λn +
ζ∫

xl

α(ξ)Jn(ξ) + β(ξ)dξ, ζ

dζ, (5.9)

Jn+1(x) = (1− ω)Jn(x) + ωJ̃n+1(x), (5.10)

kde λn je řešení rovnice (5.6), které je nutné v každé iteraci vypočítat na zá-
kladě známé aproximace Jn, n = 0, 1, 2, . . . , a ω ∈ (0, 1] je relaxační parametr
iteračního schématu sloužící k zajištění konvergence [29].

Jako počáteční iterace v (5.5) je voleno J0 ≡ 0. Iterační proces je zastaven,
pokud norma J̃n+1 je menší než předem zvolená mezní hodnota ϑ.

5.4 Výsledky a aplikace

Iterační schéma slouží k výpočtu proudů a napětí uvnitř elektrického článku
na základě jeho elektrochemického stavu (hodnoty koncentrací lithiových
iontů a předepsaného proudu Iapp). V rámci komplexního, časově proměnného
modelu stárnutí Li-ion článku se pak toto schéma použije v každém časovém
kroku, viz [29] (Příloha P.6 [str. 155]).

V rámci výzkumného projektu TAČR č. TA04021244 (Dynamické řízení
lithium-iontových baterií v systémech hybridních elektrických pohonů) bylo
iterační integrální schéma použito jako základní prvek složitějšího matematic-
kého modelu, který simuloval dynamiku stárnutí Li-Ion článku, viz technické
zprávy [60, 61, 62].
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5. Integrální řešení elektrochemických interakcí v Li-Ion článku .......................
5.5 Shrnutí autorova přínosu

Autorův přínos v této kapitole by se dal shrnout v těchto bodech:

. Transformace systému rovnic popisujících dynamiku elektroche-
mických procesů na soustavu dvou obyčejných diferenciálních
rovnic (5.2)..Odvození integrální rovnice (5.5) ze soustavy dvou obyčejných
diferenciálních rovnic popsané v kapitole 5.2.. Návrh numerického iteračního schématu pro řešení integrální rov-
nice (5.5).. Implementace v C++ a testování numerického iteračního řešiče.
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Kapitola 6
Shrnutí vědecko-pedagogického přínosu
autora k dané problematice

6.1 Shrnutí příspěvků autora k dané problematice

Z výše uvedeného přehledu úloh a přiložených publikací plyne, že autor ve
svém dosavadním vědecko-pedagogickém působení dosáhl řady původních
výsledků, mezi které patří:

. nalezení přesného, semi-analytického řešení pro speciální formulaci dvou-
fázového proudění v porézním prostředí pro dimenzi d ≥ 3, včetně
implementace algoritmu pro jeho nalezení a volné zpřístupnění tohoto
algoritmu vědecké komunitě prostřednictvím autorových webových strá-
nek,

. návrh, odvození, implementace a testování numerického řešiče NumDwarf
pro řešení systému parciálních diferenciálních rovnic s obecnými koefi-
cienty a zapojení studentů bakalářského, magisterského a doktorského
studia KM FJFI ČVUT v Praze pod autorovým vedením při jeho vý-
voji pro masivně paralelní implementaci na grafických akcelerátorech a
paralelní implementaci pro výpočetní klastry,

. řada aplikací numerického řešiče NumDwarf pro řešení konkrétních úloh
z ekologických, průmyslových nebo medicínských oblastí a zapojení
studentů bakalářského, magisterského a doktorského studia KM FJFI
ČVUT v Praze pod autorovým vedením do řešení těchto úloh,

. analýza úlohy modelu elektrochemické interakce v lithiovém-iontovém
elektrickém článku a návrh, odvození a implementace semi-analytického
řešení tohoto modelu.
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6. Shrnutí vědecko-pedagogického přínosu autora k dané problematice ....................
6.2 Stručný přehled přiložených článků

Přílohou práce je následujících šest impaktovaných článků a dvě kapitoly v
knihách.

Publikace P.1 na str. 51:
článek v Advances in Water Rescources, 2016

Radek Fučík, Tissa H. Illangasekare a Michal Beneš: Multidimensional
self-similar analytical solutions of two-phase flow in porous media,
Advances in Water Resources, 90:51–56, 2016.

V článku je představeno přesné řešení speciální úlohy dvoufázového prou-
dění v porézním prostředí v obecné dimenzi a způsob jeho získání pomocí
numerického řešení integrální rovnice.

Pro d = 1 jsou numerické řešiče pro původní schéma a obě varianty modifi-
kovaného iteračního schématu volně k dispozici v podobě webové aplikace na
webové stránce autora http://mmg.fjfi.cvut.cz/~fucik/mcwhorter .

Numerické řešení iteračních schémat (3.34) pro d = 2 a (3.38) pro d ≥ 3
jsou ve formě webové aplikace volně k dispozici na webové stránce autora
http://mmg.fjfi.cvut.cz/~fucik/exact .

Obsah článku a autorův přínos je shrnut v Kapitole 3.

Publikace P.2 na str. 58:
článek v Computer Physics Communications, 2019

Radek Fučík, Jakub Klinkovský, Jakub Solovský, Tomáš Oberhuber a
Jiří Mikyška: Multidimensional mixed–hybrid finite element method
for compositional two-phase flow in heterogeneous porous media and its
parallel implementation on GPU, Computer Physics Communications,
238:165–180, 2019.

Jedná se o stěžejní článek popisující řešič NumDwarf a jeho masivně paralelní
implementaci na GPU. V článku je mimo jiné použito přesného řešení z Pub-
likace P.1 [str. 51] k ověření konvergence numerické metody. Článek a autorův
přínos v něm je shrnut v Kapitole 4. Součástí Publikace P.2 je i doplňující
příloha (Supplementary material), kde jsou ukázky řešení testovacích úloh a
tabulky s experimentálním řádem konvergence.
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Publikace P.3 na str. 102:
článek v Groundwater, 2015

Benjamin G. Petri, Radek Fučík, Tissa H. Illangasekare, Kathleen M.
Smits, John A. Christ, Toshihiro Sakaki a Carolyn C. Sauck: Effect
of NAPL source morphology on mass transfer in the vadose zone,
Groundwater, 53(5):685–698, 2015.

Článek se zabývá rozpouštěním těžkého NAPL do proudící vody, přičemž je
zkoumána dynamika tohoto rozpouštění. Experimentální část článku, která se
opírá o laboratorní experimenty v CESEP, Colorado School of Mines, Golden,
Colorado, USA, je doplněna o výsledky numerické simulace získané metodou
smíšených hybridních prvků.

Publikace P.4 na str. 117:
článek v Journal of Computational Physics, 2020

Jakub Solovský, Radek Fučík, Michael R. Plampin, Tissa H Illangase-
kare a Jiří Mikyška: Dimensional effects of inter-phase mass transfer
on attenuation of structurally trapped gaseous carbon dioxide in shallow
aquifers, Journal of Computational Physics, 405:109178, 2020.

V článku je zkoumán vývin a zpětné rozpouštění CO2 ve vodní fázi v poréz-
ním prostředí. Na základě experimentálních dat (CESEP, Colorado School of
Mines, Colorado, USA) je diskutováno použití kinetického (nerovnovážného)
přístupu pro modelování přestupu hmoty mezi fázemi, přičemž je zohledněno,
zda se jedná typově o jednorozměrné, nebo dvourozměrné proudění. Nume-
rické simulace byly provedeny pomocí řešiče NumDwarf (viz Publikace P.2
[str. 58]).

Publikace P.5 na str. 141:
článek v International Journal of Heat and Mass Transfer, 2020

Tomáš Smejkal, Jiří Mikyška a Radek Fučík: Numerical modelling of
adsorption and desorption of water vapor in zeolite 13X using a two-
temperature model and mixed-hybrid finite element method numerical
solver. International Journal of Heat and Mass Transfer, 148:119050,
2020.

V článku je zkoumán termo-chemický model ukládání energie skrz ad-
sorbce a desorbce vodních par v zeolitu 13X. Diskuze v článku se opírá o
výsledky matematického modelu, který je řešen pomocí řešiče NumDwarf (viz
Publikace P.2 [str. 58]).
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Publikace P.6 na str. 155:
článek v Mathematical Problems in Engineering, 2018

Michal Beneš, Radek Fučík, Vladimír Havlena, Vladimír Klement,
Miroslav Kolář, Ondřej Polívka, Jakub Solovský a Pavel Strachota: An
Efficient and Robust Numerical Solution of the Full-Order Multiscale
Model of Lithium-Ion Battery, Mathematical Problems in Engineering,
ID3530975, 2018.

V článku je představen jednorozměrný matematický model lithiového-
iontového elektrického článku a pomocí numerických simulací zkoumán proces
jeho stárnutí. Základní součástí numerického řešení je semi-analytické řešení
elektrochemické interakce, které je shrnuto v Kapitole 5.

Publikace P.7 na str. 168:
kapitola v Handbook of Chemical Mass Transport in the
Environment, 2010

Tissa H. Illangasekare, Christophe C. Frippiat a Radek Fučík: Disper-
sion and mass transfer coefficients in groundwater of near-surface
geologic formations, kapitola v: Handbook of Chemical Mass Transport
in the Environment, strany 418–456. CRC Press, 2010.

Jedná se o kapitolu v knize, ve které je rozebírána problematika přestupu
hmoty v porézním prostředí a přehled kinetických modelů rozpouštění NAPL
do vodní fáze.

Publikace P.8 na str. 208:
kapitola v Pore Scale Phenomena: Frontiers in Energy and
Environment, 2015

Tissa H. Illangasekare, Kathleen M. Smits, Radek Fučík a Hossein Da-
varzani: From pore to the field: Upscaling challenges and opportunities
in hydrogeological and land–atmospheric systems, kapitola v: Pore Scale
Phenomena: Frontiers in Energy and Environment, strany 163–202.
World Scientific, 2015.

Jedná se o kapitolu v knize, ve které je diskutována problematika zvětšování
měřítka (upscaling) při popisu proudění, transportu rozpuštěných látek a
přestupu hmoty v porézním prostředí.
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6.3 Vedení a spolupráce se studenty

Autorova vědecká činnost je úzce spjata především s jeho pedagogickou
činností v oboru Matematického inženýrství na Katedře matematiky FJFI
ČVUT v Praze v tom smyslu, že každá oblast, kterou se zabývá, je zároveň
přirozeným předmětem širšího vzdělávání a výchovy mladých vědeckých
pracovníků v rámci bakalářského, magisterského a doktorského studia. Proto
většina uvedených impaktovaných publikací vznikla ve spoluautorství se
studenty, většinou na základě výsledků dosažených v jejich bakalářské či
diplomové práci nebo v rámci jejich doktorského studia.

Přehled konkrétních v minulosti a v současnosti studovaných témat ve
spolupráci se studenty je uveden v Kapitole 4.6.

6.4 Současný výzkum a mezinárodní spolupráce

V současné době neustále sílí potřeba výsledků matematického modelování
v oblastech uvedených v této práci ve spojení s výrazným vývojem masivně
paralelních výpočetních prostředků (zejména klastrů grafických akcelerátorů).
To umožňuje uvažovat o vývoji komplexnějších modelů, které rozšíří stáva-
jící matematické modely o další procesy (např. závislost veličin na teplotě,
přesnější termodynamický popis roztoků a plynných směsí apod.).

Výsledky prezentované v této práci částečně vznikly díky úzké spolupráci
Katedry matematiky FJFI ČVUT v Praze se zahraničním pracovištěm Center
for Experimental Study of Subsurface Environmental Processes (CESEP),
Colorado School of Mines, Golden, CO, USA (prof. T. H. Illangasekare) a
relativně nově navázané spolupráci s U.S. Geological Survey, Eastern Energy
Resources Science Center, Reston, VA, USA (M. R. Plampin) a U. S. Army
Engineer Research and Development Center, Geotechnical and Structures
Laboratory, Vicksburg, MS, USA (A. Trautz).

V případě teprve vznikajících výsledků v obasti medicínských aplikací je
navázána úzká spolupráce s Institutem klinické a experimentální medicíny
v Praze (J. Tintěra) a R. Chabiniokem (UTSW Medical Center Dallas, TX,
USA a FJFI ČVUT v Praze).

Z řady domácích a mezinárodních projektů, na kterých se autor podílel
buď jako člen řešitelského týmu nebo hlavní řešitel, jsou relevantní z hlediska
předložené práce tyto:. Development and Validation of Porous Media Flow and Transport Mo-

dels for Subsurface Environmental Application, projekt MŠMT Kontakt
ME878, 2006-2009, hlavní řešitel M. Beneš.. Numerical Methods for Multiphase Flow and Transport in Subsurface
Environmental Applications, projekt MŠMT Kontakt ME10009, 2010-
2012, hlavní řešitel M. Beneš.
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projekt GAČR č. P105/11/1507, 2011-2013, hlavní řešitel J. Mikyška.. Development and Validation of Porous Media Fluid Dynamics and Phase
Transitions Models for Subsurface Environmental Application, projekt
MŠMT Kontakt II LH14003, 2014-2016, hlavní řešitel M. Beneš.. Dynamic Lithium-ion battery management for hybrid electric vehicles,
projekt TAČR č. TA04021244, 2014-2017, hlavní řešitel V. Havlena.. Quantitative Mapping of Myocard and of Flow Dynamics by Means of MR
Imaging for Patients with Nonischemic Cardiomyopathy - Development
of Methodology, projekt MZ č. 15-27178A, 2015-2018, hlavní řešitel
J. Tintěra.. Investigation of shallow subsurface flow with phase transitions, projekt
GAČR č. 17-06759S, 2017-2019, hlavní řešitel J. Mikyška.. Analysis of nature of flow and prediction of changes in endovascu-
lary treated vains by MRI and mathematical modeling, projekt MZ
č. NV19-08-00071, 2019-2021, hlavní řešitel J. Tintěra.. Computational Models and Experimental Investigation of Fluid Dyna-
mics, Mass Transfer and Transport, and Phase Transitions in Porous
Media for Environmental Applications, projekt MŠMT Interexcellence
LTAUSA19, 2020-2022, hlavní řešitel R. Fučík.

6.5 Budoucí výzkum

V současné době pokračují intenzivní práce na tématech matematického
modelování proudění v porézním prostředí, které jsou shrnuty v předchozích
sekcích. Zejména se jedná o řešení úloh vícefázového kompozičního proudění
v porézním prostředí (případně s propojením s nadpovrchovým prouděním) a
pokračování výzkumu použitelnosti aproximace srdeční svaloviny porézním
prostředím v medicínské problematice perfuze myokardu.

Problematika zkoumání dynamických procesů v porézním prostředí však
stále nabízí nové úlohy, které lze řešit pomocí metod matematického modelo-
vání. V roce 2021 například začaly práce na novém projektu GAČR:.Multiphase flow, transport, and structural changes related to water free-

zing and thawing in the subsurface, 2021-2023, projekt GAČR č. 21-09093S,
hlavní řešitel J. Mikyška,

ve kterém je autor členem řešitelského týmu.
Ve všech oblastech výzkumu bude pro autora této práce i nadále klíčová

spolupráce se studenty FJFI ČVUT v Praze a jejich zapojení do témat
matematického modelování v rámci jejich ročníkových prací (v bakalářské
práci, výzkumném úkolu, diplomové práci a dizertační práci).
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a b s t r a c t 

In general, analytical solutions serve a useful purpose to obtain better insights and to verify numerical 

codes. For flow of two incompressible and immiscible phases in homogeneous porous media without 

gravity, one such method that neglects capillary pressure in the solution was first developed by Buckley 

and Leverett (1942). Subsequently, McWhorter and Sunada (1990) derived an exact solution for the one 

and two dimensional cases that factored in capillary effects. This solution used a similarity transform 

that allowed to reduce the governing equations into a single ordinary differential equation (ODE) that 

can be further integrated into an equivalent integral equation. We present a revision to McWhorter and 

Sunada solution by extending the self-similar solution into a general multidimensional space. Inspired by 

the derivation proposed by McWhorter and Sunada (1990), we integrate the resulting ODE in the third 

and higher dimensions into a new integral equation that can be subsequently solved iteratively by means 

of numerical integration. We developed implementations of the iterative schemes for one- and higher 

dimensional cases that can be accessed online on the authors’ website. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Development of complex mathematical models of two-phase 

flow in porous media such as those described by Fu ̌cík and 

Mikyška [9,10] and Petri et al. [17] often requires versatile bench- 

mark solutions that allow to verify numerical convergence and 

estimate the accuracy of the numerical method. A simplification 

of the domain geometry, system properties or parameters, and 

boundary conditions allows to derive exact (analytical or semi- 

analytical) solutions for the displacement of two incompressible 

and immiscible phases within a homogeneous or a layered het- 

erogeneous porous medium [4,5,12] . These exact solutions not 

only serve as benchmark solutions, but also as effective tools 

to study fundamental displacement processes. A number of re- 

searchers have investigated exact solutions for cases where the 

gravity and/or capillarity are neglected and the exact solution of 

the governing equations is obtained in a form of a traveling wave 

such as the well-known Buckley and Leverett one dimensional an- 

alytical solution [2] , generalization of the Buckley and Leverett so- 

∗ Corresponding author. Tel.: +420 224 358 540. 

E-mail address: fucik@fjfi.cvut.cz (R. Fu ̌cík). 

lution by van Duijn et al. [6] , or the relatively recent approach pre- 

sented by Mathias et al. [14] . 

When the capillary effects are important, the exact solution can 

be found in the form of a self-similar solution as shown by Chen 

[3] , McWhorter and Sunada [15] , Sander et al. [19] , Fu ̌cík et al. [11] , 

Bjørnarå and Mathias [1] for a homogeneous porous medium and 

by van Duijn et al. [4] , van Duijn and de Neef [5] , Fu ̌cík et al. [12] 

for a porous medium with a single material discontinuity. For a 

particular functional choice of the capillary diffusion coefficient 

that allows to reduce the system of governing equations to the 

first integral, a d -dimensional exact solution can be obtained as re- 

ported previously by Sander et al. [18] and Weeks et al. [21] . 

This paper focuses on the self-similar solution in a homoge- 

neous porous medium without gravity that was originally pub- 

lished by McWhorter and Sunada [15] and generalize its deriva- 

tion to a d -dimensional space where d ∈ N . This includes the self- 

similar solution for d = 3 that to the best of our knowledge has 

not been published in the literature and will have important prac- 

tical applications in the analysis of three-dimensional numerical 

schemes such as convergence verification and/or estimation of the 

order of convergence. Even though this solution assumes the zero 

gravity condition that may not be realistic in three-dimensional 

groundwater flow, a practical application that is of relevance is in 

http://dx.doi.org/10.1016/j.advwatres.2016.02.007 

0309-1708/© 2016 Elsevier Ltd. All rights reserved. 
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flow simulations in space. Such an application for plant irrigation 

in micro–gravity was discussed by Scovazzo et al. [20] . 

Note that in the one dimensional case, unidirectional or 

counter-current flows can be considered [11,12,15] , but in two and 

higher dimensional spaces, the self-similar solution can be de- 

rived for the unidirectional displacement only [3,15] . The main 

idea behind the derivation of the self-similar solution is to use a 

similarity substitution to transform the governing two-phase flow 

equations into a single ordinary differential equation (ODE) in the 

d -dimensional spherical coordinates. The resulting ODE is either 

solved directly as proposed by Bjørnarå and Mathias [1] for d = 1 , 

or transformed into an equivalent integral equation that can be 

solved iteratively by means of numerical integration [15] for d = 

1 , 2 . We show that the derivation of the self-similar solution can 

be done in a general way regardless of the choice of d ∈ N . For 

d ≥ 3, we transform the resulting ODE into a new, general inte- 

gral equation for which we propose a fast and efficient iterative 

solution. 

The paper is organized in the following way. First, we briefly 

present the mathematical model and describe its transformation 

into the multidimensional spherical coordinates. In Section 3 , we 

discuss the similarity transform of the governing equations into a 

single ODE and we highlight the important mathematical aspects 

of the transform that have been omitted previously in the litera- 

ture but are essential in the further derivation of the self-similar 

solution. Then in Section 4 , we present the integral approach of 

solving the ODE for a general dimension d ≥ 3. In the final sec- 

tion, we present several typical self-similar solutions and discuss 

the applicability of the computational method with respect to the 

magnitude of the injection rate and the initial saturation. 

2. Governing equations 

2.1. Two-phase flow equations 

We consider incompressible and immiscible flow of two phases 

in a homogeneous and rigid porous medium without gravity in 

a d -dimensional space R 

d , d ∈ N . The wetting and non-wetting 

phases are indexed by w and n , respectively. 

The continuity equation for the phase α ∈ { w, n } is given by 

φ
∂S α

∂t 
+ ∇ · � v α = 0 , (1) 

where φ [ −] is the porosity, S α [ −] is the α-phase volumetric sat- 

uration, and 

�
 v α [ LT −1 ] is the Darcy velocity of the phase α given 

by 

�
 v α = −k r,α

μα
k ∇p α, (2) 

where k [ L 2 ] is the intrinsic permeability and k r,α [ −] , 

μα [ ML −1 T −1 ] , and p α [ ML −1 T −2 ] are the relative permeabil- 

ity, dynamic viscosity, and pressure of the phase α, respectively. 

By definition, S w 

+ S n = 1 . 

The Eqs. (1) and (2) can be combined to express the wetting 

phase velocity as 

�
 v w 

= f (S w 

) � v T − D (S w 

) ∇S w 

, (3) 

where � v T [ LT −1 ] denotes the total velocity defined by � v T = 

�
 v w 

+ 

�
 v n , 

f [ −] is the wetting-phase fractional flow function defined by 

f (S w 

) = 

k r,w (S w ) 
μw 

k r,w (S w ) 
μw 

+ 

k r,n (S w ) 
μn 

, (4) 

and D [ L 2 T −1 ] is the capillary diffusion function given by 

D (S w 

) = −k 

k r,w (S w ) 
μw 

k r,n (S w ) 
μn 

k r,w (S w ) 
μw 

+ 

k r,n (S w ) 
μn 

p ′ c (S w 

) , (5) 

where p c [ ML −1 T −2 ] is the capillary pressure defined by p c = p n −
p w 

and p ′ c denotes its first derivative with respect to S w 

. In this 

work, we consider the following empirical models for the S w 

- 

dependent functions 

k r,w 

(S w 

) = S 
1 
2 
e 

(
1 −

(
1 − S 

1 
m 
e 

)m 

)2 

, 

k r,n (S w 

) = (1 − S e ) 
1 
3 

(
1 − S 

1 
m 
e 

)2 m 

, (6a) 

[16] and 

p c (S w 

) = P 0 

(
S 

− 1 
m 

e − 1 

)1 −m 

(6b) 

[13] . In Eqs. (6) , m [ −] and P 0 [ Pa ] are the fitting parameters and 

S e [ −] denotes the effective wetting phase saturation defined by 

S e = 

S w 

− S w,r 

1 − S w,r − S n,r 
, (7) 

where S α,r [ −] denotes the residual saturation of the phase α. 

Further, the continuity Eq. (1) for both phases can be trans- 

formed into 

∇ · � v T = 0 , (8a) 

φ
∂S w 

∂t 
+ ∇ · ( f (S w 

) � v T − D (S w 

) ∇S w 

) = 0 , (8b) 

where the unknown functions are the wetting phase saturation 

S w 

= S w 

(t, � x ) and the total velocity � v T = 

�
 v T (t, � x ) for all t > 0 and 

�
 x ∈ R 

d . The boundary and initial conditions will be discussed in 

Section 2.3 . 

2.2. Multidimensional spherical transform 

A general multidimensional self-similar solution of the govern- 

ing Eq. (8) can be obtained in the radial phase displacement flow 

where the wetting phase is injected through a point source placed 

at the origin of coordinates. Note that the complementary problem 

where the non-wetting phase is injected and displaces the wetting 

phase is described by an equation similar to Eq. (8) but with differ- 

ent coefficients as shown by McWhorter and Sunada [15] or Fu ̌cík 

et al. [11] . The derivation of the corresponding self-similar solution 

is analogous to the one given here. 

Assuming � v T = 

�
 v T (t, r) and S w 

= S w 

(t, r) exhibit spherical sym- 

metry in R 

d , where r [ L ] denotes the non-negative radial coordi- 

nate, Eq. (8a) is resolved by 

�
 v T (t, r) = 

Q 0 (t) 

γd r 
d−1 

�
 ι, (9) 

where Q 0 [ L 
d T −1 ] denotes the time-dependent volumetric injection 

rate, � ι is the unit vector in the spherical coordinates pointing in the 

positive radial direction, and 

γd = 

dπ
d 
2 

�
(

d 
2 

+ 1 

) , (10) 

where � is the �-function, denotes the surface area of the d - 

dimensional unit sphere. 

As in [15] , Eq. (8b) is then transformed into 

γd r 
d−1 φ

∂S w 

∂t 
+ (1 − f (S i )) Q 0 

∂F 

∂r 
= 0 , (11) 

where S i [ −] denotes the initial saturation. The function F = 

F (t, r) [ −] is expressed as 

F = 

Q w 
Q 0 

− f (S i ) 

1 − f (S i ) 
, (12) 
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with the wetting-phase volumetric flow rate Q w 

= Q w 

(t, r) [ L d T −1 ] 

defined by 

Q w 

= f Q 0 − γd r 
d−1 D 

∂S w 

∂r 
. (13) 

The volumetric flow rate Q w 

( t, r ) for each r > 0 describes the 

overall volumetric flux of the wetting phase through the surface 

of a d -dimensional sphere B( � 0 , r) centered around the origin with 

radius r . Hence, Q w 

is related to the phase radial velocity v w 

= 

v w 

(t, r) for spherical symmetry as 

Q w 

(t, r) = γd r 
d−1 v w 

(t, r) . (14) 

Eq. (12) can be combined with Eq (13) to obtain 

F = F w 

− γd r 
d−1 

(1 − f (S i )) Q 0 

D 

∂S w 

∂r 
, (15) 

where F w 

[ −] denotes the normalized wetting-phase fractional flow 

function 

F w 

(S w 

) = 

f (S w 

) − f (S i ) 

1 − f (S i ) 
(16) 

as in Fu ̌cík et al. [11] . 

2.3. Initial and boundary conditions 

Eq. (11) is endowed with the boundary and initial conditions for 

the unknown functions S w 

= S w 

(t, r) and v T = v T (t, r) . According 

to the formulation by McWhorter and Sunada [15] , the following 

boundary and initial conditions are considered for S w 

: 

S w 

(t, 0) = S 0 , ∀ t > 0 , (17a) 

lim 

r→ + ∞ 

S w 

(t, r) = S i , ∀ t > 0 , (17b) 

S w 

(0 , r) = S i , ∀ r > 0 , (17c) 

where S i < S 0 because of the wetting fluid being injected into a 

domain with lower water saturation. 

Since we assume that the unidirectional displacement occurs in 

the radial direction only, the total velocity v T ( t, r ) is equal to the 

wetting phase velocity v w 

( t, r ) at the inlet r = 0 and, therefore, 

it has to be compatible with the expression for the total veloc- 

ity � v T that is given by Eq. (9) for r > 0. If d > 1, however, v T ( t, 

r ) is unbounded as r → 0 + and therefore the injection velocity of 

the wetting phase cannot be prescribed at r = 0 . Instead, for d = 2 , 

McWhorter and Sunada [15] propose to formulate the boundary 

conditions for Q w 

and Q T as 

Q w 

(t, 0) = Q T (t, 0) = Q 0 (t) , (18) 

for all t > 0. We extend applicability of this condition for all d ∈ N . 

In order to derive a self-similar solution in the sense of 

McWhorter and Sunada [15] , the following boundary conditions 

are imposed on the function F : 

F (t, 0) = 1 , ∀ t > 0 , (19a) 

lim 

r→ + ∞ 

F (t, r) = 0 , ∀ t > 0 . (19b) 

First condition (19a) is a straightforward combination of Eq. (18) 

and the definition of F given by Eq. (12) . In order to obtain zero 

value of F at r → + ∞ in Eq. (19b) , we need to assume that, for all 

t > 0, 

lim 

r→ + ∞ 

r d−1 ∂S w 

∂r 
(t, r) = 0 . (20) 

The physical meaning of Eq. (19b) is that the propagation of the in- 

jected fluid has finite velocity and the total volume of the injected 

fluid is contained inside a d -dimensional sphere of a finite radius. 

3. Reduction to an ordinary differential equation 

3.1. Similarity transform 

The similarity substitution S w 

(t, r) = S w 

(λ) , where 

λ = rt −
1 
2 , (21) 

allows to express the function F in terms of S w 

only, and to trans- 

form the partial differential equation (11) into a second order or- 

dinary differential equation for F . As in Weeks et al. [21] , the sim- 

ilarity transform is possible if and only if the volumetric injection 

rate has the specific form 

Q 0 (t) = At 
d−2 

2 , (22) 

where A [ L d T −
d 
2 ] denotes the volumetric injection rate constant. 

We use Eq. (21) to transform F given by Eq. (15) into 

F (S w 

) = F w 

(S w 

) − γd 

A (1 − f (S i )) 
D (S w 

) 
λ(S w 

) d−1 

λ′ (S w 

) 
, (23) 

and the governing Eq. (11) into 

λ(S w 

) d = 

2 A (1 − f (S i )) 

γd φ
F ′ ( S w 

) , (24) 

where λ′ and F ′ denotes the first derivative of λ and F , respectively. 

For a known function F , the saturation S w 

= S w 

(t, r) is implicitly 

expressed by Eq. (24) as 

r d t −
d 
2 = 

2 A (1 − f (S i )) 

γd φ
F ′ (S w 

(t, r)) , (25) 

for all t > 0 and r > 0. 

We differentiate Eq. (24) and combine the result with Eq. (23) 

to eliminate λ and its derivative λ′ to obtain the following second 

order ODE for F : 

F ′′ (F ′ ) 2 d 
−2 = −A 

− 2 
d 

C d D 

F − F w 

, (26) 

where 

C d = d 

(
γd 

1 − f (S i ) 

) 2 
d 

(
φ

2 

) 2 
d 
−1 

. (27) 

3.2. Boundary conditions 

At r = 0 , S w 

= S 0 as a result of Eq. (17a) and the boundary value 

for λ follows from (21) as 

λ(S 0 ) = 0 . (28) 

It is important to note that the transform S w 

(t, r) = S w 

(λ) is in- 

vertible to λ = λ(S w 

) only if S i < S w 

≤ S 0 because for a given time 

t > 0, S w 

(t, r) = S i for all r ≥ r ∗( t ) where r ∗ [ L ] denotes the position 

of the head of the saturation profile. McWhorter and Sunada [15] 

state that S w 

= S i when λ → + ∞ . This can, however, lead to a mis- 

interpretation that λ( S w 

) tends to infinity as S w 

→ S + 
i 

. In fact, the 

relationship λ←→ S w 

is not unique for all λ ∈ [0 , + ∞ ) but only for 

λ ∈ [0, λ∗], where λ∗ denotes the upper bound given by 

lim 

S w → S + 
i 

λ(S w 

) = λ∗ (29) 

as illustrated in Fig. 1 . Consequently, we can compute the position 

of the head of the solution as r ∗(t) = λ∗
√ 

t for all t > 0. 

The boundary conditions described by Eq. (19) are transformed 

by Eq. (21) into 

lim 

S w → S + 
i 

F (S w 

) = 0 , (30a) 

F (S 0 ) = 1 . (30b) 
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Fig. 1. Illustration of the typical λ←→ S w relationship that is not uniquely invertible 

for S w = S i . 

Eqs. (24) , (28) and (29) allow to express the boundary conditions 

for the derivative of F in the form 

F ′ (S + 
i 
) := lim 

S w → S + 
i 

F ′ (S w 

) = λd 
∗

γd φ

2 A (1 − f (S i )) 
, (31a) 

F ′ (S 0 ) = 0 . (31b) 

Evaluating Eq. (23) at S w 

= S 0 and using F (S 0 ) = 1 and 

λ(S 0 ) = 0 reveals that for d = 1 , A is related to S 0 as 

A = − γd 

1 − f (S i ) 

D (S 0 ) 

1 − F w 

(S 0 ) 

1 

λ′ (S 0 ) 
. (32) 

For d > 1, however, A does not depend on S 0 and Eq. (23) , evalu- 

ated at S w 

= S 0 , reduces into 

1 = F w 

(S 0 ) . (33) 

This relation holds if and only if S 0 = S m 

w 

, where S m 

w 

denotes the 

maximal wetting phase saturation for which f (S m 

w 

) = 1 . 

In the next section, we will show that the second order ODE 

in Eq. (26) can be integrated twice to obtain an equivalent integral 

equation for F that can be solved iteratively by means of numerical 

integration. 

4. Integral solution of ODE 

As pointed out by McWhorter and Sunada [15] who in their 

work discussed the cases d = 1 and d = 2 , ODE (26) can be inte- 

grated twice to obtain an integral equation for the unknown func- 

tion F that can be solved iteratively by using numerical integra- 

tion. Note that in the one–dimensional case, the resulting iterative 

scheme converges fast for S 0 lower than the maximal saturation 

S m 

w 

= 1 − S n,r . However, the number of iterations increase consider- 

ably as S 0 → S m 

w 

. The numerical algorithm can even cease to con- 

verge. Fu ̌cík et al. [11] proposed to overcome such numerical diffi- 

culties for S 0 close to S m 

w 

by transforming the integral equation into 

two variants of modified integral equations. The authors show that 

both these variants can be used to obtain the numerical solution 

for a larger extent of values of S 0 close to S m 

w 

than the original it- 

eration scheme by McWhorter and Sunada [15] . The online imple- 

mentation of the numerical solver capable of solving the original 

and modified integral equations mentioned above can be accessed 

on the website in Fu ̌cík [7] . 

For d ≥ 3, we propose to integrate ODE (26) from S i to S w 

and 

after algebraic manipulations, we obtain the following expression 

of F ′ 

F ′ (S w 

) = 

[
(F ′ (S + 

i 
)) 

2 −d 
d + 

d − 2 

d 
C d A 

− 2 
d 

∫ S w 

S i 

D (η) 

F (η) − F w 

(η) 
d η

] d 
2 −d 

, 

(34) 

for all S w 

∈ [ S i , S 0 ). In Eq. (34) , it is important to emphasize 

that the limit F ′ (S + 
i 
) given by Eq. (31a) is finite as discussed in 

Section 3.2 , c.f. Eq. (29) . Similar to the case d = 2 discussed by 

McWhorter and Sunada [15] , Eq. (34) is consistent with F ′ (S 0 ) = 0 

given by Eq. (31b) if and only if the integral ∫ S 0 

S i 

D (η) 

F (η) − F w 

(η) 
d η (35) 

is divergent. 

Further integration of Eq. (34) allows to obtain the following 

integral equation for F 

F (S w 

) = 

∫ S w 

S i 

[
(F ′ (S + 

i 
)) 

2 −d 
d + 

d − 2 

d 
C d A 

− 2 
d 

∫ β

S i 

D (η) 

F (η) − F w 

(η) 
d η

] d 
2 −d 

d β, 

(36) 

where the boundary condition given by Eq. (30a) has been already 

used. Evaluating Eq. (36) at S w 

= S 0 and using the remaining con- 

dition (30b) , we obtain an implicit equation for F ′ (S + 
i 
) 

1 = 

∫ S 0 

S i 

[
(F ′ (S + 

i 
)) 

2 −d 
d + 

d − 2 

d 
C d A 

− 2 
d 

∫ β

S i 

D (η) 

F (η) − F w 

(η) 
d η

] d 
2 −d 

d β. 

(37) 

Due to the implicit form of Eq. (37) with respect to the value of 

F ′ (S + 
i 
) , the solution of the integral equation (36) is not straightfor- 

ward as for d = 1 or d = 2 . 

Eq. (36) can be solved iteratively and by means of numerical 

integration in the form 

F (B ) 
k +1 

(S w 

) = min 

{∫ S w 

S i 

[
B 

2 −d 
d + 

d − 2 

d 
C d A 

− 2 
d 

×
∫ β

S i 

D (η) 

F (B ) 
k 

(η) − F w 

(η) 
d η

] d 
2 −d 

d β; 1 

}
, (38) 

with F (B ) 
0 

≡ 1 as the initial guess, where F (B ) 
k 

denotes the k th it- 

eration of F and B approximates the value of F ′ (S + 
i 
) . For a given 

B , the iterative process is terminated when the difference between 

the successive values of the functional H that represents the con- 

straint given by Eq. (37) 

H(F (B ) 
k 

, B ) : = 1 −
∫ S 0 

S i 

[
B 

2 −d 
d + 

d − 2 

d 
C d A 

− 2 
d 

×
∫ β

S i 

D (η) 

F (B ) 
k 

(η) − F w 

(η) 
d η

] d 
2 −d 

d β (39) 

is sufficiently small. For simplicity, we denote by H ( B ) the value of 

H(F (B ) 
� 

, B ) , where the index � denotes the final iteration of the iter- 

ative process. Altogether, solving Eq. (36) with the constraint given 

by Eq. (37) is equivalent to finding F ′ (S + 
i 
) such that H(F ′ (S + 

i 
)) = 0 . 

Our numerical experiments show that the behavior of H = H(B ) 

is monotone with respect to B as illustrated in Fig. 2 . Therefore, the 

bisection method can be used to compute the root of H . 

5. Computational examples 

In this section, we show examples of the solutions computed 

using the integral iterative scheme given by Eq. (38) with the em- 

phasis on novelty of the presented approach for d = 3 and discuss 

the admissible range for the input injection parameter A . Addition- 

ally, we show how the initial wetting phase saturation affects the 

saturation redistribution profiles. 

All results are computed using the following setting of the 

material and fluid properties: φ = 0 . 4 , k = 10 −10 m 

2 , m = 

1 
2 , P 0 = 

10 0 0 Pa , μw 

= 0 . 0 01 kg m 

−1 s −1 , and μn = 0 . 0 0 09 kg m 

−1 s −1 . 
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Fig. 2. Illustration of the H ←→ B relationship for the simulation parameters given 

in Section 5 , d = 3 , A = 10 −6 [ m 

3 s −
3 
2 ] . 

Fig. 3. Example of the functions F and the saturation profiles S w evaluated at 

t = 1 for S i = 0 and various choices of the injection rate constant A in the three- 

dimensional space, d = 3 . 

Although an arbitrary value of A can be chosen for d ≥ 2 in the- 

ory (c.f. Section 3.2 ), our numerical experiments indicate that the 

solution can be computed for a bounded range of A , depending on 

the dimension d considered. As shown in Fig. 3 , larger values of 

A correspond to flow situations where the advection produced by 

the large injection rate dominates over the capillary diffusion and 

the solution profile resembles the traveling wave solution similar 

to the one dimensional case, where the self-similar solution ap- 

proaches the Buckley and Leverett analytical solution (where cap- 

illary diffusion is neglected) as S 0 → S m 

w 

as reported by McWhorter 

and Sunada [15] , Fu ̌cík et al. [11] , or Bjørnarå and Mathias [1] . 

On the other hand, under lower injection rates, A corresponds 

to slower propagation of the wetting phase front and as A → 0, the 

function F approaches a step function as illustrated in Fig. 4 where 

the horizontal axis corresponds to log ( S w 

). 

Fig. 4. Illustration of the evolution of the function F as A → 0 + for d = 3 shown 

using the decadic logarithmic scale for the horizontal axis. 

Fig. 5. Comparison of the saturation profiles S w evaluated at t = 1 for various 

choices of the injection rate parameter A and initial water saturation S i in the three- 

dimensional space, d = 3 . 

In Fig. 5 , the effect of the initial saturation on the solution pro- 

files at t = 1 is shown for various choices of the injection rate pa- 

rameter A . As expected, the initial presence of the wetting phase 

facilitates the propagation of the front with respect to the case 

with S i = 0 . Note that similar saturation profiles as in Figs. 3 and 

5 were shown by Weeks et al. [21] using their exact solution for a 

particular functional choice of the capillary diffusion function. Sim- 

ilar behavior can be shown for solution profiles in higher dimen- 

sional spaces d ≥ 4 although the physical meaning of such solu- 

tions is disputable. 

In order to facilitate computation of the self-similar solutions 

discussed in this paper, we developed an online implementation of 

the integral solution of ODE (26) that includes the iterative scheme 
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proposed by McWhorter and Sunada [15] for d = 2 and the one 

given by Eq. (38) for d ≥ 3, c.f. [8] . 

6. Conclusion 

We discussed the higher dimensional generalization of the 

self-similar (or semi-analytical) solution originally proposed by 

McWhorter and Sunada [15] that can be obtained for a uni- 

directional displacement of two immiscible and incompressible 

phases without gravity. Regardless the dimension d considered, we 

showed that a particular similarity transform can be used to re- 

duce the system of the governing partial differential equations into 

a single ordinary differential equation (ODE). Similar to McWhorter 

and Sunada [15] , we transformed the resulting ODE for d ≥ 3 into 

the equivalent integral equation and proposed a numerical algo- 

rithm for obtaining its solution. 

We developed online implementations of the computational al- 

gorithms that can be accessed on the website in Fu ̌cík [7] for d = 1 

and Fu ̌cík [8] for d ≥ 2. 
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a b s t r a c t

A general multidimensional numerical scheme, primarily designed to simulate two-phase compositional
flow in porousmedia, is presented with serial and parallel implementations suitable for solving problems
with degenerate (capillary) diffusion or capillary barrier effect in heterogeneous porous materials. The
numerical scheme is based on the mixed–hybrid finite element method with the semi-implicit approach
for the time discretization in order to obtain a system of linear equations in each time step. The scheme
is implemented in serial for CPU and in parallel for CPU and GPU using TNL that provides an efficient
abstraction layer for accessing various parallel hardware architectures. In order to demonstrate the
applicability of the numerical scheme, a numerical analysis is presented for problems of two-phase flow
in 1D, 2D, and 3D for which exact (semi-analytical) solutions are known and a series of benchmark
problems for two-phase flow in heterogeneous porous media is discussed to show correct simulation
of the capillary barrier effect. The efficiency and accuracy of the implementations on CPU and GPU are
discussed. Moreover, we construct an analytical solution and use it to demonstrate convergence of the
numerical scheme for two-phase compositional flow problems in porous media.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Numerous general-purpose or custom-designed computational
tools are available for solving systems of partial differential equa-
tions originating from mathematical modeling of various indus-
trial, biological, or environmental problems. In particular, for
multiphase compositional flows in porous media, computational
software such as DUNE [1], TOUGH2 [2], or COMSOL Multiphysics
that are used in practical applications take limited or no advantage
of using parallel computation on graphical processing units (GPUs).

Based on the mixed–hybrid finite element method (MHFEM)
[3–5], we have developed a numerical scheme capable of solving
general systems of non-stationary partial differential equations
(PDEs) in 1D, 2D, or 3D and we propose a modification that allows
to consider problems with vanishing or degenerate diffusion. The
ability to handle degenerating diffusive fluxes is important, for
instance, in dealing with near-saturated regions in two-phase flow
in porous medium.

The numerical scheme is implemented using the Template nu-
merical library (TNL) that is being developed at the FNSPE, CTU in

∗ Correspondence to: Katedra matematiky, FJFI CVUT v Praze, Trojanova 13, 120
00 Praha 2, Czech Republic.

E-mail address: fucik@fjfi.cvut.cz (R. Fučík).

Prague [6].1 TNL provides all requisite algorithms and data struc-
tures such as structured or unstructured meshes, vectors, sparse
matrices, or linear solvers that have unified interface and allows to
implement numerical schemes independently of the architecture:
CPU or GPU via CUDA.

The system of PDEs is considered in the general coefficient
form as

n∑
j=1

Ni,j
∂Zj
∂t

+

n∑
j=1

ui,j · ∇Zj+

∇ ·

⎡⎣mi

⎛⎝−

n∑
j=1

Di,j∇Zj + wi

⎞⎠+

n∑
j=1

Zjai,j

⎤⎦+

n∑
j=1

ri,jZj = fi,

(1)

where the unknown vector function Z = [Z1, . . . , Zn]T depends on
time t ∈ [0, T ] and position vector x ∈ Ω ⊂ Rd, where T denotes
the final simulation time, Ω is a polygonal domain, and d is the
spatial dimension. Based on the letters denoting the coefficients in
(1), we refer to the computational method presented in this paper
as NumDwarf.

1 http://www.tnl-project.org.

https://doi.org/10.1016/j.cpc.2018.12.004
0010-4655/© 2018 Elsevier B.V. All rights reserved.
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System of Eqs. (1) is supplemented by the initial condition

Zj(0, x) = Z ini
j (x), ∀x ∈ Ω, j = 1, . . . , n, (2a)

and boundary conditions for all t ∈ (0, T ),

Zj = ZD
j , ∀x ∈ ΓZj ⊂ ∂Ω, j = 1, . . . , n, (2b)

qi · n = qNi , ∀x ∈ Γqi ⊂ ∂Ω, i = 1, . . . , n, (2c)

where by qi, we denote the conservative flux

qi = mi

⎛⎝−

n∑
j=1

Di,j∇Zj + wi

⎞⎠ . (3)

In general, the coefficients in Eq. (1) are functions of t , x, and Z .
Their meaning can be described as follows: N = {Ni,j}

n
i,j=1 is the

damping matrix, u = {ui,j}
n
i,j=1 describes the convection in the

non-conservative form, m = {mi}
n
i=1 is the vector of the mobility

coefficients of the conservative fluxes given by Eq. (3) assumed to
be non-negative, D = {Di,j}

n
i,j=1 is the matrix of diffusion tensors,

w = {wi}
n
i=1 is the vector representing external conservative

forces, a = {ai,j}
n
i,j=1 describes the convection in the conservative

form, r = {ri,j}ni,j=1 is the matrix of reaction terms, and f = {fi}ni=1
is the vector of the source/sink terms.

Although NumDwarf has been primarily developed for two-
phase compositional flows in porous media that include capillar-
ity, gravity, and heterogeneous porous materials, its applicability
may be extended to other systems of partial differential equations
simply by specifying the coefficients in (1).

In this paper, we describe derivation and main features of the
numerical scheme, both serial and parallel implementations, and
present a numerical analysis of the method using available bench-
mark problems. The paper is organized as follows. First, we present
a detailed derivation of the proposed numerical scheme based
on the semi-implicit time discretization variant of the MHFEM
and describe the computational algorithm and its implementation.
Then, we present results of the numerical analysis for two-phase
flow and two-phase compositional flow benchmark problems in
Sections 3 and 4, respectively. Finally, we summarize the paper in
the last section.

2. Mixed–hybrid finite element method

We use the mixed–hybrid finite element method to solve the
system of general coefficient form partial differential equations
given by Eq. (1). The unknown functions Zj(t, x) are assumed con-
tinuously differentiable with respect to time t and weakly differ-
entiable with respect to spatial coordinate vector x inΩ .

We consider a spatial discretization Kh of Ω ⊂ Rd consisting
of segments in R1, triangles or rectangles in R2, and tetrahedra or
cuboids in R3 where h > 0 is the mesh size defined as largest ball
diameter circumscribed around elements in Kh. We assume that
the mesh is conforming. We denote by Vh the set of all vertices of
Kh , by Eh the set of all sides of Kh, and by E int

h and Eext
h the set of

interior and exterior sides ofKh, respectively. By EK , we denote the
set of all sides of an element K ∈ Kh. In the following subsections,
we will always use index i = 1, . . . , n that corresponds to the ith
equation of Eq. (1).

2.1. Velocity approximation

In Eq. (1), we define the velocity vi by

vi = −

n∑
j=1

Di,j∇Zj + wi (4)

and thus the conservative flux defined by Eq. (3) is related to vi
by qi = mivi. We assume that both the conservative velocity

vi and flux qi belong to the functional space H(div,Ω). On each
element K ∈ Kh, we shall approximate vi and qi in the lowest order
Raviart–Thomas–Nédélec space RTN0(K ) ⊂ H(div, K ), [7,8]. The
basis functions ωK ,E ∈ RTN0(K ) are chosen such that ∀E, F ∈ EK

ωK ,E ·nK ,F = δEF
1

|E|d−1
, ∇·ωK ,E =

1
|K |d

, (5)

where d = 1, 2, 3, nK ,E is the outward unit normal to side E ∈ EK
with respect to element K , δEF is the Kronecker symbol, and |·|s is
the s-dimensional Lebesgue’s measure, s = 0, 1, 2, 3 and |·|0≡ 1.
The approximated velocity vi and flux qi are given in the basis of
RTN0(K ) as

vi =

∑
E∈EK

vi,K ,EωK ,E, qi =

∑
E∈EK

qi,K ,EωK ,E, (6)

where vi,K ,E and qi,K ,E are the velocity and flux across the side
E ∈ EK in the outward direction with respect to K , respectively.
Since qi = mivi, we approximate the flux across the side E by

qi,K ,E = mi,K ,Evi,K ,E, (7)

where mi,K ,E is the mean value of the mobility mi over the side
E ∈ EK .

In order to express vi,K ,E in terms of the unknown variables Zj,K
and Zj,F , we define partial velocities vi,j by vi,j = −Di,j∇Zj and
assume that vi,j belongs to H(div,Ω) where its approximation in
the basis of RTN0(K ) for all K ∈ Kh can be written as

vi,j =

∑
E∈EK

vi,j,K ,EωK ,E = −Di,j∇Zj. (8)

We assume that the tensor Di,j is either zero or positive definite.
In the first case, the zero tensor Di,j implies that vi,j = 0 and
its projection into RTN0(K ) is trivial. If the tensor Di,j is positive
definite, we can multiply Eq. (8) by its inversion and project the
resulting ∇Zj into RTN0(K ) to obtain for all F ∈ EK

Zj,K − Zj,F =

∑
E∈EK

vi,j,K ,EBi,j,K ,E,F , (9)

where the coefficients

Bi,j,K ,E,F =

∫
K

ωT
K ,ED

−1
i,j ωK ,Fdx (10)

form a local, positive definite matrix Bi,j,K and by bi,j,K =

{bi,j,K }E,F∈EK , we denote its inversion, i.e., bi,j,K = B−1
i,j,K . The system

of linear equations given by Eq. (9) for vi,j,K ,E is solved locally (per
elementK ∈ Kh) and its solution allows to express the components
of vi,j in RTN0(K ) as

vi,j,K ,E = bi,j,K ,EZj,K −

∑
F∈EK

bi,j,K ,E,FZj,F , (11)

where bi,j,K ,E =
∑

F∈EK
bi,j,K ,E,F .

As a result, Eq. (11) is used to express vi,K ,E in terms of Zj,K and
Zj,F as

vi,K ,E =

∑
j∈σi,K

⎛⎝bi,j,K ,EZj,K −

∑
F∈EK

bi,j,K ,E,FZj,F

⎞⎠+ wi,K ,E, (12)

where wi,K ,E denote the coefficients of the projection of wi into
RTN0(K ) and by σi,K ⊆ {1, . . . , n}, we denote the set of all indices j
forwhichDi,j is non-zero (i.e., positive definite) on elementK ∈ Kh,
i = 1, . . . , n.

As shown later in Section 3.2, a mass-lumping technique based
on [9] needs to be employed to stabilize the numerical scheme.
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2.2. Discrete spatial and temporal approximation

We use the finite volume approach in order to discretize the
ith Eq. (1). As a result, we obtain a system of ordinary differential
equations (ODEs) for the averages of Zj over K denoted by

Zj,K = Zj,K (t) =
1

|K |d

∫
K
Zj(t, x)dx, j = 1, . . . , n. (13)

First, we integrate Eq. (1) over a finite volume K ∈ Kh and
use Green’s formula together with the discretization of the phase
velocities defined by Eq. (6) and the properties of theRTN0(K ) basis
functions given by Eq. (5). The resulting system of ODEs is further
discretized in time using

dZj,K
dt

≈
Zk+1
j,K − Zk

j,K

∆tk
, (14)

where ∆tk = tk+1 − tk and 0 < tk < tk+1, k ∈ N, are the discrete
time levels. By a superscript k, we denote the value of a function
evaluated at time t = tk, i.e., Zk

j,K = Zj,K (tk). Consequently, the ith
Eq. (1) is discretized in time (k ∈ N) and space (K ∈ Kh) as

|K |d

∆tk

n∑
j=1

Ni,j,K (Zk+1
j,K − Zk

j,K ) +

n∑
j=1

∑
E∈EK

Zk,upw
i,j,E

(
ai,j,K ,E + ui,j,K ,E

)
+

∑
E∈EK

mk,upw
i,E vi,K ,E +

n∑
j=1

⎛⎝ri,j,K |K |d−
∑
E∈EK

ui,j,K ,E

⎞⎠ Zk+1
j,K

= |K |dfi,K ,

(15)

where the subscripts K and E denote the mean value of a variable
over the finite volume K and side E ∈ EK , respectively. By Zk+1

j,E ,
we denote the average of Zj over side E evaluated at time t = tk+1
where we drop the element index K due to the assumption of Zj
being continuous in Ω . The symbols ui,j,K ,E and ai,j,K ,E denote the
coefficients in the basis of RTN0(K ) of the projection of ui,j and ai,j
intoRTN0(K ), respectively. In Eq. (15), all coefficients are evaluated
at the previous time level tk or by using the initial condition given
by Eq. (2a) at the beginning of the simulation. This includes the
upwinded variablesmk,upw

i,E and Zk,upw
i,j,E defined by

mk,upw
i,E =

⎧⎪⎨⎪⎩
mk

i,K1
if vki,K1,E > 0,

mk
i,K2

if vki,K2,E > 0,

0 otherwise,

(16a)

Zk,upw
i,j,E =

⎧⎪⎨⎪⎩
Zk
j,K1

if ai,j,K1,E + ui,j,K1,E > 0,

Zk
j,K2

if ai,j,K2,E + ui,j,K2,E > 0,

0 otherwise,

(16b)

for all interior sides E ∈ E int
h such that E ∈ EK1 ∩ EK2 and

mk,upw
i,E =

{
mk

i,K1
if vki,K1,E ≥ 0,

mD
i,E(tk) otherwise,

(16c)

Zk,upw
i,j,E =

{
Zk
j,K1

if ai,j,K1,E + ui,j,K1,E ≥ 0,

ZD
j,E(tk) otherwise,

(16d)

for all external sides E ∈ Eext
h and E ∈ EK1 , where mD

i,E and ZD
j,E

denote the mean value of the Dirichlet boundary condition for
mi and Zj over E, respectively, and K1 and K2 are the neighboring
elements of side E. The upwind technique is used in Eq. (15) to
stabilize the numerical approximation of the advection terms [10].
Note that the convection coefficients ai,j and ui,j are assumed
continuous across side E, i.e.,

ui,j,K1,E + ui,j,K2,E = 0, ai,j,K1,E + ai,j,K2,E = 0, (17)

∀E ∈ E int
h ∩ EK1 ∩ EK2 . If a negative Neumann boundary condition is

prescribed at E ∈ Eext
h for qi,K ,E = qNi,K ,E , a non-zero value of mupw

i,E
(usually unity) must be supplemented.

Following Eq. (12), the velocities vki,Kℓ,E in Eq. (16) are consid-
ered as

vki,K ,E =

∑
j∈σi,K

⎛⎝bi,j,K ,EZk
j,K −

∑
F∈EK

bi,j,K ,E,FZk
j,F

⎞⎠+ wi,K ,E, (18)

where the coefficients bi,j,K ,E , bi,j,K ,E,F and wi,K ,E are evaluated at
time tk−1. This will be the basis for the balance equation discussed
later in this section which will ensure that the upwind direction is
selected based on conservative quantity.

Eq. (15) describes a system of n×nK equations for n×(nK+nE )
unknowns Zk+1

j,K and Zk+1
j,E , where nK and nE denote the number of

elements and sides in Kh, respectively. The system of Eqs. (15) is
closed by addingn × nE equations that represent the balance of the
normal components of the conservative fluxes qi,K ,E across internal
sides E ∈ E int

h .
Assuming no mass is produced or lost at a common side E of

two neighboring elements K1 and K2, the balance of the normal
components of qi can be written by virtue of Eqs. (7) and (11) as

2∑
ℓ=1

mk
i,Kℓ,E

⎡⎣∑
j∈σi,Kℓ

⎛⎝bi,j,K ,EZk+1
j,Kℓ

−

∑
F∈EKℓ

bi,j,Kℓ,E,FZ
k+1
j,F

⎞⎠+ wi,Kℓ,E

⎤⎦
= 0. (19)

Eq. (19) can, however, degeneratewhen one of the termsmi,Kℓ,E (or
both) vanishes as, for instance, it is the case formulti-phase flow in
porous media. Inspired by the ideas in [3,5], we propose to employ
the unique upwinded variable mk,upw

i,E at side E instead of mk
i,Kℓ,E

in
Eq. (19), i.e.,mk,upw

i,E = mk
i,Kℓ,E

, ℓ = 1, 2, allowing us to cancelmk,upw
i,E

in Eq. (19) if mk,upw
i,E > 0. Vanishing mobility mk,upw

i,E = 0 implies
that qi,Kℓ,E = 0 at side E, ℓ = 1, 2, thus yielding the value of Zk+1

j,F
undefined and the resulting system of linear equations singular. To
overcome this difficulty,we impose balancing vi,K ,E instead of qi,K ,E
across side E in the form

2∑
ℓ=1

⎡⎣∑
j∈σi,Kℓ

⎛⎝bi,j,Kℓ,EZ
k+1
j,Kℓ

−

∑
F∈EKℓ

bi,j,Kℓ,E,FZ
k+1
j,F

⎞⎠+ wi,Kℓ,E

⎤⎦ = 0,

(20)

for all values ofmk
i,E , i.e., even if the upwindedmobility term is zero.

Later in Sections 3 and 4, we demonstrate that this approachworks
in terms of numerical convergence and accuracy for the selected
benchmark problems and computational examples.

2.3. Local system of equations for cell-averages

The combination of the discretized equation (15) and the ex-
pression for the conservative velocities given by Eq. (12) allows
to express the vector Zk+1

K containing the cell-averaged unknowns
Zk+1
j,K , j = 1, . . . , n, for all K ∈ Kh, in the matrix form

Zk+1
K =

∑
F∈EK

Q−1
K RK ,FZk+1

F + Q−1
K RK , (21)

where the entries of the matrices QK and RK ,F are given by

{QK }i,j =
|K |d

∆tk
Ni,j,K −

∑
E∈EK

ui,j,K ,E +

∑
E∈EK

mk,upw
i,E bi,j,K ,E + |K |dri,j,K ,

(22a){
RK ,F

}
i,j =

∑
E∈EK

mk,upw
i,E bi,j,K ,E,F , (22b)
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and the components of the vector RK are given by

{RK }i = |K |dfi,K +
|K |d

∆tk

n∑
j=1

Ni,j,KZk
j,K −

∑
E∈EK

mk,upw
i,E wi,K ,E

−

n∑
j=1

∑
E∈EK

Zk,upw
i,j,E

(
ai,j,K ,E + ui,j,K ,E

)
.

(22c)

As follows from Eq. (21), the coefficients in Eq. (1) must be given
such that the matrix QK is non-singular.

2.4. System of equations for side-averages

Using Eq. (21), the cell-averaged variables Zk+1
j,K are algebraically

eliminated in Eq. (20) andwe complete the systemby including the
boundary conditions (2b). As a result, we obtain a global system of
linear equations for the unknown side-averaged variables Zk+1

j,F for
all F ∈ E int

h that can be represented in the matrix form as

MZk+1
= b, (23)

where Zk+1
=

{
Zk+1
F

}
F∈Eh

=
{
{Zk+1

j,F }
n
j=1

}
F∈Eh

is the vector of
n × nE unknowns. As follows from Eq. (20) and the definition of
the coefficients bi,K ,E,F , the non-singularity of the sparse matrix M
is determined by the choice of coefficients in Eq. (1). In particular,
M is positive definite if the matrix of tensors {Di,j}

n
i,j=1 is positive

definite. Note that Eq. (23) is the only global linear system (of n×nE
equations) that needs to be solved in order to proceed from tk to the
next time level tk+1. Based on the computed Zk+1

= M−1b, we use
Eq. (21) to compute Zk+1

j,K which completes the time step tk → tk+1.

2.5. Barrier condition implementation

In applications such as two-phase flow in a porous medium
with material discontinuities, a zero flux condition for one of the
equations in Eq. (1) are required at some interior sides, typically
placed at material interfaces. When this is the case, instead of
balancing the velocities from K1 and K2 in Eq. (20), we consider the
following zero flux condition

n∑
j=1

⎛⎝bi,j,K ,EZk+1
j,K −

∑
F∈EK

bi,j,K ,E,FZk+1
j,F

⎞⎠+ wi,K ,E = 0, (24)

where K denotes the element fromwhich the zero flux condition is
required. The application of the barrier condition given by Eq. (24)
is further discussed in Section 3.2.

2.6. Computational algorithm

The computational algorithm of the numerical solution can be
summarized in the following order:

1. Set k = 0 and use Eq. (2a) to initialize Z0
j,K for all K ∈ Kh and

j = 1, . . . , n.
2. Repeat the following steps until the final time of the simu-

lation is reached.

(a) Update the discrete coefficients Ni,j,K , ui,j,K ,E , mi,K ,
wi,K ,E , ai,j,K ,E , ri,j,K , fi,K for all i, j = 1, . . . , n, K ∈ Kh
and E ∈ EK .

(b) Update the coefficients of upwinded variables mupw
i,E

and Zupw
i,j,E according to Eq. (16) for all E ∈ Eh and

i, j = 1, . . . , n.
(c) Compute the mesh-dependent coefficients of matri-

ces bi,j,K for all K ∈ Kh and i, j = 1, . . . , n.

(d) Based on Zk
j,K from the previous time tk, use Eq. (22)

to compute the coefficients of matrices QK , RK ,F and
vectors RK and compute the inverses Q−1

K RK ,F , Q−1
K RK

needed in Eq. (21) for all K ∈ Kh and F ∈ EK .
(e) Assemble M and b in Eq. (23) using Eq. (20) and

boundary conditions (2b).
(f) Solve the linear system given by Eq. (23) to obtain

Zk+1
j,E , E ∈ Eh and j = 1, . . . , n.

(g) Compute Zk+1
j,K using Eq. (21) for all K ∈ Kh and j =

1, . . . , n.
(h) Set tk+1 = tk +∆tk and set k := k + 1.

For simplicity, we assume that the temporal discretization of the
numerical scheme is given by the set {tk}. However, an adaptive
time stepping strategy can be implemented for each particular
application of the numerical scheme. Here, for the sake of brevity,
we use constant time stepping strategy only.

2.7. Implementation on CPU

On CPU, the resolution of many local linear systems in Eq. (22)
(per elements K ∈ Kh) is done using the LAPACK package [11]
or using a custom implementation of the LU decomposition. The
global sparse linear system in Eq. (23) is resolvedwith either direct
solvers from UMFPACK [12] or iterative solvers from TNL where
common iterative methods such as (restarted) GMRES or BiCGStab
with Jacobi or ILU preconditioners are implemented. In TNL, a
parallel implementation of GMRES is also available for multicore
CPUs using OpenMP.

2.8. Parallel implementation on GPU

All steps of the computational algorithm summarized in
Section 2.6 can be implemented entirely on GPU. The steps 2b,
2a, 2c and 2g of the computational algorithm involve local com-
putations on element K ∈ Kh that are independent of data
stored in other elements in Kh and thus their implementation on
GPU is straightforward: we map one CUDA thread either to each
element K ∈ Kh (steps 2a, 2c, and 2g) or side E ∈ Eh (step 2b). All
supporting algorithms and data structures, including unstructured
meshes [13], are implemented in TNL.

In step 2d, the local matrices QK are usually small (n × n) and
they can be discarded after the evaluation of Q−1

K RK ,F and Q−1
K RK .

Hence, we map one CUDA thread per element K ∈ Kh, allocate
the matrices in the fast on-chip shared memory and write only
the results Q−1

K RK ,F and Q−1
K RK into the much slower global mem-

ory. The inversions are resolved using the LU factorization of the
matrix QK .

Regarding the assembly of the global sparse matrix in step 2e,
the choice of MHFEM is advantageous for the GPU architecture
because degrees of freedom are associated with mesh sides E ∈ Eh
rather than vertices V ∈ Vh as is the case of the standard finite ele-
mentmethod (FEM)with Lagrangian elements. Hence, theMHFEM
assembly involves accessing atmost two neighboring elements per
row, which significantly reduces the number of conflicts between
elements contributing to the same non-zeromatrix elements. Note
that several approaches for assembling FEM on GPU were investi-
gated in [14–17], but only some of them are applicable to MHFEM.
Most importantly, the element data computed in step 2d are used
to construct the global sparse matrix and then reused in step 2g,
so the Local and Shared approaches from [14], which discard the
element data after the matrix assembly, would cause significant
computational redundancy. Of the remaining approaches, we have
implemented a row-by-row assembly which avoids conflicts be-
tween elements and provides more work per thread compared to
the non-zero approach from [14].
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Another advantage of MHFEM is that if the mesh consists of
the same type of elements, the resulting linear system has the
same number of non-zero matrix elements in each row (except for
the rows associated with the domain boundaries). This is advan-
tageous for GPUs because it avoids insertion of padding zeros to
the sparse matrix storage format as well as divergent threads dur-
ing the sparse matrix–vector multiplication. The sparse matrix is
represented in the Sliced ELLPACK (SELLPACK) format [18], whose
GPU-optimized implementation is available in TNL.

The resolution of the linear system in step 2f is the compu-
tationally most demanding part of the algorithm. The system is
solved using the (restarted) GMRES(s) method [19,20] which can
be implemented efficiently on GPU by replacing the traditional
modified Gramm–Schmidt procedure with Householder transfor-
mations and using the compact WY representation (CWY) [21]
to express the products of Householder transformations in terms
of dense matrix multiplications. Similar technique was proposed
in [22] and tested in [23,24]. In order to reduce the number of iter-
ations needed for the GMRESmethod, we use the Jacobi (diagonal)
preconditioner and the adaptive strategy for the selection of the
restarting parameter proposed in [25].

3. Two-phase flow in porous media

We use the numerical scheme presented above to solve the
two-phase flow equations in porous media. First, in order to inves-
tigate the convergence, accuracy, and efficiency of the numerical
scheme implementation, we perform a numerical analysis using
exact (semi-analytical) solutions available for two-phase flow in
homogeneous porous medium for 1D, 2D, and 3D. Then, we use
two benchmark problems for flow across material discontinuities
in heterogeneous porous media to demonstrate the need of using
themass-lumping technique discussed in Section 2.1 as well as the
barrier condition discussed in Section 2.5.

We set n = 2 for the number of equations in Eq. (1) and use
the vector Z to represent the primary unknown variables Z =

(pw, pn)T . The non-zero coefficients in (1) describing the incom-
pressible and immiscible two-phase in isotropic porous medium
are evaluated as follows:

N =

(
−φ ∂Sw

∂pc
φ ∂Sw
∂pc

φ ∂Sw
∂pc

−φ ∂Sw
∂pc

)
, (25a)

m =

(
λw

λt
,

λn

λt

)T

, (25b)

D =

(
λtK I 0
0 λtK I

)
, (25c)

w = (λtρwKg, λtρnKg)T , (25d)

where φ [1] is the porosity, K [L2] is the intrinsic permeability,
g [LT−2

] is the gravitational acceleration vector. The symbols
ρα [ML−3

], Sα [1], λα [ML−1T−1
], and pα [ML−1T−2

] stand for
theα-phase density, volumetric saturation,mobility, and pressure,
respectively, where α ∈ {w, n}. The α-phase mobility is defined
as λα = kr,α/µα , where kr,α [1] is the relative permeability and
µα [ML−1T−1

] is the dynamic viscosity of the phase α.
The relative permeability functions kr,w and kr,n are assumed to

be nonlinear functions of the wetting phase saturation Sw and the
empirical models by Burdine [26] and Mualem [27] are employed,
cf. Eqs. (C.3) and (C.4), respectively. The wetting phase saturation
Sw is related to the difference between the phase pressures, defined
as the capillary pressure pc = pn − pw , as Sw = Sw(pc) and the
Brooks and Corey (B&C) [28] and van Genuchten (vG) [29] empir-
ical models are employed, cf. Eqs. (C.1) and (C.2), respectively. In

Eq. (25), λt = λw + λn denotes the total mobility. Additionally,
by

vα = −λαK (∇pα − ραg) , (26)

we denote the α-phase Darcy velocity, α ∈ {w, n}.

3.1. Numerical analysis: flow in homogeneous porous medium with-
out gravity

For homogeneous porous media with neglected gravitational
effects, exact (semi-analytical) solutions can be derived that in-
clude effects of both diffusion and advection. For one- and two-
dimensional cases, these are the well known semi-analytical
solutions by McWhorter and Sunada [30,31]. Recently, the work
of the first author showed that the semi-analytical solution can be
obtained also for the three-dimensional case [32]. In 2D and 3D, the
exact solutions are derived for radially symmetric problems with a
point injection source placed at the origin of the coordinate system.

By means of the Lp norms of the error of the numerical solution
denoted by Eh,Sn and the experimental order of convergence eocSn,p
(for p = 1, 2) evaluated at the final time of the simulation T , we
investigate the accuracy and convergence of the numerical scheme
in all dimensions d = 1, 2, 3. Definitions of Eh,Sn and eocSn,p are
given in Appendix A. For the numerical analysis presented in this
section, we employ the non-wetting saturation Sn for which the
semi-analytical solution is known.

The setup of the computational domain is depicted in Fig. 1. To
optimize computational resources, we take advantage of the radial
symmetry of the exact solution [32] and consider a quarter and an
eighth of the computational domain instead of the full geometry in
2D and 3D, respectively. For 1D, 2D, and 3D cases, we use the same
material denoted as Sand A (see Table C.8) and fluid properties of
water andDNAPL2 (see Table C.7). Since both B&C and vG empirical
properties are available for Sand A based on [33], we compare
results for both of these models in the numerical analysis.

At t = 0, the saturation of water in the computational domain
is S iniw = 0.95 and through a point source placed at the origin x =

0, the injection of the non-wetting phase begins. Based on [32],
the volumetric rate of DNAPL2 injected through the point source,
denoted by Q0 [LdT−1

], is given by

Q0 = Q0(t) = Adt
d−2
2 , (27)

where Ad [LdT−
d
2 ] denotes the volumetric injection rate parameter.

The values of Ad, the final simulation time T , and the domain
dimensions are selected such that for both B&C and vGmodels, the
non-wetting phase saturation profile does not reach the neighbor-
hood of the boundaries that approximate boundaries placed in in-
finity (see Fig. 1).We consider the dimensions of the computational
domain as shown in Fig. 1, we fix T = 20 000 s, and we select the
following values of Ad: A1 = 3 · 10−4 ms−

1
2 , A2 = 10−5 m2 s−1,

and A3 = 10−7 m3 s−
3
2 . In 1D, A1 is related to the inlet boundary

saturation S0w as described in [30,31], here, S0w = 0.378 for the B&C
and S0w = 0.427 for the vG models, respectively.

As follows from the derivation of the numerical scheme, the
point source boundary condition at the origin cannot be treated
directly by the numerical scheme but it has to be approximated by
all elements adjacent to the origin x = 0 as shown in Fig. 2 where
the injection part of the domain boundary Γ = ∂Ω is denoted
by Γin. At Γin, we prescribe a zero Neumann boundary condition
for the wetting phase velocity and a non-zero Neumann boundary
condition for the non-wetting phase velocity vn such that∫
Γin

vn · n = −Q0(t), ∀t ∈ [0, T ]. (28)

The remaining boundary conditions are shown in Fig. 1.
In Table 1, we show results of the numerical analysis for

segments, rectangles, triangles, cuboids, and tetrahedrons, respec-
tively, for both B&C and vG models. For each case, a series of
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0

Fig. 1. Setup of the computational domain with boundary conditions for (a) 1D, (b) 2D, and (c) 3D cases, respectively.

Table 1
Results of the numerical analysis using the L1 and L2 norms of Eh,Sn .

Brooks & Corey van Genuchten

Id. ∥Eh,Sn∥1 eocSn,1 ∥Eh,Sn∥2 eocSn,2 ∥Eh,Sn∥1 eocSn,1 ∥Eh,Sn∥2 eocSn,2
1D1 6.04 · 10−3

0.94 1.56 · 10−2
0.61 3.45 · 10−3

1.21 5.06 · 10−3
1.26

1D2 3.14 · 10−3
0.91 1.02 · 10−2

0.70 1.49 · 10−3
1.04 2.11 · 10−3

1.02
1D3 1.67 · 10−3

0.92 6.28 · 10−3
0.72 7.24 · 10−4

1.01 1.04 · 10−3
1.01

1D4 8.83 · 10−4
0.92 3.80 · 10−3

0.69 3.59 · 10−4
1.00 5.17 · 10−4

1.01
1D5 4.67 · 10−4

0.95 2.35 · 10−3
0.84 1.79 · 10−4

0.98 2.57 · 10−4
0.96

1D6 2.42 · 10−4
0.96 1.31 · 10−3

0.89 9.06 · 10−5
0.91 1.32 · 10−4

0.80
1D7 1.24 · 10−4 7.05 · 10−4 4.83 · 10−5 7.56 · 10−5

2D□
1 1.52 · 10−2

0.80 3.26 · 10−2
0.65 1.41 · 10−2

0.84 2.17 · 10−2
0.81

2D□
2 8.75 · 10−3

0.82 2.08 · 10−2
0.62 7.88 · 10−3

0.87 1.24 · 10−2
0.86

2D□
3 4.97 · 10−3

0.85 1.35 · 10−2
0.60 4.31 · 10−3

0.88 6.83 · 10−3
0.88

2D□
4 2.76 · 10−3

0.87 8.93 · 10−3
0.63 2.34 · 10−3

0.86 3.72 · 10−3
0.85

2D□
5 1.51 · 10−3 5.79 · 10−3 1.29 · 10−3 2.06 · 10−3

2D△

1 1.45 · 10−2
0.92 3.17 · 10−2

0.78 1.42 · 10−2
0.98 2.12 · 10−2

0.94
2D△

2 7.94 · 10−3
0.78 1.91 · 10−2

0.60 7.51 · 10−3
0.86 1.15 · 10−2

0.84
2D△

3 4.40 · 10−3
0.95 1.21 · 10−2

0.69 3.93 · 10−3
1.05 6.11 · 10−3

1.03
2D△

4 2.41 · 10−3
0.85 7.84 · 10−3

0.66 2.03 · 10−3
0.90 3.19 · 10−3

0.89
2D△

5 1.30 · 10−3 4.85 · 10−3 1.06 · 10−3 1.68 · 10−3

3D□
1 8.28 · 10−3

0.83 2.59 · 10−2
0.70 8.15 · 10−3

0.88 1.64 · 10−2
0.86

3D□
2 4.67 · 10−3

0.84 1.59 · 10−2
0.69 4.42 · 10−3

0.90 9.06 · 10−3
0.89

3D□
3 2.60 · 10−3

0.86 9.87 · 10−3
0.69 2.36 · 10−3

0.93 4.90 · 10−3
0.92

3D□
4 1.44 · 10−3 6.12 · 10−3 1.24 · 10−3 2.58 · 10−3

3D△

1 1.12 · 10−2
0.69 3.38 · 10−2

0.60 1.21 · 10−2
0.77 2.43 · 10−2

0.73
3D△

2 7.82 · 10−3
0.84 2.47 · 10−2

0.72 8.13 · 10−3
0.93 1.66 · 10−2

0.90
3D△

3 4.35 · 10−3
1.03 1.49 · 10−2

0.92 4.25 · 10−3
1.14 8.84 · 10−3

1.12
3D△

4 2.37 · 10−3
0.82 8.63 · 10−3

0.79 2.17 · 10−3
1.04 4.56 · 10−3

1.02
3D△

5 1.41 · 10−3 5.23 · 10−3 1.12 · 10−3 2.39 · 10−3
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Fig. 2. Approximation of the point injection boundary condition at x = 0 for (a) rectangles, (b) triangles, (c) cuboids, and (d) tetrahedra elements, respectively.

meshes was generated such that the mesh size parameter h is
consecutively reduced approximately by the factor of 2. The com-
puted experimental orders of convergence indicate that the nu-
merical scheme converges with the first order of accuracy in all
dimensions. As listed in the tables, different strategies for the
choice of the constant time step τ had to be used in 1D, 2D, and
3D to ensure the numerical convergence.

The computational timesCT [s],multicore CPUefficiency Eff [1],
and GPU speed-up GSp [1] in Tables 2 and 3 demonstrate the ad-
vantages of the parallel implementation of the MHFEM numerical
scheme on GPU. Additionally, we show the performance of two
GMRES(s) variants: using themodifiedGramm–Schmidt procedure
with re-orthogonalization (MGSR) or using the compact WY rep-
resentation (CWY) as discussed in Section 2.8. The computational
analysis was performed on 2D rectangular and triangular meshes
and 3D cuboidal and tetrahedral meshes using the B&C model for
which the results of the numerical analysis are given in Table 1.
For the comparison, we used Nvidia Tesla K40 GPU (with 2880
cores, 12 GB GDDR5 global memory) and Intel Core i7-5820K CPU
(with 6 cores and 12 threads). In order to obtain distortionless
CPU computational times, the Intel Turbo Boost Technology was
disabled on the CPU during computations. The efficiency index
Eff quantifies the parallel scalability of the numerical scheme on
multicore CPU using OpenMP with ℓ-threads as

Eff =
CT for 1 thread

ℓ× (CT for ℓ threads)
. (29)

The GPU speed-up GSp is the ratio between the CPU and GPU
computational times.

The CWY variant of GMRES is substantially faster than MGSR
on GPU as shown in Tables 2 and 3. When compared to the single-
threaded CPU, the GPU speed-up GSp for grids rises above 20 or
24 and above 5 or 7 for the six-threaded CPU for finer meshes in
2D or 3D, respectively. The speed-ups for unstructured meshes in
Tables 2b and 3b are slightly lower compared to structured grids
in Tables 2a and 3a.

Additionally in Appendix D, we illustrate the computational
accuracy and performance of the proposed MHFEM approach in
comparison with the fully time-implicit box method implemented
using the DuMuX project [34].

3.2. Flow in heterogeneous porous media

In heterogeneous porous media, mathematical modeling of
two-phase flow across sharp material discontinuities requires a
careful treatment that includes the capillary barrier effect (or
the extended capillary pressure condition) at material interfaces
as reported by [35,36]. In brief, the capillary barrier condition
describes a phenomenon where the non-wetting phase cannot
penetrate into a finer material until its capillary pressure reaches
the entry capillary pressure of the finer material.

We use two benchmark problems in 1D (denoted as BP1) and
2D (denoted as BP2) from [35,37] that consider a gravity induced
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Table 2
Comparison of the computational time CT , multicore CPU efficiency index Eff , and GPU speed-up GSp of the numerical scheme solver in 2D using the problem described in
Section 3.1.

(a) 2D grids

GPU CPU

1 thread 2 threads 4 threads 6 threads

Id. CT CT GSp CT Eff GSp CT Eff GSp CT Eff GSp

MGSR

2D□
1 5.1 0.6 0.12 0.7 0.45 0.13 0.8 0.19 0.15 0.9 0.11 0.17

2D□
2 28.1 11.5 0.41 7.9 0.72 0.28 6.4 0.45 0.23 6.8 0.28 0.24

2D□
3 117.1 173.6 1.48 95.9 0.91 0.82 61.2 0.71 0.52 52.8 0.55 0.45

2D□
4 740 4024 5.43 2154 0.93 2.91 1192 0.84 1.61 942 0.71 1.27

2D□
5 8237 82324 9.99 47982 0.86 5.82 26919 0.76 3.27 19916 0.69 2.42

CWY

2D□
1 1.5 0.7 0.45 0.4 0.79 0.28 0.3 0.52 0.22 0.3 0.41 0.18

2D□
2 11.0 13.2 1.20 7.6 0.87 0.69 4.8 0.68 0.44 4.0 0.55 0.37

2D□
3 46.3 197.0 4.25 107.5 0.92 2.32 65.7 0.75 1.42 52.6 0.62 1.14

2D□
4 380 4326 11.38 2361 0.92 6.21 1448 0.75 3.81 1196 0.60 3.15

2D□
5 4450 91166 20.49 49004 0.93 11.01 29182 0.78 6.56 24684 0.62 5.55

(b) 2D unstructured meshes

GPU CPU

1 thread 2 threads 4 threads 6 threads

Id. CT CT GSp CT Eff GSp CT Eff GSp CT Eff GSp

MGSR

2D△

1 4.7 0.3 0.07 0.5 0.33 0.11 0.5 0.18 0.10 0.6 0.09 0.13
2D△

2 22.4 5.0 0.22 3.9 0.65 0.17 3.1 0.40 0.14 3.6 0.23 0.16
2D△

3 120.0 98.5 0.82 59.5 0.83 0.50 38.3 0.64 0.32 35.7 0.46 0.30
2D△

4 778 2383 3.06 1299 0.92 1.67 701 0.85 0.90 574 0.69 0.74
2D△

5 7388 45953 6.22 25512 0.90 3.45 14603 0.79 1.98 11976 0.64 1.62

CWY

2D△

1 1.5 0.4 0.27 0.3 0.60 0.22 0.2 0.45 0.15 0.2 0.32 0.14
2D△

2 8.9 6.2 0.70 3.7 0.84 0.42 2.3 0.66 0.26 2.0 0.52 0.23
2D△

3 51.1 122.0 2.39 67.7 0.90 1.32 40.3 0.76 0.79 32.5 0.63 0.64
2D△

4 396 2696 6.80 1481 0.91 3.74 855 0.79 2.16 672 0.67 1.70
2D△

5 4008 57404 14.32 32101 0.89 8.01 18814 0.76 4.69 16414 0.58 4.09

Table 3
Comparison of the computational time CT , multicore CPU efficiency index Eff , and GPU speed-up GSp of the numerical scheme solver in 3D using the problem described in
Section 3.1.

(a) 3D grids

GPU CPU

1 thread 2 threads 4 threads 6 threads

Id. CT CT GSp CT Eff GSp CT Eff GSp CT Eff GSp

MGSR

3D□
1 5.9 13.8 2.34 7.2 0.96 1.22 4.3 0.80 0.73 3.4 0.67 0.58

3D□
2 55.7 524.6 9.42 304.7 0.86 5.47 173.7 0.76 3.12 128.2 0.68 2.30

3D□
3 1234 21129 17.12 12771 0.83 10.35 7317 0.72 5.93 6242 0.56 5.06

3D□
4 44798 (not computed on 1, 2 and 4 threads) 272104 6.07

CWY

3D□
1 2.1 15.2 7.30 8.0 0.96 3.82 4.4 0.86 2.13 3.4 0.75 1.62

3D□
2 30.8 564.3 18.33 319.5 0.88 10.38 186.7 0.76 6.07 150.3 0.63 4.88

3D□
3 828 20570 24.84 12406 0.83 14.98 7093 0.73 8.57 5534 0.62 6.68

3D□
4 31806 (not computed on 1, 2 and 4 threads) 234066 7.36

(b) 3D unstructured meshes

GPU CPU

1 thread 2 threads 4 threads 6 threads

Id. CT CT GSp CT Eff GSp CT Eff GSp CT Eff GSp

MGSR

3D△

1 3.8 1.7 0.44 1.2 0.71 0.31 0.8 0.53 0.21 0.8 0.33 0.22
3D△

2 6.1 7.2 1.19 4.3 0.84 0.70 2.6 0.70 0.43 2.3 0.53 0.37
3D△

3 45.3 274.5 6.06 152.6 0.90 3.37 87.5 0.78 1.93 72.4 0.63 1.60
3D△

4 873 11270 12.91 6228 0.90 7.13 3415 0.83 3.91 3188 0.59 3.65
3D△

5 55880 (not computed on 1, 2 and 4 threads) 298810 5.35

CWY

3D△

1 1.4 2.0 1.48 1.2 0.85 0.88 0.7 0.68 0.54 0.6 0.54 0.46
3D△

2 2.6 8.7 3.30 4.9 0.89 1.85 2.9 0.75 1.10 2.3 0.64 0.86
3D△

3 23.9 330.9 13.87 184.8 0.90 7.75 107.9 0.77 4.53 93.4 0.59 3.92
3D△

4 566 12070 21.32 6506 0.93 11.49 3771 0.80 6.66 3306 0.61 5.84
3D△

5 37695 (not computed on 1, 2 and 4 threads) 201786 5.35
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Fig. 3. Setup and the boundary and initial conditions of the benchmark problem BP1 in 1D based on [35].

Fig. 4. Example behavior of the numerical solution across material discontinuities when the mass-lumping technique is or is not employed for the barrier effect benchmark
problem in 1D. Top and bottom figures correspond to the B&C and vG models, respectively.

imbibition of a dense non-aqueous phase liquid (DNAPL) into a
fully water saturated domain. We demonstrate how the numerical
solution behaves at material discontinuities with and without
using (a) the mass lumping technique (in BP1) and (b) the capil-
lary barrier condition (in BP2) described in Sections 2.1 and 2.5,
respectively.

The setup together with the boundary and initial conditions
of the first benchmark problem BP1 are shown in Fig. 3 with
the material properties given in Table C.8. The fluid properties
used in BP1 are given in Table C.7: the wetting and non-wetting
phases are water and DNAPL1, respectively. The gravity acts along
the x-axis. At material discontinuities placed at x = 0.145 m and
x = 0.345 m, the spatial profile of Sn exhibits a jump across the
interfaces as shown in Fig. 4 where the numerical solutions for
both B&C and vG models are shown at t = 1650 s. When the
mass-lumping technique is employed, the numerical solution of
Sn matches the results in [35], pages 286 and 289. Without this
technique, the saturation profiles are approximated incorrectly
especially at the material interface at x = 0.345 mwhere the non-
wetting fluid flows from the finer to the coarser material. In higher
dimensions, we have observed the same behavior and a mass-
lumping technique based on [9] needs to be employed.

The second benchmark problem BP2 consists of a 2D computa-
tional domain illustrated in Fig. 5 with the boundary conditions for

Fig. 5. Setup of the benchmark problem BP2 based on [37].

all t ∈ [0, T ]:

vn · n = −5.13 · 10−5 m s−1 and vw · n = 0 on Γ1, (30a)

pw = 105 Pa and Sw = 1 on Γ3 ∪ Γ5, (30b)

vn · n = 0 and vw · n = 0 on Γ2 ∪ Γ4 ∪ Γ6, (30c)
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Fig. 6. Illustration of the unstructured (a) and structured (b) meshes in 2D consisting of 2880 elements used in the benchmark problem BP2 .

and the initial condition: Sw(0, x) = 1 for all x ∈ Ω . The material
properties of sands D, E, and F are given in Table C.8. The fluids
used in the simulations arewater andDNAPL2 with the parameters
given in Table C.7. The gravity acts in the negative direction of the
y-axis. The purpose of BP2 is to investigate whether the barrier ef-
fect has been simulated properly. Based on the material properties
of the buried lens consisting of either coarser sand E or finer sand
F, the non-wetting phase infiltrates into or pools around the lens,
respectively. In [5], a similar approach to solving the two-phase
flow equations in heterogeneous porous media using an implicit
pressure-explicit saturation (IMPES) variant of the MHFEM was
presented. The authors concluded that the numerical scheme is
able to handle flows acrossmaterial interfaceswithout any explicit
implementation of the extended capillary pressure condition. For
some particular (structured) meshes, we found that this is not the
case when the barrier effect occurs.

In Figs. 7 and 8, we show a series of numerical solutions of Sn
at t = 4500 s for both unstructured (left columns) and structured
(right columns)mesheswhere the first two rows of figures demon-
strate numerical convergence using a coarser and a finer mesh and
the last row contains results computed using the barrier condition.
In Fig. 6, we show two examples of unstructured (a) and structured
(b) meshes that both consist of 2880 elements.

For the coarser lens (sand E), the numerical results in Fig. 7a–d
using the unstructured and structured meshes are comparable
with the results in [37], page 211. Therefore, it may seem that
no explicit implementation of the barrier condition is required in
accordance with the findings by [5]. For the finer lens (sand F),
however, the numerical solution is strongly mesh-dependent as
shown in Fig. 8b and d, where the majority of the non-wetting
phase is deflected side-wise following the orientation of the struc-
turedmesh. As shown in Fig. 8d, such apparently incorrect solution
converges numerically as the mesh is further refined indicating
that the non-symmetry of the solution is not caused by coarseness
of the mesh. For unstructured meshes, such as the one shown in
Fig. 6a, the non-uniformity of elements suffices to produce sym-
metrical pooling of the non-wetting phase at material interfaces,
thus supporting the observations by [5] again.

When employing the barrier condition described in Section 2.5,
the numerical solutions on both structured and unstructured
meshes preserve their symmetry and are comparable with the

results published in [37], page 211. Furthermore, the solutions for
the coarser lens (sand E) show better symmetry when the barrier
condition is used in Fig. 7g compared to the case in Fig. 7d, where
no attention is paid to the fluid behavior acrossmaterial interfaces.
This is because a pooling (i.e., the barrier effect) occurs for a short
period of time that affects the final symmetry of the solution before
the non-wetting fluid penetrates into the coarser lens.

Consequently, we recommend using the mass-lumping tech-
nique as well as the implementation of the (capillary) barrier
condition in order to obtain reliable numerical results.

4. Compositional two-phase flow in porous media

In order to demonstrate the applicability of the presented
method, we construct an analytical solution for a transport
equation formass fraction X = X(t, x) coupledwith the two-phase
flow problem in Rd described in Section 3.1 in the form

φ
∂X
∂t

+ ∇ · (Xvt − DX∇X)+ rXX = 0, (31)

where vt [LT−1
] is the total velocity defined as the sum of the

Darcy’s phase velocities given by Eq. (26), i.e. vt = vw + vn, and
X [1] is the mass fraction of some chemical compound dissolved in
both phases under the assumption of local equilibrium. Derivation
of Eq. (31) is summarized in Appendix B.

4.1. Analytical solution

Eq. (31) is considered as another equation added to the sys-
tem of two-phase flow equations discussed in porous media in
Section 3 in the same domain, shown in Fig. 1, and radial symmetry
as the semi-analytical solution by [32] in the general dimension
d = 1, 2, 3. The analytical solution of (31) is assumed in the radial
coordinates as

X(t, ρ) = X0 exp
(
−BXρ

2e−AX t
)
, (32)

where ρ = ∥x∥2 is the radius, X0 [1] is the injection mass fraction
at the origin x = 0, and AX [T−1

] and BX [L−2
] are positive

coefficients.
The analytical function given by Eq. (32) resolves Eq. (31), if the

reaction term rX is given in the radial coordinates as

rX (t, ρ) = −BX
(
φρ2AX + 2DXd − 2ρvt (t, ρ)

− 4DXρ
2BXe−AX t

)
e−AX t , (33)

where vt (t, ρ) is the radial component of the total velocity vt .
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Fig. 7. Spatial distribution of the non-wetting phase saturation Sn at t = 4500 s for and various meshes with (left) and without (right) using the barrier condition. The lens
consists of the coarser sand E.

Eq. (31) and the analytical solution in Eq. (32) allow to use
vanishing or zero diffusion coefficient DX . Hence, the problem is
suitable for benchmarking numerical schemes for both diffusion–
advection and pure advection cases. In order to simulate the
vanishing diffusion case using the presented MHFEM numerical
scheme, we split the diffusion coefficient DX into two parts as
DX = mXD0, where D0 > 0 is a constant diffusion coefficient

and mX ≥ 0 is a mobility coefficient that can be set small for
the vanishing diffusion case or even to zero for the pure advection
case.

4.2. Conservative and non-conservative formulations

The transport equation given by Eq. (31) together with the two-
phase flow equations can be represented by the coefficients in
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Fig. 8. Spatial distribution of the non-wetting phase saturation Sn at t = 4500 s for and various meshes with (left) and without (right) using the barrier condition. The lens
consists of the finer sand F.

Eq. (1) using either a conservative (C) or a non-conservative form
(NC). The conservative form is directly given by Eq. (31) while the
non-conservative form results from the combination of Eq. (31)
with the two-phase flow continuity equations as follows:

φ
∂X
∂t

+ vt · ∇X − ∇ · (DX∇X)+ rXX = 0. (34)

For both (C) and (NC) variants, we set n = 3, Z = (pw, pn, X)T ,
and the coefficients in (1) as

Conservative form (C) : Non-Conservative form (NC) :

N =

⎛⎜⎝−φ ∂Sw
∂pc

φ ∂Sw
∂pc

0

φ ∂Sw
∂pc

−φ ∂Sw
∂pc

0

0 0 φ

⎞⎟⎠ , N =

⎛⎜⎝−φ ∂Sw
∂pc

φ ∂Sw
∂pc

0

φ ∂Sw
∂pc

−φ ∂Sw
∂pc

0

0 0 φ

⎞⎟⎠ , (35a)
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Table 4
Results of the numerical analysis using the L1 norm of Eh,X and the B&C model.

Conservative Formulation Non-Conservative Formulation

DX = 0 m2/s DX = 10−5 m2/s DX = 0 m2/s DX = 10−5 m2/s

Id. ∥Eh,X∥1 eocX,1 ∥Eh,X∥1 eocX,1 ∥Eh,X∥1 eocX,1 ∥Eh,X∥1 eocX,1
1D1 1.68 · 10−2

0.94 3.46 · 10−3
1.02 1.69 · 10−2

0.93 3.46 · 10−3
1.02

1D2 8.77 · 10−3
1.00 1.70 · 10−3

1.01 8.89 · 10−3
0.98 1.70 · 10−3

1.01
1D3 4.38 · 10−3

1.02 8.45 · 10−4
1.00 4.50 · 10−3

1.00 8.45 · 10−4
1.00

1D4 2.16 · 10−3
1.02 4.23 · 10−4

1.00 2.25 · 10−3
1.00 4.23 · 10−4

1.00
1D5 1.07 · 10−3

0.97 2.12 · 10−4
1.00 1.13 · 10−3

1.00 2.12 · 10−4
1.00

1D6 5.45 · 10−4
0.94 1.06 · 10−4

1.00 5.64 · 10−4
1.00 1.06 · 10−4

1.00
1D7 2.84 · 10−4 5.31 · 10−5 2.82 · 10−4 5.31 · 10−5

2D□
1 2.59 · 10−2

1.08 8.46 · 10−3
1.01 2.59 · 10−2

1.08 8.46 · 10−3
1.01

2D□
2 1.23 · 10−2

0.99 4.19 · 10−3
0.99 1.23 · 10−2

0.99 4.19 · 10−3
0.99

2D□
3 6.18 · 10−3

0.97 2.11 · 10−3
0.97 6.18 · 10−3

0.97 2.11 · 10−3
0.97

2D□
4 3.16 · 10−3

0.95 1.08 · 10−3
0.94 3.16 · 10−3

0.95 1.08 · 10−3
0.94

2D□
5 1.64 · 10−3 5.59 · 10−4 1.64 · 10−3 5.59 · 10−4

2D△

1 2.77 · 10−2
1.09 8.97 · 10−3

1.10 1.83 · 10−2
1.16 8.86 · 10−3

1.09
2D△

2 1.36 · 10−2
0.89 4.39 · 10−3

0.92 8.57 · 10−3
0.94 4.36 · 10−3

0.91
2D△

3 6.92 · 10−3
1.06 2.19 · 10−3

1.08 4.21 · 10−3
1.10 2.19 · 10−3

1.07
2D△

4 3.55 · 10−3 1.11 · 10−3 2.10 · 10−3 1.12 · 10−3

3D□
1 9.35 · 10−3

1.17 3.45 · 10−3
1.00 9.40 · 10−3

1.18 3.45 · 10−3
1.00

3D□
2 4.14 · 10−3

1.00 1.72 · 10−3
0.95 4.14 · 10−3

1.00 1.72 · 10−3
0.95

3D□
3 2.07 · 10−3 8.89 · 10−4 2.07 · 10−3 8.89 · 10−4

3D△

1 1.40 · 10−2
0.65 6.56 · 10−3

0.78 9.05 · 10−3
0.73 6.36 · 10−3

0.78
3D△

2 1.00 · 10−2
1.06 4.36 · 10−3

1.07 6.20 · 10−3
1.10 4.24 · 10−3

1.07
3D△

3 4.77 · 10−3
1.23 2.06 · 10−3

1.26 2.88 · 10−3
1.26 2.01 · 10−3

1.20
3D△

4 2.30 · 10−3 9.77 · 10−4 1.36 · 10−3 9.83 · 10−4

u = 0, u =

⎛⎝ 0 0 0
0 0 0
0 0 vt

⎞⎠ , (35b)

m =

(
λw

λt
,
λn

λt
,mX

)T

, m =

(
λw

λt
,
λn

λt
,mX

)T

, (35c)

D =

⎛⎝ λtK I 0 0
0 λtK I 0
0 0 D0I

⎞⎠ , D =

⎛⎝ λtK I 0 0
0 λtK I 0
0 0 D0I

⎞⎠ ,
(35d)

w = (λtρwKg, λtρnKg, 0)T , w = (λtρwKg, λtρnKg, 0)T , (35e)

a =

⎛⎝ 0 0 0
0 0 0
0 0 vt

⎞⎠ , a = 0, (35f)

r =

⎛⎝ 0 0 0
0 0 0
0 0 rX

⎞⎠ , r =

⎛⎝ 0 0 0
0 0 0
0 0 rX

⎞⎠ , (35g)

f = 0, f = 0. (35h)

4.3. Numerical analysis

Initial and boundary conditions for the two-phase flow part
of the system are the same as in Section 3.1 and except for the
choice of time steps τ , we use the same values for the problem
parameters. Compared to the numerical analysis in Section 3.1,
the time steps τ need to be reduced in order to assure numerical
convergence of the transport equation, cf. Table A.6. For the mass
fraction X , the initial condition is given by the analytical solution in
Eq. (32) evaluated at t = 0. We consider Dirichlet boundary condi-
tions given by the analytical solution at Γin and on the boundaries
representing the infinity, i.e., at x = 1m in 1D, on ΓN and ΓE in 2D,
and on all front faces in 3D, cf. Fig. 1. On the remaining boundaries,
zero Neumann boundary conditions are applied. For the numerical

analysis, we set D0 = 1 · 10−5 m2/s, X0 = 1, AX = 5 · 10−5 s−1, and
BX = 20 m−2 and we considermX ∈ {0, 0.1, 0.01, 1}.

In Tables 4 and 5, we show results of the numerical analysis in
the L1 norm for B&C and vG models, respectively, that cover the
pure advection case (DX = 0) and diffusion–advection case with
the largest diffusion (DX = D0) considered in this paper. In Section
2 of the supplementary material, we compile tables and figures
that cover the results from the whole computational study. In all
cases, the computed experimental order of convergences indicate
that the numerical scheme is convergent with the first order of
accuracy. Although substantially larger norms of Eh,X are obtained
for the pure advection case compared to the cases with non-zero
diffusionDX , the upwinding strategy defined in Eq. (16) is sufficient
to stabilize the numerical scheme for the pure advection problems.

5. Conclusion

Based on themixed–hybrid finite elementmethod, we have de-
veloped a computationally efficient multidimensional numerical
scheme for solving a system of n non-stationary partial differential
equationswith general coefficients that can be parallelized onGPU.
The numerical scheme is primarily designed for simulating two-
phase compositional flow in porous media and allows for solving
problems with degenerate or zero diffusion, or capillary barrier
effect in heterogeneous porous materials. We have presented a
detailed derivation of the numerical scheme and emphasized the
key aspects of its numerical stabilization that is inspired by the
upwind technique and our previous work. Furthermore, we have
shown how the numerical scheme has to be modified in order to
properly simulate the barrier capillary effect that occurs atmaterial
discontinuities in heterogeneous porous media.

In order to solve the numerical scheme, a sparse linear system
needs to be assembled and solved in each time step. The main
advantage of the presented scheme is that the assembly of the
linear system as well as the resolution of the linear system can
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Table 5
Results of the numerical analysis using the L1 norm of Eh,X and the vG model.

Conservative Formulation Non-Conservative Formulation

DX = 0 m2/s DX = 10−5 m2/s DX = 0 m2/s DX = 10−5 m2/s

Id. ∥Eh,X∥1 eocX,1 ∥Eh,X∥1 eocX,1 ∥Eh,X∥1 eocX,1 ∥Eh,X∥1 eocX,1
1D1 1.78 · 10−2

1.02 3.43 · 10−3
1.02 1.81 · 10−2

0.99 3.43 · 10−3
1.02

1D2 8.77 · 10−3
1.03 1.69 · 10−3

1.00 9.08 · 10−3
0.99 1.69 · 10−3

1.00
1D3 4.30 · 10−3

1.00 8.43 · 10−4
1.00 4.57 · 10−3

0.99 8.43 · 10−4
1.00

1D4 2.16 · 10−3
0.95 4.22 · 10−4

1.00 2.30 · 10−3
1.00 4.22 · 10−4

1.00
1D5 1.11 · 10−3

0.92 2.11 · 10−4
1.00 1.15 · 10−3

1.00 2.11 · 10−4
1.00

1D6 5.90 · 10−4
0.90 1.06 · 10−4

1.00 5.75 · 10−4
1.00 1.06 · 10−4

1.00
1D7 3.16 · 10−4 5.29 · 10−5 2.88 · 10−4 5.29 · 10−5

2D□
1 2.59 · 10−2

1.09 8.45 · 10−3
1.01 2.59 · 10−2

1.09 8.45 · 10−3
1.01

2D□
2 1.21 · 10−2

1.00 4.18 · 10−3
0.99 1.21 · 10−2

1.00 4.18 · 10−3
0.99

2D□
3 6.05 · 10−3

0.99 2.11 · 10−3
0.97 6.05 · 10−3

0.99 2.11 · 10−3
0.97

2D□
4 3.04 · 10−3

0.99 1.07 · 10−3
0.95 3.04 · 10−3

0.99 1.07 · 10−3
0.95

2D□
5 1.53 · 10−3 5.56 · 10−4 1.53 · 10−3 5.56 · 10−4

2D△

1 2.88 · 10−2
1.13 9.00 · 10−3

1.10 1.79 · 10−2
1.13 8.84 · 10−3

1.09
2D△

2 1.38 · 10−2
0.92 4.40 · 10−3

0.92 8.61 · 10−3
0.91 4.35 · 10−3

0.91
2D△

3 6.90 · 10−3
1.09 2.19 · 10−3

1.08 4.32 · 10−3
1.08 2.19 · 10−3

1.06
2D△

4 3.47 · 10−3 1.11 · 10−3 2.18 · 10−3 1.12 · 10−3

3D□
1 9.57 · 10−3

1.21 3.45 · 10−3
1.00 9.51 · 10−3

1.20 3.45 · 10−3
1.00

3D□
2 4.14 · 10−3

1.00 1.72 · 10−3
0.95 4.14 · 10−3

1.00 1.72 · 10−3
0.95

3D□
3 2.07 · 10−3 8.89 · 10−4 2.07 · 10−3 8.89 · 10−4

3D△

1 1.49 · 10−2
0.66 6.64 · 10−3

0.78 8.70 · 10−3
0.72 6.29 · 10−3

0.78
3D△

2 1.06 · 10−2
1.09 4.42 · 10−3

1.07 5.98 · 10−3
1.07 4.19 · 10−3

1.07
3D△

3 4.93 · 10−3
1.26 2.08 · 10−3

1.28 2.83 · 10−3
1.23 1.99 · 10−3

1.18
3D△

4 2.34 · 10−3 9.77 · 10−4 1.37 · 10−3 9.90 · 10−4

Table A.6
Parameters of meshes used in the numerical analyses in Sections 4 and 3.1: identifier (Id.), number of elements NK , mesh size h, degrees of freedom (=size of the global
linear system) Ndof , and time steps τB&C and τvG for the B&C and vG models, respectively. The identifiers describe meshes that consist of segments (1D) rectangles (2D□),
triangles (2D△), cuboids (3D□), or tetrahedra (3D△), respectively.

Benchmark in Section 4 Benchmark in Section 5

Id. NK h [m] Ndof τB&C [s] τvG [s] Ndof τB&C [s] τvG [s]

1D1 50 2.00 · 10−2 102 60.10 377.00 153 1.78 5.88
1D2 100 1.00 · 10−2 202 58.50 256.00 303 0.89 2.96
1D3 200 5.00 · 10−3 402 33.70 132.00 603 0.44 1.48
1D4 400 2.50 · 10−3 802 15.90 69.00 1203 0.22 0.74
1D5 800 1.25 · 10−3 1602 5.96 36.60 2403 0.11 0.37
1D6 1600 6.25 · 10−4 3202 2.55 19.90 4803 0.06 0.19
1D7 3200 3.12 · 10−4 6402 1.09 11.10 9603 0.03 0.09

2D□
1 225 9.43 · 10−2 960 253.16 317.00 1440 253.16 317.00

2D□
2 900 4.71 · 10−2 3720 90.50 80.00 5580 90.50 80.00

2D□
3 3600 2.36 · 10−2 14640 31.90 19.96 21960 31.90 19.96

2D□
4 14400 1.18 · 10−2 58080 10.62 5.02 87120 10.62 5.02

2D□
5 57600 5.89 · 10−3 231360 3.57 1.26 347040 3.57 1.26

2D△

1 242 6.71 · 10−2 766 454.55 36.36 1149 10.00 5.00
2D△

2 944 3.49 · 10−2 2912 145.99 15.49 4368 4.00 2.00
2D△

3 3714 1.64 · 10−2 11302 44.64 4.64 16953 1.00 0.50
2D△

4 14788 8.73 · 10−3 44684 13.44 1.35 67026 0.25 0.10
2D△

5 59336 4.23 · 10−3 178648 5.00 0.50

3D□
1 3375 1.15 · 10−1 21600 333.33 235.29 32400 200.00 200.00

3D□
2 27000 5.77 · 10−2 167400 131.58 58.82 251100 12.50 12.50

3D□
3 216000 2.89 · 10−2 1317600 53.48 14.71 1976400 0.78 0.78

3D□
4 1728000 1.44 · 10−2 10454400 22.10 3.68

3D△

1 1312 2.13 · 10−1 5874 833.33 152.67 8811 10.00 10.00
3D△

2 3697 1.27 · 10−1 15546 571.43 125.79 23319 5.00 5.00
3D△

3 29673 6.29 · 10−2 121678 232.56 60.24 182517 2.50 2.50
3D△

4 240372 3.48 · 10−2 973750 101.01 43.86 1460625 1.00 1.00
3D△

5 1939413 1.84 · 10−2 7807218 25.00 20.00

be done directly on GPU with the help of the Template numerical
library TNL. Therefore, the implementation on GPU can be more
than 20× (for rectangles), 14× (for triangles), 24× (for cuboids), or

21× (for tetrahedra) faster than a single-threaded implementation
on CPU (with the Intel Turbo Boost Technology disabled), or more
than 5× (for rectangles), 4× (for triangles), 7× (for cuboids), or
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Table C.7
Fluid properties.
Symbol ρ µ

Units [kg m−3
] [kg m−1 s−1

]

Water 1000 0.001
DNAPL1 , [35] 1400 0.001
DNAPL2 , [37] 1460 0.001

5× (for tetrahedra) faster than a six-threaded implementation on
CPU. In the discussion, we compared performance of serial (on
CPU), parallel (using OpenMP on CPU), and massive parallel (on
GPU) implementations.

The applicability of the numerical scheme has been demon-
strated using a series of benchmark problems for two-phase (com-
positional) flows in (heterogeneous) porous media. We have
presented results of a numerical analysis for selected problems of
two-phase flow in 1D, 2D, and 3D forwhich exact (semi-analytical)
solutions are known. Then, a series of benchmark problems for
two-phase flow in heterogeneous porous media has been pre-
sented to illustrate various aspects of numerical approximations
of the capillary barrier effect. Additionally, we constructed an
analytical solution for a two-phase compositional flow problem
andused it in another numerical analysis. In all numerical analyses,
we computed the experimental order of convergence using the
L1 and L2 norms of the numerically approximated solutions and
showed that the numerical scheme is convergent with the first
order of accuracy.
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Appendix A. Tools for numerical analysis

The Lp norm inΩ ⊂ Rd of some integrable functionψ is defined
by

∥ψ∥p =

(∫
Ω

|ψ(x)|pdx
) 1

p

, (A.1)

where we consider p = 1, 2 and d = 1, 2, 3 in this paper. For
a given mesh Kh, the error Eh,g of the numerical solution of some
function is defined by

Eh,g = gex − gh, (A.2)

where gex and gh denote the exact and the numerically approxi-
mated function g = g(t, x), respectively.

At a given time t = T , we assume the Lp norm of Eh,g in the form

Eh,gp = Ctime,g,p τ + Cspace,g,p hocg,p , (A.3)

where h [L] denotes the spatial step, τ [T ] denotes the (constant)
time step, Ctime,g,p and Cspace,g,p are some positive constants, and
ocg,p is the order of convergence of the numerical scheme with
respect to g in the Lp norm.

We investigate the convergence and accuracy of the numerical
scheme using the experimental order of convergence eocg,p that
approximates the order of convergence ocg,p as

eocg,p =

ln
Eh1,gp − ln

Eh2,gp
ln h1 − ln h2

, (A.4)

where h1 and h2 denote spatial steps of two different meshes Kh1
and Kh2 , respectively.

Appendix B. Transport equation derivation

Following the notation in Section 3, a general compositional
continuity equation with a reactive term for a component γ in a
phase α is considered in the form

φ
∂(SαXα,γ ρα)

∂t
+ ∇ ·

(
−ραDX,α,γ∇Xα,γ + ραXα,γ vα

)
+ ραrα,γ Xα,γ = 0, (B.1)

where Xα,γ [1] is the mass fraction of the dissolved species γ in
the phase α, α = n, w. Under the assumption of weak solutions,
densities ρw and ρn can be considered constant in time and space
and therefore factored out of Eq. (B.1). Furthermore, we assume
local equilibrium partitioning of the component γ between phases
for which Henry’s law allows to express

Xn,γ = Hγ Xw,γ , (B.2)

whereHγ [1] is the dimensionless Henry’s constant.When Eq. (B.2)
is substituted into Eq. (B.1), theHenry’s constantHγ can be factored
out of the resulting equation. As a result, we obtain two equations
for Xn,γ that we sum together to obtain Eq. (31), where we set
X := Xn,γ , DX := DX,w,γ + DX,n,γ , and rX := rw,γ + rn,γ .

Appendix C. Fluid and material properties

We consider capillary pressure–saturation relationships by (a)
Brooks and Corey [28]:

Sw,e(pc) =

(
pc

pB&C

)−λB&C

for pc ≥ pB&C , (C.1)

where pB&C [ML−1T−2
] is the entry pressure and λB&C [1] character-

izes the pore distribution of grains in a porous material, or by (b)
van Genuchten [29]:

Sw,e(pc) =
[
1 + (αvGpc)nvG

]−1+ 1
nvG for pc ≥ 0, (C.2)

where αvG [M−1LT 2
] and nvG [1] are empirical parameters. By Sw,e,

we denote the effective saturation Sw,e = (Sw − Sw,r )/(1 − Sw,r ),
where Sw,r [1] is the residual saturation of the wetting phase.

Based on the pc ↔ Sw relationships given by (C.1) and (C.2),
relative permeability–saturation relationships can be derived as
follows from (a) Burdine [26]:

kr,w(Sw) = S
3+ 2

λB&C
w,e , (C.3a)

kr,n(Sw) = (1 − Sw,e)2
(
1 − S

1+ 2
λB&C

w,e

)
, (C.3b)

or (b) Mualem [27]:

kr,w(Sw) = S
1
2
w,e

(
1 −

(
1 − S

1
mvG
w,e

)mvG)2

, (C.4a)

kr,n(Sw) = (1 − Sw,e)
1
3

(
1 − S

1
mvG
w,e

)2mvG

. (C.4b)

Appendix D. Illustrative comparison with DuMuX

In Tables D.9 andD.10,we illustrate the computational accuracy
and performance of the proposedMHFEM approach in comparison
with the fully time-implicit box method implemented using the
DuMuX project [34].

Appendix E. Supplementary data

Supplementary material related to this article can be found
online at https://doi.org/10.1016/j.cpc.2018.12.004.
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Table C.8
Material properties.
Symbol φ K pB&C λB&C αvG nvG Sw,r
Units [1] [10−12 m2

] [Pa] [1] [10−4 Pa−1
] [1] [1]

Sand A, [33] 0.343 5.168 4605.80 2.857 1.71 6.64 0.04
Sand B, [35] 0.4 504 370 3.86 22.5 8.06 0.08
Sand C, [35] 0.39 52.6 1324 2.49 5.81 5.34 0.1
Sand D, [37] 0.40 66.4 755 2.7 − − 0.1
Sand E, [37] 0.39 33.2 1163.5 2.0 − − 0.12
Sand F, [37] 0.39 33.2 1466.1 2.0 − − 0.12

Table D.9
Accuracy comparison between the proposed MHFEM approach and the fully time-implicit box method implemented using the DuMuX project [34] for the 2D test problem
discussed in Section 3.1 and with the B&C model used.

DuMuX NumDwarf

Id. ∥Eh,Sn∥1 eocSn,1 ∥Eh,Sn∥2 eocSn,2 ∥Eh,Sn∥1 eocSn,1 ∥Eh,Sn∥2 eocSn,2

2D△

1 2.21 · 10−2
0.97 3.74 · 10−2

0.65 1.42 · 10−2
0.98 2.12 · 10−2

0.94
2D△

2 1.13 · 10−2
0.79 2.44 · 10−2

0.53 7.51 · 10−3
0.86 1.15 · 10−2

0.84
2D△

3 6.19 · 10−3
0.98 1.64 · 10−2

0.68 3.93 · 10−3
1.05 6.11 · 10−3

1.03
2D△

4 3.34 · 10−3
0.86 1.07 · 10−2

0.68 2.03 · 10−3
0.90 3.19 · 10−3

0.89
2D△

5 1.79 · 10−3 6.78 · 10−3 1.06 · 10−3 1.68 · 10−3

Table D.10
Computational times (in seconds) on Intel Core i7-5820K CPU of
the NumDwarf scheme and the fully time-implicit box method im-
plemented using the DuMuX project [34] for the 2D test problem
discussed in Section 3.1 and with the B&C model used.
Id. DuMuX NumDwarf

2D△

1 9 0.3
2D△

2 120 5
2D△

3 960 98.5
2D△

4 20880 2383
2D△

5 203160 45953
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Supplementary Material:

Multidimensional Mixed–Hybrid Finite Element Method for
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1. Summary

This document contains supplementary information such as figures and tables for the
manuscript entitled: Multidimensional Mixed–Hybrid Finite Element Method for Compositional
Two–Phase Flow in Heterogeneous Porous Media and its Parallel Implementation on GPU.

In Section 2, examples of numerical solutions of the non–wetting phase saturation Sn are
presented that correspond to the two–phase flow benchmark problem in Rd discussed in Sec-
tion 4.1 of the main manuscript.

Section 3 is devoted to the compositional two–phase flow benchmark problem in Rd discussed
in Section 5 of the main manuscript and contains figures of numerical solutions of the mass
fraction X and the numerical error of the solution Eh,X for various choices of the diffusion
coefficient DX . Additionally, tables containing L1 and L2 norms of the error and experimental
orders of convergence are shown in Section 3.6.
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2. Numerical Analysis of Two–Phase Flow in Porous Media

Figure 1: Numerical solutions of the non–wetting saturation profiles at t = 20000 s using the Brooks and Corey
model.

2
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Figure 2: Numerical solutions of the non–wetting saturation profiles at t = 20000 s using the van Genuchten
model.
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3. Numerical Analysis of Compositional Two–Phase Flow in Porous Media

3.1. Results in 1D

Figure 3: Numerical solutions of the mass fraction profiles X (left column) and plots of the numerical error
Eh,X (right column) and at t = 20000 s using the conservative formulation (C) and the Brooks and Corey model
in 1D for various choices of DX .
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Figure 4: Numerical solutions of the mass fraction profiles X (left column) and plots of the numerical error
Eh,X (right column) and at t = 20000 s using the non–conservative formulation (NC) and the Brooks and Corey
model in 1D for various choices of DX .
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Figure 5: Numerical solutions of the mass fraction profiles X (left column) and plots of the numerical error
Eh,X (right column) and at t = 20000 s using the conservative formulation (C) and the van Genuchten model
in 1D for various choices of DX .
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Figure 6: Numerical solutions of the mass fraction profiles X (left column) and plots of the numerical error
Eh,X (right column) and at t = 20000 s using the non–conservative formulation (NC) and the van Genuchten
model in 1D for various choices of DX .
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3.2. Results in 2D on rectangles

Figure 7: Numerical solutions of the mass fraction profiles X (left column) and plots of the numerical error
Eh,X (right column) and at t = 20000 s using the conservative formulation (C) and the Brooks and Corey model
in 2D on rectangles for various choices of DX .

8
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Figure 8: Numerical solutions of the mass fraction profiles X (left column) and plots of the numerical error
Eh,X (right column) and at t = 20000 s using the non–conservative formulation (NC) and the Brooks and Corey
model in 2D on rectangles for various choices of DX .
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Figure 9: Numerical solutions of the mass fraction profiles X (left column) and plots of the numerical error
Eh,X (right column) and at t = 20000 s using the conservative formulation (C) and the van Genuchten model
in 2D on rectangles for various choices of DX .

10
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Figure 10: Numerical solutions of the mass fraction profiles X (left column) and plots of the numerical error
Eh,X (right column) and at t = 20000 s using the non–conservative formulation (NC) and the van Genuchten
model in 2D on rectangles for various choices of DX .
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3.3. Results in 2D on triangles

Figure 11: Numerical solutions of the mass fraction profiles X (left column) and plots of the numerical error
Eh,X (right column) and at t = 20000 s using the conservative formulation (C) and the Brooks and Corey model
in 2D on triangles for various choices of DX .
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Figure 12: Numerical solutions of the mass fraction profiles X (left column) and plots of the numerical error
Eh,X (right column) and at t = 20000 s using the non–conservative formulation (NC) and the Brooks and Corey
model in 2D on triangles for various choices of DX .
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Figure 13: Numerical solutions of the mass fraction profiles X (left column) and plots of the numerical error
Eh,X (right column) and at t = 20000 s using the conservative formulation (C) and the van Genuchten model
in 2D on triangles for various choices of DX .

14
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Figure 14: Numerical solutions of the mass fraction profiles X (left column) and plots of the numerical error
Eh,X (right column) and at t = 20000 s using the non–conservative formulation (NC) and the van Genuchten
model in 2D on triangles for various choices of DX .
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3.4. Results in 3D on cuboids

Figure 15: Numerical solutions of the mass fraction profiles X (left column) and plots of the numerical error
Eh,X (right column) and at t = 20000 s using the conservative formulation (C) and the Brooks and Corey model
in 3D on cuboids for various choices of DX .
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Figure 16: Numerical solutions of the mass fraction profiles X (left column) and plots of the numerical error
Eh,X (right column) and at t = 20000 s using the non–conservative formulation (NC) and the Brooks and Corey
model in 3D on cuboids for various choices of DX .
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Figure 17: Numerical solutions of the mass fraction profiles X (left column) and plots of the numerical error
Eh,X (right column) and at t = 20000 s using the conservative formulation (C) and the van Genuchten model
in 3D on cuboids for various choices of DX .
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Figure 18: Numerical solutions of the mass fraction profiles X (left column) and plots of the numerical error
Eh,X (right column) and at t = 20000 s using the non–conservative formulation (NC) and the van Genuchten
model in 3D on cuboids for various choices of DX .

19

............................... Článek v Computer Physics Communications

93



3.5. Results in 3D on tetrahedra

Figure 19: Numerical solutions of the mass fraction profiles X (left column) and plots of the numerical error
Eh,X (right column) and at t = 20000 s using the conservative formulation (C) and the Brooks and Corey model
in 3D on tetrahedra for various choices of DX .
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Figure 20: Numerical solutions of the mass fraction profiles X (left column) and plots of the numerical error
Eh,X (right column) and at t = 20000 s using the non–conservative formulation (NC) and the Brooks and Corey
model in 3D on tetrahedra for various choices of DX .
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Figure 21: Numerical solutions of the mass fraction profiles X (left column) and plots of the numerical error
Eh,X (right column) and at t = 20000 s using the conservative formulation (C) and the van Genuchten model
in 3D on tetrahedra for various choices of DX .
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Figure 22: Numerical solutions of the mass fraction profiles X (left column) and plots of the numerical error
Eh,X (right column) and at t = 20000 s using the non–conservative formulation (NC) and the van Genuchten
model in 3D on tetrahedra for various choices of DX .
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3.6. Experimental orders of convergence

Conservative Formulation Non-Conservative Formulation

DX = 0 m2/s DX = 10−7 m2/s DX = 10−6 m2/s DX = 10−5 m2/s DX = 0 m2/s DX = 10−7 m2/s DX = 10−6 m2/s DX = 10−5 m2/s
Id. ‖Eh,X‖1 eocX,1 ‖Eh,X‖1 eocX,1 ‖Eh,X‖1 eocX,1 ‖Eh,X‖1 eocX,1 ‖Eh,X‖1 eocX,1 ‖Eh,X‖1 eocX,1 ‖Eh,X‖1 eocX,1 ‖Eh,X‖1 eocX,1

1D1 1.68 · 10−2
0.94

1.09 · 10−2
0.96

4.02 · 10−3
0.99

3.46 · 10−3
1.02

1.69 · 10−2
0.93

1.09 · 10−2
0.96

4.02 · 10−3
0.99

3.46 · 10−3
1.02

1D2 8.77 · 10−3
1.00

5.60 · 10−3
0.99

2.02 · 10−3
0.99

1.70 · 10−3
1.01

8.89 · 10−3
0.98

5.62 · 10−3
0.98

2.02 · 10−3
0.99

1.70 · 10−3
1.01

1D3 4.38 · 10−3
1.02

2.82 · 10−3
1.00

1.02 · 10−3
1.00

8.45 · 10−4
1.00

4.50 · 10−3
1.00

2.84 · 10−3
0.99

1.02 · 10−3
1.00

8.45 · 10−4
1.00

1D4 2.16 · 10−3
1.02

1.41 · 10−3
1.00

5.09 · 10−4
1.00

4.23 · 10−4
1.00

2.25 · 10−3
1.00

1.43 · 10−3
1.00

5.09 · 10−4
1.00

4.23 · 10−4
1.00

1D5 1.07 · 10−3
0.97

7.03 · 10−4
1.01

2.55 · 10−4
1.00

2.12 · 10−4
1.00

1.13 · 10−3
1.00

7.17 · 10−4
1.00

2.55 · 10−4
1.00

2.12 · 10−4
1.00

1D6 5.45 · 10−4
0.94

3.50 · 10−4
1.01

1.28 · 10−4
1.00

1.06 · 10−4
1.00

5.64 · 10−4
1.00

3.59 · 10−4
1.00

1.28 · 10−4
1.00

1.06 · 10−4
1.00

1D7 2.84 · 10−4 1.74 · 10−4 6.39 · 10−5 5.31 · 10−5 2.82 · 10−4 1.79 · 10−4 6.38 · 10−5 5.31 · 10−5

2D�
1 2.59 · 10−2

1.08
1.79 · 10−2

1.01
8.56 · 10−3

0.96
8.46 · 10−3

1.01
2.59 · 10−2

1.08
1.79 · 10−2

1.01
8.56 · 10−3

0.96
8.46 · 10−3

1.01
2D�

2 1.23 · 10−2
0.99

8.91 · 10−3
0.99

4.40 · 10−3
0.95

4.19 · 10−3
0.99

1.23 · 10−2
0.99

8.91 · 10−3
0.99

4.40 · 10−3
0.95

4.19 · 10−3
0.99

2D�
3 6.18 · 10−3

0.97
4.49 · 10−3

0.99
2.29 · 10−3

0.95
2.11 · 10−3

0.97
6.18 · 10−3

0.97
4.49 · 10−3

0.99
2.29 · 10−3

0.95
2.11 · 10−3

0.97
2D�

4 3.16 · 10−3
0.95

2.27 · 10−3
0.98

1.18 · 10−3
0.96

1.08 · 10−3
0.94

3.16 · 10−3
0.95

2.27 · 10−3
0.98

1.18 · 10−3
0.96

1.08 · 10−3
0.94

2D�
5 1.64 · 10−3 1.15 · 10−3 6.09 · 10−4 5.59 · 10−4 1.64 · 10−3 1.15 · 10−3 6.09 · 10−4 5.59 · 10−4

2D41 2.77 · 10−2
1.09

2.20 · 10−2
1.06

1.03 · 10−2
1.13

8.97 · 10−3
1.10

1.83 · 10−2
1.16

1.30 · 10−2
1.09

8.73 · 10−3
1.02

8.86 · 10−3
1.09

2D42 1.36 · 10−2
0.89

1.10 · 10−2
0.88

4.94 · 10−3
0.91

4.39 · 10−3
0.92

8.57 · 10−3
0.94

6.40 · 10−3
0.92

4.50 · 10−3
0.82

4.36 · 10−3
0.91

2D43 6.92 · 10−3
1.06

5.65 · 10−3
1.06

2.48 · 10−3
1.07

2.19 · 10−3
1.08

4.21 · 10−3
1.10

3.21 · 10−3
1.09

2.42 · 10−3
1.00

2.19 · 10−3
1.07

2D44 3.55 · 10−3 2.89 · 10−3 1.26 · 10−3 1.11 · 10−3 2.10 · 10−3 1.61 · 10−3 1.29 · 10−3 1.12 · 10−3

3D�
1 9.35 · 10−3

1.17
7.44 · 10−3

1.10
3.64 · 10−3

0.96
3.45 · 10−3

1.00
9.40 · 10−3

1.18
7.32 · 10−3

1.08
3.64 · 10−3

0.96
3.45 · 10−3

1.00
3D�

2 4.14 · 10−3
1.00

3.47 · 10−3
1.00

1.86 · 10−3
0.98

1.72 · 10−3
0.95

4.14 · 10−3
1.00

3.47 · 10−3
1.00

1.86 · 10−3
0.98

1.72 · 10−3
0.95

3D�
3 2.07 · 10−3 1.73 · 10−3 9.44 · 10−4 8.89 · 10−4 2.07 · 10−3 1.73 · 10−3 9.44 · 10−4 8.89 · 10−4

3D41 1.40 · 10−2
0.65

1.25 · 10−2
0.62

7.64 · 10−3
0.69

6.56 · 10−3
0.78

9.05 · 10−3
0.73

7.50 · 10−3
0.70

6.01 · 10−3
0.72

6.36 · 10−3
0.78

3D42 1.00 · 10−2
1.06

9.09 · 10−3
1.07

5.34 · 10−3
1.11

4.36 · 10−3
1.07

6.20 · 10−3
1.10

5.22 · 10−3
1.11

4.14 · 10−3
1.06

4.24 · 10−3
1.07

3D43 4.77 · 10−3
1.23

4.30 · 10−3
1.23

2.45 · 10−3
1.31

2.06 · 10−3
1.26

2.88 · 10−3
1.26

2.41 · 10−3
1.23

1.97 · 10−3
1.14

2.01 · 10−3
1.20

3D44 2.30 · 10−3 2.07 · 10−3 1.13 · 10−3 9.77 · 10−4 1.36 · 10−3 1.16 · 10−3 1.00 · 10−3 9.83 · 10−4

Table 1: Results of the numerical analysis using the L1 norm and the Brooks and Corey model.
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Conservative Formulation Non-Conservative Formulation

DX = 0 m2/s DX = 10−7 m2/s DX = 10−6 m2/s DX = 10−5 m2/s DX = 0 m2/s DX = 10−7 m2/s DX = 10−6 m2/s DX = 10−5 m2/s
Id. ‖Eh,X‖2 eocX,2 ‖Eh,X‖2 eocX,2 ‖Eh,X‖2 eocX,2 ‖Eh,X‖2 eocX,2 ‖Eh,X‖2 eocX,2 ‖Eh,X‖2 eocX,2 ‖Eh,X‖2 eocX,2 ‖Eh,X‖2 eocX,2

1D1 2.00 · 10−2
0.92

1.36 · 10−2
0.95

7.61 · 10−3
1.00

7.53 · 10−3
1.00

2.01 · 10−2
0.91

1.36 · 10−2
0.95

7.61 · 10−3
1.00

7.53 · 10−3
1.00

1D2 1.06 · 10−2
0.99

7.02 · 10−3
0.98

3.81 · 10−3
1.00

3.76 · 10−3
1.00

1.07 · 10−2
0.97

7.05 · 10−3
0.98

3.81 · 10−3
1.00

3.76 · 10−3
1.00

1D3 5.35 · 10−3
1.01

3.55 · 10−3
1.00

1.91 · 10−3
1.00

1.88 · 10−3
1.00

5.47 · 10−3
0.99

3.58 · 10−3
0.99

1.91 · 10−3
1.00

1.88 · 10−3
1.00

1D4 2.66 · 10−3
1.00

1.78 · 10−3
1.00

9.55 · 10−4
1.00

9.41 · 10−4
1.00

2.76 · 10−3
1.00

1.81 · 10−3
0.99

9.55 · 10−4
1.00

9.41 · 10−4
1.00

1D5 1.33 · 10−3
0.98

8.86 · 10−4
1.01

4.78 · 10−4
1.00

4.70 · 10−4
1.00

1.38 · 10−3
1.00

9.06 · 10−4
1.00

4.78 · 10−4
1.00

4.70 · 10−4
1.00

1D6 6.74 · 10−4
0.92

4.41 · 10−4
1.01

2.39 · 10−4
1.00

2.35 · 10−4
1.00

6.93 · 10−4
1.00

4.54 · 10−4
1.00

2.39 · 10−4
1.00

2.35 · 10−4
1.00

1D7 3.55 · 10−4 2.19 · 10−4 1.19 · 10−4 1.18 · 10−4 3.47 · 10−4 2.27 · 10−4 1.19 · 10−4 1.18 · 10−4

2D�
1 3.61 · 10−2

0.95
2.69 · 10−2

0.93
1.73 · 10−2

0.93
1.74 · 10−2

1.02
3.61 · 10−2

0.95
2.69 · 10−2

0.93
1.73 · 10−2

0.93
1.74 · 10−2

1.02
2D�

2 1.87 · 10−2
0.94

1.42 · 10−2
0.95

9.10 · 10−3
0.92

8.55 · 10−3
1.00

1.87 · 10−2
0.94

1.42 · 10−2
0.95

9.10 · 10−3
0.92

8.55 · 10−3
1.00

2D�
3 9.75 · 10−3

0.94
7.33 · 10−3

0.97
4.80 · 10−3

0.95
4.29 · 10−3

0.98
9.75 · 10−3

0.94
7.33 · 10−3

0.97
4.80 · 10−3

0.95
4.29 · 10−3

0.98
2D�

4 5.07 · 10−3
0.95

3.74 · 10−3
0.98

2.49 · 10−3
0.97

2.17 · 10−3
0.97

5.07 · 10−3
0.95

3.74 · 10−3
0.98

2.49 · 10−3
0.97

2.17 · 10−3
0.97

2D�
5 2.63 · 10−3 1.89 · 10−3 1.27 · 10−3 1.10 · 10−3 2.63 · 10−3 1.89 · 10−3 1.27 · 10−3 1.10 · 10−3

2D41 4.18 · 10−2
0.97

3.36 · 10−2
0.99

2.04 · 10−2
1.12

1.88 · 10−2
1.10

2.71 · 10−2
1.02

2.11 · 10−2
0.96

1.81 · 10−2
0.97

1.85 · 10−2
1.09

2D42 2.22 · 10−2
0.84

1.76 · 10−2
0.85

9.79 · 10−3
0.91

9.16 · 10−3
0.93

1.39 · 10−2
0.88

1.13 · 10−2
0.86

9.61 · 10−3
0.81

9.09 · 10−3
0.92

2D43 1.17 · 10−2
1.02

9.23 · 10−3
1.04

4.92 · 10−3
1.08

4.54 · 10−3
1.10

7.12 · 10−3
1.07

5.89 · 10−3
1.06

5.22 · 10−3
1.00

4.55 · 10−3
1.08

2D44 6.15 · 10−3 4.77 · 10−3 2.49 · 10−3 2.27 · 10−3 3.64 · 10−3 3.03 · 10−3 2.77 · 10−3 2.29 · 10−3

3D�
1 1.84 · 10−2

0.92
1.62 · 10−2

1.00
1.05 · 10−2

0.94
1.02 · 10−2

1.01
1.88 · 10−2

0.95
1.55 · 10−2

0.94
1.05 · 10−2

0.94
1.02 · 10−2

1.01
3D�

2 9.72 · 10−3
0.93

8.12 · 10−3
0.95

5.45 · 10−3
0.96

5.06 · 10−3
0.94

9.72 · 10−3
0.93

8.12 · 10−3
0.95

5.45 · 10−3
0.96

5.06 · 10−3
0.94

3D�
3 5.12 · 10−3 4.22 · 10−3 2.80 · 10−3 2.65 · 10−3 5.12 · 10−3 4.22 · 10−3 2.80 · 10−3 2.65 · 10−3

3D41 3.08 · 10−2
0.51

2.71 · 10−2
0.52

2.04 · 10−2
0.63

1.99 · 10−2
0.71

2.04 · 10−2
0.52

1.81 · 10−2
0.52

1.75 · 10−2
0.61

1.93 · 10−2
0.71

3D42 2.36 · 10−2
1.00

2.07 · 10−2
1.04

1.47 · 10−2
1.11

1.37 · 10−2
1.11

1.56 · 10−2
1.04

1.38 · 10−2
1.08

1.28 · 10−2
1.08

1.34 · 10−2
1.11

3D43 1.17 · 10−2
1.19

1.00 · 10−2
1.21

6.75 · 10−3
1.27

6.35 · 10−3
1.29

7.54 · 10−3
1.21

6.47 · 10−3
1.18

6.01 · 10−3
1.13

6.17 · 10−3
1.22

3D44 5.80 · 10−3 4.90 · 10−3 3.18 · 10−3 2.96 · 10−3 3.67 · 10−3 3.21 · 10−3 3.08 · 10−3 2.99 · 10−3

Table 2: Results of the numerical analysis using the L2 norm and the Brooks and Corey model.
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Conservative Formulation Non-Conservative Formulation

DX = 0 m2/s DX = 10−7 m2/s DX = 10−6 m2/s DX = 10−5 m2/s DX = 0 m2/s DX = 10−7 m2/s DX = 10−6 m2/s DX = 10−5 m2/s
Id. ‖Eh,X‖1 eocX,1 ‖Eh,X‖1 eocX,1 ‖Eh,X‖1 eocX,1 ‖Eh,X‖1 eocX,1 ‖Eh,X‖1 eocX,1 ‖Eh,X‖1 eocX,1 ‖Eh,X‖1 eocX,1 ‖Eh,X‖1 eocX,1

1D1 1.78 · 10−2
1.02

1.12 · 10−2
0.99

3.99 · 10−3
0.99

3.43 · 10−3
1.02

1.81 · 10−2
0.99

1.12 · 10−2
0.98

3.99 · 10−3
0.99

3.43 · 10−3
1.02

1D2 8.77 · 10−3
1.03

5.62 · 10−3
1.00

2.01 · 10−3
0.99

1.69 · 10−3
1.00

9.08 · 10−3
0.99

5.67 · 10−3
0.98

2.01 · 10−3
0.99

1.69 · 10−3
1.00

1D3 4.30 · 10−3
1.00

2.81 · 10−3
1.00

1.01 · 10−3
0.99

8.43 · 10−4
1.00

4.57 · 10−3
0.99

2.87 · 10−3
0.99

1.01 · 10−3
1.00

8.43 · 10−4
1.00

1D4 2.16 · 10−3
0.95

1.40 · 10−3
1.00

5.08 · 10−4
1.00

4.22 · 10−4
1.00

2.30 · 10−3
1.00

1.44 · 10−3
1.00

5.07 · 10−4
1.00

4.22 · 10−4
1.00

1D5 1.11 · 10−3
0.92

6.99 · 10−4
1.00

2.55 · 10−4
1.00

2.11 · 10−4
1.00

1.15 · 10−3
1.00

7.24 · 10−4
1.00

2.54 · 10−4
1.00

2.11 · 10−4
1.00

1D6 5.90 · 10−4
0.90

3.49 · 10−4
0.99

1.28 · 10−4
1.00

1.06 · 10−4
1.00

5.75 · 10−4
1.00

3.63 · 10−4
1.00

1.27 · 10−4
1.00

1.06 · 10−4
1.00

1D7 3.16 · 10−4 1.75 · 10−4 6.39 · 10−5 5.29 · 10−5 2.88 · 10−4 1.81 · 10−4 6.36 · 10−5 5.29 · 10−5

2D�
1 2.59 · 10−2

1.09
1.78 · 10−2

1.00
8.54 · 10−3

0.95
8.45 · 10−3

1.01
2.59 · 10−2

1.09
1.78 · 10−2

1.00
8.54 · 10−3

0.95
8.45 · 10−3

1.01
2D�

2 1.21 · 10−2
1.00

8.90 · 10−3
0.99

4.42 · 10−3
0.94

4.18 · 10−3
0.99

1.21 · 10−2
1.00

8.90 · 10−3
0.99

4.42 · 10−3
0.94

4.18 · 10−3
0.99

2D�
3 6.05 · 10−3

0.99
4.49 · 10−3

0.99
2.30 · 10−3

0.95
2.11 · 10−3

0.97
6.05 · 10−3

0.99
4.49 · 10−3

0.99
2.30 · 10−3

0.95
2.11 · 10−3

0.97
2D�

4 3.04 · 10−3
0.99

2.26 · 10−3
1.00

1.19 · 10−3
0.95

1.07 · 10−3
0.95

3.04 · 10−3
0.99

2.26 · 10−3
1.00

1.19 · 10−3
0.95

1.07 · 10−3
0.95

2D�
5 1.53 · 10−3 1.13 · 10−3 6.18 · 10−4 5.56 · 10−4 1.53 · 10−3 1.13 · 10−3 6.18 · 10−4 5.56 · 10−4

2D41 2.88 · 10−2
1.13

2.31 · 10−2
1.09

1.08 · 10−2
1.15

9.00 · 10−3
1.10

1.79 · 10−2
1.13

1.27 · 10−2
1.04

8.71 · 10−3
0.97

8.84 · 10−3
1.09

2D42 1.38 · 10−2
0.92

1.13 · 10−2
0.91

5.08 · 10−3
0.94

4.40 · 10−3
0.92

8.61 · 10−3
0.91

6.47 · 10−3
0.89

4.62 · 10−3
0.81

4.35 · 10−3
0.91

2D43 6.90 · 10−3
1.09

5.68 · 10−3
1.09

2.51 · 10−3
1.09

2.19 · 10−3
1.08

4.32 · 10−3
1.08

3.31 · 10−3
1.08

2.51 · 10−3
1.00

2.19 · 10−3
1.06

2D44 3.47 · 10−3 2.84 · 10−3 1.26 · 10−3 1.11 · 10−3 2.18 · 10−3 1.68 · 10−3 1.34 · 10−3 1.12 · 10−3

3D�
1 9.57 · 10−3

1.21
7.32 · 10−3

1.08
3.64 · 10−3

0.96
3.45 · 10−3

1.00
9.51 · 10−3

1.20
7.32 · 10−3

1.08
3.64 · 10−3

0.96
3.45 · 10−3

1.00
3D�

2 4.14 · 10−3
1.00

3.47 · 10−3
1.00

1.86 · 10−3
0.98

1.72 · 10−3
0.95

4.14 · 10−3
1.00

3.47 · 10−3
1.00

1.86 · 10−3
0.98

1.72 · 10−3
0.95

3D�
3 2.07 · 10−3 1.73 · 10−3 9.44 · 10−4 8.89 · 10−4 2.07 · 10−3 1.73 · 10−3 9.44 · 10−4 8.89 · 10−4

3D41 1.49 · 10−2
0.66

1.34 · 10−2
0.63

8.09 · 10−3
0.69

6.64 · 10−3
0.78

8.70 · 10−3
0.72

7.21 · 10−3
0.70

5.89 · 10−3
0.72

6.29 · 10−3
0.78

3D42 1.06 · 10−2
1.09

9.67 · 10−3
1.10

5.66 · 10−3
1.13

4.42 · 10−3
1.07

5.98 · 10−3
1.07

5.02 · 10−3
1.08

4.06 · 10−3
1.04

4.19 · 10−3
1.07

3D43 4.93 · 10−3
1.26

4.49 · 10−3
1.27

2.57 · 10−3
1.34

2.08 · 10−3
1.28

2.83 · 10−3
1.23

2.35 · 10−3
1.19

1.96 · 10−3
1.11

1.99 · 10−3
1.18

3D44 2.34 · 10−3 2.12 · 10−3 1.16 · 10−3 9.77 · 10−4 1.37 · 10−3 1.16 · 10−3 1.01 · 10−3 9.90 · 10−4

Table 3: Results of the numerical analysis using the L1 norm and the van Genuchten model.
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Conservative Formulation Non-Conservative Formulation

DX = 0 m2/s DX = 10−7 m2/s DX = 10−6 m2/s DX = 10−5 m2/s DX = 0 m2/s DX = 10−7 m2/s DX = 10−6 m2/s DX = 10−5 m2/s
Id. ‖Eh,X‖2 eocX,2 ‖Eh,X‖2 eocX,2 ‖Eh,X‖2 eocX,2 ‖Eh,X‖2 eocX,2 ‖Eh,X‖2 eocX,2 ‖Eh,X‖2 eocX,2 ‖Eh,X‖2 eocX,2 ‖Eh,X‖2 eocX,2

1D1 2.11 · 10−2
0.99

1.38 · 10−2
0.98

7.60 · 10−3
1.00

7.53 · 10−3
1.00

2.14 · 10−2
0.96

1.39 · 10−2
0.96

7.60 · 10−3
1.00

7.53 · 10−3
1.00

1D2 1.06 · 10−2
1.01

7.03 · 10−3
0.99

3.81 · 10−3
1.00

3.76 · 10−3
1.00

1.10 · 10−2
0.98

7.11 · 10−3
0.98

3.81 · 10−3
1.00

3.76 · 10−3
1.00

1D3 5.27 · 10−3
0.99

3.53 · 10−3
1.00

1.91 · 10−3
1.00

1.88 · 10−3
1.00

5.57 · 10−3
0.98

3.62 · 10−3
0.99

1.91 · 10−3
1.00

1.88 · 10−3
1.00

1D4 2.64 · 10−3
0.95

1.77 · 10−3
1.00

9.55 · 10−4
1.00

9.41 · 10−4
1.00

2.81 · 10−3
0.99

1.83 · 10−3
0.99

9.55 · 10−4
1.00

9.41 · 10−4
1.00

1D5 1.37 · 10−3
0.86

8.82 · 10−4
1.00

4.78 · 10−4
1.00

4.70 · 10−4
1.00

1.42 · 10−3
0.99

9.18 · 10−4
1.00

4.78 · 10−4
1.00

4.70 · 10−4
1.00

1D6 7.55 · 10−4
0.73

4.41 · 10−4
0.99

2.39 · 10−4
1.00

2.35 · 10−4
1.00

7.10 · 10−4
1.00

4.60 · 10−4
1.00

2.39 · 10−4
1.00

2.35 · 10−4
1.00

1D7 4.54 · 10−4 2.23 · 10−4 1.19 · 10−4 1.18 · 10−4 3.56 · 10−4 2.30 · 10−4 1.19 · 10−4 1.18 · 10−4

2D�
1 3.58 · 10−2

0.95
2.68 · 10−2

0.92
1.73 · 10−2

0.93
1.74 · 10−2

1.02
3.58 · 10−2

0.95
2.68 · 10−2

0.92
1.73 · 10−2

0.93
1.74 · 10−2

1.02
2D�

2 1.86 · 10−2
0.94

1.42 · 10−2
0.95

9.12 · 10−3
0.92

8.54 · 10−3
1.00

1.86 · 10−2
0.94

1.42 · 10−2
0.95

9.12 · 10−3
0.92

8.54 · 10−3
1.00

2D�
3 9.67 · 10−3

0.96
7.36 · 10−3

0.97
4.82 · 10−3

0.94
4.28 · 10−3

0.99
9.67 · 10−3

0.96
7.36 · 10−3

0.97
4.82 · 10−3

0.94
4.28 · 10−3

0.99
2D�

4 4.99 · 10−3
0.97

3.75 · 10−3
0.98

2.51 · 10−3
0.96

2.16 · 10−3
0.98

4.99 · 10−3
0.97

3.75 · 10−3
0.98

2.51 · 10−3
0.96

2.16 · 10−3
0.98

2D�
5 2.54 · 10−3 1.90 · 10−3 1.29 · 10−3 1.10 · 10−3 2.54 · 10−3 1.90 · 10−3 1.29 · 10−3 1.10 · 10−3

2D41 4.32 · 10−2
1.01

3.52 · 10−2
1.03

2.12 · 10−2
1.15

1.89 · 10−2
1.10

2.71 · 10−2
0.99

2.15 · 10−2
0.92

1.81 · 10−2
0.92

1.85 · 10−2
1.09

2D42 2.23 · 10−2
0.87

1.80 · 10−2
0.89

1.01 · 10−2
0.93

9.19 · 10−3
0.93

1.43 · 10−2
0.86

1.19 · 10−2
0.84

9.96 · 10−3
0.79

9.09 · 10−3
0.91

2D43 1.16 · 10−2
1.06

9.20 · 10−3
1.08

4.97 · 10−3
1.09

4.54 · 10−3
1.10

7.43 · 10−3
1.05

6.26 · 10−3
1.05

5.47 · 10−3
1.00

4.56 · 10−3
1.08

2D44 5.93 · 10−3 4.66 · 10−3 2.49 · 10−3 2.26 · 10−3 3.83 · 10−3 3.22 · 10−3 2.91 · 10−3 2.31 · 10−3

3D�
1 1.99 · 10−2

1.04
1.55 · 10−2

0.94
1.05 · 10−2

0.94
1.02 · 10−2

1.01
1.95 · 10−2

1.00
1.55 · 10−2

0.94
1.05 · 10−2

0.94
1.02 · 10−2

1.01
3D�

2 9.71 · 10−3
0.92

8.11 · 10−3
0.95

5.45 · 10−3
0.96

5.06 · 10−3
0.94

9.71 · 10−3
0.92

8.11 · 10−3
0.95

5.45 · 10−3
0.96

5.06 · 10−3
0.94

3D�
3 5.11 · 10−3 4.21 · 10−3 2.80 · 10−3 2.65 · 10−3 5.11 · 10−3 4.21 · 10−3 2.80 · 10−3 2.65 · 10−3

3D41 3.26 · 10−2
0.52

2.89 · 10−2
0.54

2.14 · 10−2
0.64

2.01 · 10−2
0.71

1.99 · 10−2
0.51

1.77 · 10−2
0.52

1.72 · 10−2
0.61

1.91 · 10−2
0.71

3D42 2.49 · 10−2
1.03

2.19 · 10−2
1.06

1.54 · 10−2
1.12

1.39 · 10−2
1.10

1.53 · 10−2
1.02

1.35 · 10−2
1.06

1.26 · 10−2
1.06

1.32 · 10−2
1.10

3D43 1.21 · 10−2
1.22

1.04 · 10−2
1.24

7.01 · 10−3
1.30

6.43 · 10−3
1.31

7.48 · 10−3
1.18

6.44 · 10−3
1.15

6.00 · 10−3
1.09

6.11 · 10−3
1.19

3D44 5.86 · 10−3 5.00 · 10−3 3.24 · 10−3 2.95 · 10−3 3.72 · 10−3 3.27 · 10−3 3.14 · 10−3 3.02 · 10−3

Table 4: Results of the numerical analysis using the L2 norm and the van Genuchten model.
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Effect of NAPL Source Morphology on Mass
Transfer in the Vadose Zone
by Benjamin G. Petri1, Radek Fučík2, Tissa H. Illangasekare3, Kathleen M. Smits3, John A. Christ4,
Toshihiro Sakaki3, and Carolyn C. Sauck3

Abstract
The generation of vapor-phase contaminant plumes within the vadose zone is of interest for contaminated site management.

Therefore, it is important to understand vapor sources such as non-aqueous-phase liquids (NAPLs) and processes that govern their
volatilization. The distribution of NAPL, gas, and water phases within a source zone is expected to influence the rate of volatilization.
However, the effect of this distribution morphology on volatilization has not been thoroughly quantified. Because field quantification
of NAPL volatilization is often infeasible, a controlled laboratory experiment was conducted in a two-dimensional tank (28 cm ×
15.5 cm × 2.5 cm) with water-wet sandy media and an emplaced trichloroethylene (TCE) source. The source was emplaced in two
configurations to represent morphologies encountered in field settings: (1) NAPL pools directly exposed to the air phase and (2)
NAPLs trapped in water-saturated zones that were occluded from the air phase. Airflow was passed through the tank and effluent
concentrations of TCE were quantified. Models were used to analyze results, which indicated that mass transfer from directly
exposed NAPL was fast and controlled by advective-dispersive-diffusive transport in the gas phase. However, sources occluded by
pore water showed strong rate limitations and slower effective mass transfer. This difference is explained by diffusional resistance
within the aqueous phase. Results demonstrate that vapor generation rates from a NAPL source will be influenced by the soil water
content distribution within the source. The implications of the NAPL morphology on volatilization in the context of a dynamic
water table or climate are discussed.

Introduction
The fate and transport of volatile organic contam-

inants (VOCs) within the vadose zone has received
much attention at contaminated sites due to interest in
contaminant attenuation mechanisms, vapor intrusion,
and performance of remediation technologies such as
soil vapor extraction (Rivett et al. 2011). However,
models capable of predicting VOC transport may require
knowledge of the rates and mechanisms controlling
vapor generation from non-aqueous-phase liquid (NAPL)
contaminant sources in the vadose zone. While extensive
research has been conducted on NAPL entrapment and
mass transfer within the saturated zone (e.g., Schwille
1988; Miller et al. 1990; Kueper et al. 1993; Saenton
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4Department of Civil and Environmental Engineering, U. S. Air
Force Academy, Colorado Springs, CO.
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© 2014, National Ground Water Association.
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and Illangasekare 2007), knowledge gaps remain in
understanding mass transfer (volatilization) from NAPLs
in the vadose zone (Rivett et al. 2011).

One area where more knowledge is needed is in
determining how the distribution of NAPL within the
vadose zone affects mass transfer. NAPL entrapment mor-
phology describes the spatial distribution of the NAPL
phase resulting from the infiltration of multiphase flu-
ids in porous media. Within the saturated zone, NAPL
entrapment morphologies have been shown to consist
of complex distributions of NAPL pools and residual
ganglia (Illangasekare et al. 1995; Lemke et al. 2004)
that result from NAPL infiltration through heterogeneous
porous media (e.g., Kueper et al. 1989; Poulsen and
Kueper 1992; Fagerlund et al. 2007). The NAPL entrap-
ment morphology is of particular importance to the mass
transfer rate (Lemke et al. 2004; Fure et al. 2006; Page
et al. 2007), and quantitative metrics such as the NAPL
ganglia-to-pool ratio have been proposed to character-
ize saturated zone mass transfer behavior (Lemke et al.
2004; Christ et al. 2005; Fure et al. 2006). However,
the current literature does not describe such metrics for
NAPL mass transfer in the vadose zone, nor has this phe-
nomenon been widely evaluated. This is partly because
three-phase air-water-NAPL entrapment morphologies are
more complex than two-phase NAPL-water systems. For
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Residual NAPL:

NAPL Phase exposed to air

throughout the porespace

Occluded NAPL

Porewater separates NAPL from air filled 

porespace. May occur due to rewetting

of NAPL zones, or trapping of NAPL in 

water saturated fine media. No direct 

NAPL - air contact.

Free NAPL:

Free NAPL flows in pore space, often 
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interfaces. Direct exposure to air

phase limited to pool surfaces

Texture

interface

NAPL occluded by pore water

Arrows show air

pathway connectivity

Texture

interface
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NAPL phase (red)

Water phase (blue)

Pool surface

Figure 1. Conceptual model of NAPL configurations within
a vadose zone source.

example, constitutive models of three-phase flow concep-
tualize NAPL as being present in “residual,” “free,” and
“occluded” configurations (Figure 1) (Kaluarachchi and
Parker 1992; Wipfler and van der Zee 2001; Lenhard et al.
2004; White et al. 2004), whereas two-phase flow systems
typically only consider residual and free NAPL. These
configurations have important implications for vapor mass
transfer.

In the vadose zone, vapor transport is often assumed
to be diffusion-dominated (Johnson and Ettinger 1991;
Rivett et al. 2011); advection and dispersion within the
gas phase are usually included only in the presence of
strong barometric effects (Auer et al. 1996; Parker 2003;
Tillman et al. 2003; Luo et al. 2009), vapor density
effects (Falta et al. 1989; Sleep and Sykes 1989; Lenhard
et al. 1995; Jang and Aral 2007), or forced advection
such as from soil vapor extraction (SVE). This transport
regime affects the assumptions regarding NAPL mass
transfer: local equilibrium between NAPL and gas
phases is typically assumed under diffusion-dominated
conditions (Rivett et al. 2011), while mixing models such
as Gilliland-Sherwood correlations are typically used in
high advection systems (e.g., Wilkins et al. 1995; Yoon
et al. 2002).

However, the current knowledge base does not
fully incorporate NAPL entrapment morphologies into
either local equilibrium or Gilliland-Sherwood models.

Furthermore, Gilliland-Sherwood correlations are largely
unexplored in low advection systems outside SVE (Rivett
et al. 2011). Traditional three-phase flow models assume
NAPL is an intermediate wetting fluid located at the inter-
face between the air and the water phases (Leverett 1973;
Stone 1973; Lenhard and Parker 1987), which has served
as a justification for assuming local equilibrium between
NAPL and air (Rivett et al. 2011). However, this may
not be an appropriate assumption for occluded NAPL.
Occluded NAPL may form where NAPL sources are
subjected to water imbibition and drainage cycles, such
as during water table fluctuations and water infiltration.
It is worth noting that occluded NAPL may exist at both
the pore scale (e.g., blobs of NAPL isolated from the gas
phase by pore water) and the macro scale (e.g., NAPL
entrapped in water-saturated fine layers or submerged
below the water table). The occluded phase represents
a different mass transfer regime than the assumption of
direct NAPL-gas contact because the contaminant must
first transfer through the aqueous occlusion before it
may volatilize within the bulk gas phase (Yoon et al.
2008). Given that typical VOC diffusivities in water
are about four orders of magnitude lower than in gases
(e.g., the diffusivity for TCE in air is 8.75 × 10−6 m2/s
[Lugg 1968] vs. 9.1 × 10−10 m2/s in water [Batterman
et al. 1996]), the mass transfer resistance imparted by the
aqueous occlusion can be considerable (Yoon et al. 2008).

Studies of bulk volatilization from NAPLs show that
mass transfer rates decrease with increasing soil water
content (Wilkins et al. 1995; Liang and Udell 1999; Yoon
et al. 2002; Yoon et al. 2003; Oostrom et al. 2005) due to
a net decrease in the effective diffusivity. However, these
studies fail to account for the differing NAPL morpholo-
gies that may be present in the subsurface, which lead to
large differences among observed mass transfer rates. For
example, Yoon et al. (2002) investigated NAPL volatiliza-
tion in one-dimensional (1D) sand columns ranging from
dry to 61% water saturation with a gas-phase Darcy flux
of approximately 3 m/h. They report that mass transfer
rates decline from equilibrium values when the water
saturation exceeded 48% and resulted in tailing of NAPL
mass transfer at high water saturations. In contrast, a
similar 1D column tested by Liang and Udell (1999) with
very high gas velocities (∼115 m/h) observed no effect on
volatilization with soil water content (range from dry to
50% water saturation). Note, however, that both experi-
ments were conducted in columns, a design that forces air
or vapor flow through the contaminated zone. Field would
likely allow the vapor phase to bypass zones of high water
or NAPL saturation making it necessary to consider flow
in multiple dimensions (2D or 3D). Indeed, a comparison
of NAPL dissolution rates in groundwater in 1D vs. 2D
and 3D experimental apparatus showed that multidimen-
sional systems had lower mass transfer rates due to flow
bypassing (Saba and Illangasekare 2000). Also, in 1D
column systems, three-phase flow is often unstable unless
two of the phases are reduced to residual (immobile)
saturations, which limits the contaminant configurations.
For example, Yoon et al. (2002) noted considerable
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displacement of the water phase when investigating their
highest water saturation systems (61%). Thus, studies
in multiple dimensions may be necessary to gain an
understanding of mass transfer under field conditions.

Studies in 2D test systems suggest different effective
mass transfer behavior than what is observed in the
1D systems. Oostrom et al. (2005) investigated SVE
in a variably saturated 2D sand tank contaminated
with NAPL. Their experiment found that the removal
of NAPL from pools and low permeability regions
was only achieved by effectively drying out the porous
media, suggesting strong mass transfer limitations even
at low water contents—an observation in contrast to
the experimental results from the 1D column studies
discussed previously. The experiment by Oostrom et al.
(2005) contained residual and free NAPL, though it did
not explore the role of occluded NAPL.

Saturated zone air sparging studies focusing on NAPL
remediation suggest strong mass transfer limitations due
to diffusion from the occluded NAPL through the water
phase (Braida and Ong 1998; Braida and Ong 2000;
Rogers and Ong 2000). However, the three-phase flow
regime of these systems differs from typical vadose zone
environments because airflow under air sparging is usually
restricted to a network of air channels (Clayton 1998).
Furthermore, these studies focus on active remediation
systems where gas-phase advection is forced at a high rate.
For instance, the study by Braida and Ong (1998) explored
air channel velocities on the order of 200 to 2000 m/day.
SVE experiments by van der Ham and Brouwers (1998)
included bulk soil gas flow on the order of 8300 to
38,000 m/day. Thus, to our knowledge, no experimental
evidence exists that examines NAPL volatilization at low
ranges of advection that may be encountered at sites where
active remediation is not present. Conflicting laboratory
data and lack of field experimental data, combined with
the commonly employed, but untested local equilibrium
assumption for NAPL mass transfer illustrates that
research is needed to better understand how NAPL
morphology affects mass transfer in three-phase systems.

The central challenge in understanding volatilization
from NAPL sources lies in incorporating the role of
three-phase entrapment morphology into the mass transfer
expression. If all three NAPL configurations (shown in
Figure 1) are present within the same source, the higher
mass transfer contributions from the “residual” and
“free” (e.g., pooled) configurations may initially mask
smaller contributions from the “occluded” configuration.
However, as the source ages, the residual and free frac-
tions will likely be depleted leaving “occluded” NAPL
as a long-term source that contributes to significant
concentration “tailing.” Because occluded NAPL mass
transfer requires diffusion across the aqueous occlusion,
it is logical to expect that the thicker the occlusion,
the stronger the observed NAPL mass transfer rate
limitation. Furthermore, because bulk diffusion and
advection transport mass away from the contaminated
region, these processes may also affect mass transfer. The
objective of this study is to explore mass transfer from

occluded and exposed (i.e., free) NAPL sources under
low advection systems to determine the mechanisms and
rates of NAPL volatilization. The use of controlled 2D
experiments and numerical transport models provides
insight into the NAPL mass transfer process and the
factors controlling NAPL mass transfer in complex NAPL
morphologies commonly found in the vadose zone.

Materials and Methods
Two separate series of experiments were performed

for this to meet the stated goals. The first evaluated
mass transfer from an “occluded” NAPL source (Case 1,
Figure 1) and the second from an “exposed” (free) NAPL
source (Case 2). Exploring both NAPL configurations
independently enables the comparison of mass transfer
characteristics between the two. Both experiments were
conducted using the same apparatus, instrumentation and
analytical methods, but differed in source creation pro-
cedure, sand pack geometry, and experimental procedure
(Figure 2). An important procedural difference is that the
occluded (Case 1) experiments are run until mass transfer
reaches a pseudo steady state because the low mass trans-
fer rates in these systems would require exceptionally long
experimental run times (month to years) to completely
deplete the NAPL sources. For the exposed (Case 2)
NAPL sources, mass transfer is rapid and transient, and
therefore these experiments are run until complete NAPL
source depletion (within days). An abridged description
of the experiment is included here, while a more detailed
description is included in the Supporting Information.

Both experiments were conducted in a 2D sand-
packed flow tank [internal dimensions: 28 cm × 15.5 cm
× 2.5 cm (height × length × depth)] (Figure 2). The
rear tank face contained syringe injection ports through
which NAPL could be injected to create the desired
trapping configuration. Pure trichloroethylene (TCE) was
used as the test NAPL, dyed red with 100 mg/L Sudan
IV to aid in visualization. The porous media used to pack
the tank consisted of well-characterized, uniform, silica
sands (Accusand, Unimin Corp., Ottawa, Minnesota) of
varied grain size. Selected properties of the test sand
are summarized in Table 1. The tank was wet packed
with sand and deionized water with different source
configurations for Cases 1 and 2 (Figure 2). The tank
was subsequently drained to establish an unsaturated
zone under hydrostatic conditions. Following drainage, a
known mass of NAPL was injected into the source zone.

Immediately after NAPL injection, airflow was intro-
duced into the tank flowing from left to right (Figure 2).
Air from a compressed gas cylinder was used as the air-
flow source and a mass flow controller (Cole Parmer, 16
Series Mass Flow Controller, 0-50 SCCM range) was used
to control the airflow. The airflow was bubbled through a
water column to humidify the air to prevent evaporative
losses and maintain a steady-state water saturation profile
throughout each experiment. The flow range tested by this
apparatus equates to average pore velocities of around 3 to
145 m/day within the unsaturated zone of the experimental
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Figure 2. Experimental apparatus and tank packing

Table 1
Selected Properties of Sands

Sand
(Tightly
Packed) d50

1 (mm)

Dry Bulk
Density
(g/cm3) Porosity

Residual
Water

Content2

Saturated
Hydraulic

Conductivity
(cm/s)3

van Genuchten
α (1/cm)4

van Genuchten
n(m = 1 − 1/n)4 Source

12/20 1.04 1.82 0.312 0.017 0.376 0.10 9.21 Smits (2010)
20/30 0.75 1.78 0.330 0.027 0.237 0.07 15.68 Smits (2010)
30/40 0.52 1.77 0.334 0.028 0.106 0.06 17.81 Smits (2010)
40/50 0.36 1.74 0.335 0.029 0.052 0.04 10.18 Smits (2010)
70 0.20 1.56 0.413 0.033 0.014 .0.02 11.53 Smits (2010)
Gravel ∼9.5 n/a 0.42 0.01 0.100 0.35 4.30 Retention parameters

assumed from Wolf
et al. (2007)

1Estimated from sieve data provided by the manufacturer.
2Measured in a separate 1D long column experiment.
3Measured in a separate hydraulic conductivity test.
4Estimated using RETC (van Genuchten et al. 1991).
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apparatus. This velocity is considerably lower than veloc-
ities previously studied in soil vapor extraction (∼100
to 10,000 m/d; Ho and Udell 1992; Wilkins et al. 1995;
Yoon et al. 2002; Oostrom et al. 2005) and in air sparg-
ing (∼100 to 100,000 m/d; Braida and Ong 1998; Braida
and Ong 2000; Rogers and Ong 2000) and was intended
to represent more passive conditions in the subsurface
than have typically been investigated. Temperatures and
pressures within the tank were monitored continuously by
separate sensors (EC-T, Decagon Devices Inc. and Omega
Engineering PX138-001D5V). The average temperature
was measured at 22.6 ± 0.7 ◦C. Absolute pressure within
the tank varied with flow rate due to positive pressur-
ization of the apparatus, ranging by 82,090 to 87,171 Pa
(note that the atmospheric pressure in Golden Colorado
is ∼82,000 Pa). The effluent air stream was directed into
a gas chromatograph (GC) with a temperature-controlled
automated gas sampling valve for continuous measure-
ment of gas-phase TCE concentrations.

Case 1 ‘‘Occluded’’ NAPL Experiments
The objective of the Case 1 experiments was to

emplace an occluded NAPL source, with two different
occlusion thicknesses, and test their steady-state mass
transfer rate under different gas-phase velocities. Different
occlusion layer thicknesses are tested because the mass
transfer rate from the occluded NAPL is related to the
length of the diffusion pathway across the occlusion. The
tank was wet-packed with two sands: fine sand (#40/50
sand) in the lower section of the tank and course sand
(#12/20 sand) in the upper section of the tank (Figure 2).
During packing, a coarse sand block (#12/20), 12.7 cm
× 1.2 cm, was emplaced within the lower section of fine
sand to serve as the NAPL source zone. This packing
produces a narrow band of fine sand between the coarse
upper tank section and the coarse NAPL source zone (see
dimension marked “variable” in Figure 2). This variable
dimension is 13.9 mm for the “thick” occlusion layer sys-
tem and 8.5 mm for the “thin” occlusion layer. Gravel well
screens distributed the airflow evenly and the tank top was
sealed airtight with bentonite and an aluminum plate.

After packing was complete, the tank was drained
by lowering the water table to 5.2 cm below the bottom
boundary of the tank using a constant-head device. This
creates a suction of approximately 12 cm of water at
the interface between the upper coarse sand section and
the lower fine sand section. Because of the difference in
air entry values for the coarse and fine sands (7.1 and
19.4 cm, respectively), the drainage results in a sharp sat-
uration front at the interface between coarse and fine sand
such that the upper coarse sand is drained and the lower
fine sand is fully water saturated under tension. Because
air entry into the fine sand has not occurred, the coarse
sand NAPL source zone also remains fully saturated.

After 24 h of drainage to a hydrostatic condition, the
constant head device is isolated via a shutoff valve, and
NAPL is injected into the source zone. A known mass
of TCE NAPL was slowly injected into the source zone
through five injection ports. Injection was performed in

this manner to ensure as high and uniform a NAPL satura-
tion distribution as possible without allowing any NAPL
to escape from the source zone. The NAPL is effectively
occluded from the gas phase by the water-saturated fine
sand that surrounds the source zone. The NAPL injection
volumes for the “thick” and “thin” occlusion systems cor-
responded to 11.3 and 12.3 g, and equate to approximately
52% and 55% NAPL saturation in the source zone, the
rest of the pore space being occupied by water. This
injection takes approximately 15 min. After injection,
airflow is started through the tank and continuous effluent
concentration sampling begins. Because mass transfer
from NAPLs is affected by the velocity of the mobile
phase (Miller et al. 1990; Powers et al. 1994; Saba and
Illangasekare 2000), various airflow pore velocities were
tested. These alternative velocities were achieved using
a step-wise approach that allowed the system to reach
steady state (each run was typically 1 to 2 days). An
initial velocity was set, and steady state was assumed
when the effluent concentration stabilized with minimal
variation. Steady state was then maintained for at least
12 h. The velocity was then changed and a new steady
state attained. In this manner, six different velocities
(Table 2) were tested for both the “thick” and the “thin”
occlusion systems while gathering data continuously.

Case 2: ‘‘Free’’ NAPL Experimental Procedure
The objective of the Case 2 experiments was to

evaluate mass transfer from an “exposed” NAPL pool
representative of the “free” NAPL in Figure 1 and provide
a basis for comparison to the Case 1 experiments. For
these experiments, the tank was uniformly wet packed
with water and medium sand (#20/30 sand), except for a
small NAPL source “trough” of very fine sand (#70 sand)
in the center of the tank (see Figure 2). This “trough”
was aligned with NAPL injection ports and was bounded
at its upstream and downstream ends by a 0.6-cm lip
to confine the lateral spread of the NAPL. Similar to
Case 1, gravel well screens distributed airflow at the left
and right boundaries, and bentonite was used to seal the
top of the tank. Also similar to Case 1, the tank was
drained through suction applied at a known pressure head
(9.3-cm water below the tank bottom). However, unlike
Case 1 that produces a sharp water saturation front, Case
2 packing produced a capillary fringe in the bottom of
the tank. Only the trough remains fully saturated due
to the high air-entry pressure of very fine #70 sand
(41.2 cm). After drainage is completed, 2.93 g (2.0 mL)
of TCE NAPL was slowly injected into the source trough
where it settled forming an NAPL pool with approximate
dimensions of 7.6 cm × 2.5 cm × 0.6 cm (length × width
× depth) and an estimated 50% average saturation of the
“trough” pore space. Following NAPL injection, airflow
was started in the tank and effluent gas concentrations
were monitored as described in Case 1. The experiment
was operated until all NAPL was depleted through visual
observation from the system and effluent concentrations
declined to steady-state values.
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Table 2
Summary of Experimental Results

Run NAPL Configuration

Airflow Rate
(Standard
cm3/min)

Average Pore
Velocity

(m/d)

Observed
Steady-State

Concentration
(g/m3)1

Mass Flux
Rate

(mg/min)

Fraction of
Saturation

Vapor Pressure
(%)

Modeled
Steady-State

Concentration
(g/m3)

1 Case 1: Thick occlusion 50.0 145 0.0401 ± 0.0009 0.002 0.01 0.0971
2 Case 1: Thick occlusion 22.5 67.9 0.1754 ± 0.0001 0.005 0.04 0.2080
3 Case 1: Thick occlusion 10.0 30.2 0.2467 ± 0.0013 0.003 0.06 0.4620
4 Case 1: Thick occlusion 5.00 15.1 0.4999 ± 0.0008 0.003 0.11 0.9185
5 Case 1: Thick occlusion 2.25 6.72 1.5656 ± 0.0024 0.004 0.33 2.0093
6 Case 1: Thick occlusion 1.00 2.88 2.1389 ± 0.0086 0.003 0.48 4.5421
7 Case 1: Thin occlusion 50.0 145 0.1412 ± 0.0003 0.008 0.03 0.1483
8 Case 1: Thin occlusion 22.5 67.4 0.3270 ± 0.0025 0.009 0.08 0.3114
9 Case 1: Thin occlusion 10.0 30.2 0.6542 ± 0.0003 0.008 0.16 0.7088
10 Case 1: Thin occlusion 5.00 15.1 1.2859 ± 0.0012 0.008 0.31 1.4075
11 Case 1: Thin occlusion 2.25 6.72 2.8812 ± 0.0048 0.008 0.68 3.1789
12 Case 1: Thin occlusion 1.00 2.88 5.2813 ± 0.0076 0.006 1.27 6.9203
13 Case 2: Free NAPL (pool) 50.0 138 163.63 ± 5.10 9.442 33 Transient
14 Case 2: Free NAPL (pool) 10.0 29.0 323.78 ± 8.51 3.921 67 Transient
15 Case 2: Free NAPL (pool) 5.00 14.6 426.68 ± 5.30 2.591 87 Transient
16 Case 2: Free NAPL (pool) 1.00 3.84 415.91 ± 3.00 0.484 97 Transient

1Mean ± 95% confidence interval of the mean.

Model Description
To explore the experimental results using the

advection-dispersion-diffusion equation, a numerical
model was developed to simulate coupled volatilization
and mass transport behavior within the NAPL, gas, and
water phases. The model solves for immiscible flow
of gas and water phases, nonequilibrium mass transfer
of immobile NAPL from the liquid to the gas phase,
and mass transport of the volatilized NAPL vapor in
the gas phase. The model uses a mixed-hybrid finite
element and finite volume numerical method to simulate
transient multiphase flow, transport, and mass transfer
(see Fučík and Mikyška 2011, 2012 for details). The
model formulation and approach is described in detail in
the Supporting Information and summarized in brief here
with special emphasis on the mass transfer formulation.

The model solves two-phase gas and water flow
according to Darcy’s law and using the Mualem (1976)
and van Genuchten (1980) models for relative perme-
ability and soil water retention functions. Gas-phase
density changes due to compressibility and contaminant
vapor components are incorporated, and the gas phase is
assumed to be at 100% relative humidity. NAPL phase
is included, but is assumed immobile. The mass balance
equation for the contaminant component is described by
an advective-diffusive-dispersive transport Equation 1,
which is expressed in terms of the mass fraction of the
contaminant in the phase α (Class et al. 2002; Class et al.
2008; Mosthaf et al. 2011):

∂
(
φSαXα

nρα

)
∂t

+ ∇· (Xα
nραvα − Dα

n∇Xα
n

) = Fnα , (1)

where α = g represents the gas phase and α = w repre-
sents the water phase. For mass transfer between the water
and gas phases, the local equilibrium assumption is made
via Henry’s law,

H = c
g
n

cw
n

= X
g
nρg

Xw
n ρw

(2)

where, H , the Henry’s constant, is a function of
temperature the values of which were provided by
Heron et al. (1998). The flux between phases representing
mass transfer is commonly described using boundary
layer theory, as given by Cussler (2009). For NAPL
to gas-phase mass transfer, this flux is represented as a
source/sink term, F ng given as

Fng = k
(
csat
n − Xg

nρg

)
, (3)

This formulation solves for a cumulative or lumped
mass transfer from the NAPL into the gas phase.
The mass transfer rate coefficient kng is often estimated
from empirical Gilliland-Sherwood mixing models (e.g.,
Wilkins et al. 1995; Braida and Ong 1998; Chao et al.
1998; van der Ham and Brouwers 1998; Yoon et al. 2002;
Anwar et al. 2003), which typically follow the form:

Sh = Sh0 (P e)δ (d0)
ε

(
Sn

Sn,0

)β

(4)

where Sh is the dimensionless Sherwood number defined
as kngd

2
50/D

g
m, d50 is the mean soil particle size, Sh0 is

a empirical constant, Pe is the Peclet number defined as
Pe = ∣∣vg

∣∣ d50/D
g
mφ, d0 is the normalized mean grain size
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defined as d0 = d50/dm , dm is the mean grain size of sand
set as 0.05 cm by the Department of Agriculture (Yoon
et al. 2002), S n ,0 is the initial NAPL saturation, and δ,
ε, and β are all empirical exponents of the correlation.
The β in particular relates to the decline in mass transfer
that occurs as a result in decline in NAPL mass due to
decreasing surface area.

The solution approach for the Case 1 and 2 models
differed. Because the Case 1 experimental system was
operated under a pseudo steady-state condition, a steady-
state solution approach was used. For the more transient
Case 2 experiments, a transient model was used to
estimate mass transfer as these systems were run to full
NAPL depletion. In all cases, the TCE NAPL source is
assumed to be uniformly distributed at an average initial
saturation based on the mass of TCE injected and the
source zone porosity. Relative permeability for the gas
phase is adjusted to reflect the total liquid saturation
(NAPL + water). Mass transfer of TCE into the bulk gas
phase (volatilization) is simulated, along with diffusion
and advection in the gas phase. Aside from initial drainage
to create the gas-water saturation profile, aqueous phase
advection was not present in either Case 1 or Case 2 due
to the hydrostatic conditions. The atmospheric reference
pressure and temperature used for all calculations were
based on the measured values from the temperature and
pressure sensors.

Case 1 (Occluded NAPL) Simulations
The model simulations were performed stepwise by

first solving for drainage in the tank to create the air-water
saturation distribution and then simulating the airflow
and contaminant transport from the TCE source. Initial
drainage was simulated by setting the top tank boundary
to atmospheric pressure and the bottom tank boundary to
−5.2 cm water pressure, reflecting the drainage pressure
in the constant head device. A steady-state solution then
derived the hydrostatic gas-water phase distribution for the
NAPL volatilization runs. The system is then simulated
using the experimental airflow regime. For the advection-
dispersion-diffusion equation, given that a negligible mass
of the TCE source was volatilized (<0.8%) over the
course of the 10-day experiments, the NAPL source in
the model was assumed to be constant. Because there
is no flow within the source zone, the source was
simulated by assigning Dirichlet boundary conditions at
the source zone boundaries with the TCE concentration
held at this solubility limit (1440 mg/L as measured). The
model then simulated the combination of aqueous and
gas-phase plumes that emanate from the source to the
effluent boundary, where comparisons to the experimental
measurements could be made.

Case 2 (Exposed NAPL) Simulations
In Case 2, the rate of mass change in the source zone

is very rapid and required solution as a transient prob-
lem incorporating the Gilliland-Sherwood mixing model
approach (Illangasekare et al. 2010). Again, the initial
drainage was modeled as a steady-state process, followed

by transient solution of the mass transfer problem. Model
domain dimensions and material parameters were consis-
tent with the experiment as shown in Figure 2. As in
Case 1, the initial drainage was solved (for Case 2, the
water pressure at the bottom tank boundary was −9.3 cm
H2O). The initial drainage solution was stored for use as
the initial condition for the transient NAPL volatilization
model, where airflow and volatilization was solved. The
initial NAPL saturation Sini

n is assumed to be uniformly
distributed within the TCE source trough and is computed
from the injected TCE mass (2.93 ± 0.024 g) and the pore
volume of the source trough, averaging 53% initial satu-
ration. In this case, a new Gilliland-Sherwood correlation
was developed by fitting a select set of parameters (β,
Sh0, δ) to determine which effluent concentration profile
best fits the data from more than 11,000 results obtained
using the numerical simulator.

Results and Discussion
Measurements from each experiment include contin-

uous effluent concentration data, as well as temperature,
pressure, and airflow rate. The results for the Case 1 and
2 experiments are discussed separately. Modeling results,
based on the experiments, are used as a data analysis
tool to determine the role of advection-diffusion trans-
port given the two NAPL configurations and to determine
how well existing physical transport theory can capture
the observed mass transfer behavior. Presented are exper-
imental data followed by comparison to the simulations.

Case 1 ‘‘Occluded’’ NAPL Results
Figure 3a and 3b shows the measured effluent TCE

vapor concentration and the gas-phase Darcy flux through
the unsaturated portion of the tank for the “thick” and
“thin” occlusion experiments. Stepwise changes in the
flow rate resulted in step-like behavior in the effluent con-
centration response, with slower flow rates yielding higher
effluent concentrations. The saturation concentration of
TCE in the gas phase, estimated from measured temper-
ature data (which fluctuated between 19 ◦C and 26 ◦C)
and the TCE saturation vapor pressure curve reported by
Boublík et al. (1973), is also given in Figure 3 to show
the departure from equilibrium concentrations. Clearly,
observed effluent concentrations are lower than the equi-
librium saturation concentration, often by two orders of
magnitude or more, suggesting significant rate-limited
mass transfer across the occlusion layer. Interestingly,
effluent concentrations adjusted rapidly to new pseudo
steady-state values following decreases in the air-phase
flow rate. The measured effluent concentration variations
with time are generally well behaved with only minor
“blips” in the concentration plot, which correspond to
ambient temperature changes in the laboratory. Note that
there was an unrecorded no-flow period in the “thick”
occlusions system that resulted from a power failure.
Though this flow interruption was unplanned, it may
present an opportunity for further exploration of transient
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Figure 3. Measured TCE effluent vapor concentration vs. time for (a) the 13.8 mm “thick” occlusion and (b) the 8.5 mm
“thin” occlusion. The red line represents the concentration of TCE in the effluent soil gas (g/m3), green line represents the
saturation concentration of TCE estimated from temperature data using values from Boublík et al. (1973) (g/m3) (note y-axis
break), blue line represents the air phase Darcy flux in the unsaturated portion of the tank.

nonequilibrium behavior via the stopped flow method pro-
posed by Brusseau et al. (1989).

Table 2 presents a summary of the experimental
results, including the average pseudo steady-state concen-
tration for each flow rate tested in both the “thick” and
“thin” occlusion tank experiments, as well as the average
TCE mass flux eluting from the tank (product of gas-phase
concentration and flow rate).

The rapid response of the system to the air-phase
velocity changes may be partly explained by strong rate
limitations caused by diffusion across the water-phase
occlusion. The date in Table 2 indicate that despite
large shifts in air-phase concentrations (range of 0.04 to
2.1 g/m3 for the thick occlusion and 0.14 to 5.3 g/m3 for
the thin occlusion), the average TCE mass flux rate from
the occluded sources for all velocities varies over a narrow
range (mean, standard deviation of 3.28 ± 0.89 μg/min
for the thick occlusion and 7.74 ± 0.74 μg/min for the
thin occlusion), suggesting that shifts in flow rate largely
dilute the relatively constant flux emanating from the
occluded source.

The reason the source flux does not respond strongly
to changes in airflow can be explained by conventional
advection-diffusion theory. Because the “occlusion layer”
in this system is stagnant and fully water saturated, it iso-
lates the NAPL source from the flowing air phase in the
coarse sand above. To volatilize, the NAPL must first dis-
solve within the source zone, and then diffuse through the
water-phase occlusion to the interface with the gas phase.
This diffusive flux is controlled by the concentration
gradient across the water occlusion. On the NAPL side of
the occlusion, the aqueous TCE concentration is near the
solubility limit, whereas at the air-water occlusion inter-
face, the concentration reflects that of the bulk flowing air,
which under these experimental conditions are around 1%
or less of the gas-phase saturation concentration. Thus,

within this experimental system, the concentration gradi-
ent across the occlusion layer is near the maximum value,
which results in a source flux that is relatively insensitive
to the airflow velocity. This gradient will only reduce
significantly if gas-phase TCE concentrations in the bulk
gas phase accumulate to significant levels, reducing the
net change in concentration across the occlusion. In this
event, gas-phase transport processes such as bulk advec-
tion and diffusion may begin to affect source flux. Case
1 results are also consistent with what can be explained
through theory of diffusion because experimental results
demonstrate that the occluded layer thickness affects the
source flux, that is, a thicker occlusion has a longer diffu-
sion distance and therefore lower concentration gradient
(Table 2).

Comparison of Numerical and Experimental Results
for Case 1

The steady-state concentrations predicted by the
model for each experimental run are presented in Table 2,
while a comparison of model and experimental values
for each run is presented in Figure 4. The figure shows
that without any fitting or calibration, the model predicts
values within the range of the experimental observations,
though with a slight positive bias in that the model predicts
144 ± 29% of the observed steady-state effluent concen-
trations. However, the fit of the model is considerably
better for all of the “thin” occlusion experiments, as well
as both “thick” occlusion experiments that occurred after
the unexpected flow shutdown, predicting 113 ± 12%
of the experimental value on average. Here, the model
prediction nearly brackets the experimental observations.
It is important to note that in Case 1 model results, none
of the model parameters is fitted through calibration, and
only literature values for all basic process parameters
are used. This is to ensure that the model yields insight
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Figure 4. Comparison of steady-state model to steady-state
experimental effluent concentration values for Case 1 runs.

into the physical process, rather than just fitting curves to
unknown physics.

Overprediction by the model is generally possible
due to inaccuracies in the precise representation of source
zone geometry and NAPL-phase distribution, which
could control the contaminant flux through the occluded
layer. In the model, the source is assumed to be at the
TCE solubility limit everywhere within the source zone,
based on the assumption that the NAPL is uniformly
distributed. However, in practice, it is difficult to create
uniform saturations in multiphase systems, and in this
case, TCE visibly settled toward the bottom of the source
zone. Thus, the actual diffusion path in the experimental
system might be longer than assumed within the model,
leading to overprediction of the simulated mass transfer
rate. In the specific case of the “thick” occlusion system
where the model overpredicts by a much higher amount, it
appears that the no-flow period affected the observed mass
transfer behavior. It is possible that before the unexpected
no-flow period, the system was not in a fully steady state
and that the no-flow period may have given additional
time to bring the system up to the steady state. Figure 5
shows a plot of the simulated total TCE concentration
(sum of gas and aqueous phases) throughout the tank, as
well as the magnitude of the diffusion-dispersion tensor
term (e.g., Equation 11). The plot shows that a steep
concentration gradient is present within the occlusion
layer. Likewise, the dispersion tensor shows a strong dis-
continuity across the occluding layer. It is this gradient, in
combination with the dispersion tensor, that governs mass
transfer within the tank. Only a very dilute gas-phase
plume (<1% of the saturation) extends downstream from
the source, supporting the finding that aqueous-phase
diffusion is limiting this mass transfer process.

Case 2, ‘‘Exposed’’ Source Experiments
Results from the exposed source experiments (runs

13 to 16 in Table 1) are presented in Figure 6. The data
are normalized by the saturation concentration of TCE
to reduce the effect of ambient temperature fluctuations,
which caused higher or lower effluent concentrations in
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Figure 5. a) Simulated concentration profile: Pastel color
scale shows gas phase concentrations, dark scale shows aque-
ous concentrations. b) Diffusion/Dispersion tensor magnitude
profile for run #12, 8.5 mm occlusion run at a pore velocity
of 2.88 md−1. TCE source zone is outlined in white.

response to ambient heating and cooling in the labora-
tory. In contrast to the occluded systems where effluent
concentrations never exceeded more than 1% of the satu-
ration concentration, the concentrations in the “exposed”
NAPL systems clearly approached the saturation concen-
tration. Upon NAPL injection, the effluent concentration
rises quickly and approaches the saturation concentration
until the NAPL source is depleted, after which the con-
centrations diminish. Unlike the occluded systems, the
exposed sources were run until depletion of the NAPL
was visually confirmed. The overall NAPL recovery mass
balance on runs 13 through 16 (conducted sequentially in
the same tank) was 97.8%

Compared to the occluded systems, the exposed
sources exhibit much higher average mass transfer rates
and concentrations (Table 2). This is expected as the
absence of an occlusion barrier to mass transport allows
the NAPL to diffuse and disperse more rapidly within the
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Figure 6. a) Model (solid line) and measured data (dashed) outflow concentration versus time for exposed source NAPL
systems, and b) model (solid line) and measured data (dashed) mass depletion curves for exposed source NAPL systems.

soil gas. In addition, the mass flux rate in the NAPL-
exposed systems is dependent on the air velocity, which
contrasts with the occluded systems that had mass flux
rates that were independent of velocity. This suggests that
mass transfer in exposed systems is limited by gas-phase
advection.

To explore the role of advection in the mass transfer
from exposed pools, a transport model was prepared
to simulate the mass transfer from the NAPL source.
The original intent of running the “exposed” sources
was to provide a basis of comparison to the occluded
mass transfer systems within a similar porous media. A
Gilliland-Sherwood mass transfer expression was tested
to determine if such a relation could accurately reproduce
the experimental observations. As it was not the original
intent of this study to produce a Gilliland-Sherwood
mass transfer model, only a narrow range of experiments
were run to investigate the mass transfer. However, these
experiments do allow the estimation of a simple Gilliland-
Sherwood model as a function of the Peclet number, and it
is insightful to compare this system to other volatilization
mass transfer models in the literature (Table 3).

For the purpose of estimating a Gilliland-Sherwood
relationship, the numerical model was used to simulate
the tank and the Gilliland-Sherwood parameters were
adjusted to best fit the data. Fitted parameters included
the regression constant (Sh0), Peclet number exponent (δ),
and the mass tailing parameter (β). The model output was
compared to the experimental breakthrough curve. The
goal of the fitting procedure was to find a set of fitting
parameter values Sh0, δ, and β for which the difference
between the simulated and the experimental dissolution
curves in all four airflow regimes is minimized. The
best fit was obtained using a mixture of least squares
linear regression, which gave β = 0.2, Sh0 = 1.1 · 10− 3,
and δ = 0.05.

In general, when comparing data to the model in
Figure 1, the model fits well to the initial mass transfer
rate (i.e., the initial peak concentration), as well as the
time at which the NAPL mass is depleted (the sharp

drop in concentrations). However, the model does not fit
the mass tailing, as it predicts a much more rapid drop
in concentrations. This is likely due to the model not
properly considering back diffusion from water-saturated
areas within the tank. This is particularly apparent in
run 16, where considerable mass tailing was observed.
Because this was the lowest airflow system, the NAPL
was present considerably longer than in the other runs
(∼1.5 days), which would allow considerably more
diffusion into the saturated zone at the bottom of the
tank. The model did not attempt to capture this behavior,
and neglecting this diffusion process may have led to
some of the discrepancy between model and data. It is
also worth noting that run 16 also had a small amount of
NAPL mass escape the source trough and sink into the
capillary fringe. This was not considered by the model,
but may have affected the experiment.

The best-fit mass transfer correlation described earlier
is presented in Table 3, along with other mass transfer
correlations that have been used to quantify volatilization
in porous media in the literature. Several differences
between the proposed and the existing mass transfer
correlations are noted: the range of Peclet values (0.003
to 0.15), and the corresponding vapor-phase velocities
tested in this system (3 to 145 m/day), is much smaller
than those examined in previous studies. Given that
equilibrium is expected in a system with no advection,
it is logical to conclude that as the velocity decreases, the
system approaches equilibrium. This behavior is evident
in the much smaller Peclet number exponent in this study
(0.05), which is likely at the boundary of applicability
for the Gilliland-Sherwood-type model, and approaching
a local equilibrium condition. Under local equilibrium,
volatilization effectively becomes instantaneous. As a
result, the observed NAPL mass flux is a function of the
transport of the NAPL vapor away from the NAPL source
via diffusion, advection, and dispersion. This contrasts
with the occluded NAPL source where the mass flux
was insensitive to the bulk diffusion and advection, and
controlled instead by diffusion within the occlusion.
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Conclusions and Implications
Experimental results show that vadose zone NAPL

morphology strongly controls mass transfer, with
occluded NAPL sources emitting considerably lower
mass flux than exposed NAPL sources. In practical
scenarios, an occluded source may represent NAPL
trapped in a fine layer with high water saturation,
or NAPL entrapped in or below the capillary fringe.
Exposed NAPL may represent pooled or residual NAPL
that is in direct contact with bulk air phase. The mass
transfer behavior observed from each type of source
is adequately explained using traditional advection
dispersion diffusion models. Analysis suggests that mass
loading from occluded sources is largely dependent on
aqueous diffusion through the occlusion. With exposed
sources, mass transfer approaches the local equilibrium
condition, and thus mass removal becomes sensitive to
bulk gas-phase transport processes such as advection and
diffusion. Given that such strong differences in behavior
are observed between occluded and exposed NAPL, it
is logical to assume that improved models of NAPL
volatilization will need to carefully include the role of
NAPL morphology. In a complex NAPL source zone that
includes both exposed and occluded NAPL, mass transfer
may initially come overwhelmingly from the exposed por-
tion of the source. However, because of the differences in
mass transfer rates, the exposed NAPL may deplete more
rapidly as the source ages leaving a longer lived occluded
source that may contribute to mass tailing in the field.

The behavior of such a source could be even more
complex when the vadose zone is subjected to dynamic
hydrologic events affecting the water saturation. If an
NAPL is subjected to smearing due to water table
fluctuations, or to infiltration from the land surface, these
may alter the source morphology, fluctuating between
the exposed and the occluded cases. Thus, a source may
effectively turn “off” or “on” depending on the water table
position, or infiltration from rainfall. This has important
implications for management of contaminated sites, such
as with the vapor intrusion exposure pathway or operation
of remediation systems. Water table fluctuations could
be natural, but they can also be caused by anthropogenic
operations, such as the operation of pumping wells.
Likewise, surface activities might affect infiltration
because capping a site with an impermeable barrier may
reduce infiltration and expose more sources. Likewise,
irrigation may increase infiltration and occlude sources.
Incorporating the mass transfer dynamics that may result
from such activities may be useful in improving the
conceptual model of remediation sites.

This study shows that the NAPL mass transfer behav-
ior can be captured with existing transport theory and
modeling approaches under tightly controlled morpholo-
gies. However, further work is needed to model NAPL
volatilization that considers the full range of three-phase
saturation distributions that may occur in the field. An
ideal model may be one that could link the soil water
retention function to the mass transfer relation, allowing
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simulation of mass transfer from complex sources with-
out introducing a large number of new parameters that
need to be calibrated. Further study of this problem may
require an experimental apparatus capable of controlling
and quantifying saturations in a fully three-phase fluid dis-
tribution. Ultimately, an improved three-phase mass trans-
fer model may yield a better understanding of how vadose
zone NAPL sources behave under dynamic conditions as
well as when they age causing changes to morphology.

Nomenclature

Symbol Units Meaning

α — superscript / subscript denoting phase
identity (g = gas, w = water,
n = NAPL)

β — exponent for NAPL saturation for
Gilliland-Sherwood model

csat
n kg/m3 saturated concentration of NAPL

vapor in air
cα

n kg/m3 concentration of NAPL in phase α

d50 m grain size of the porous medium, for
which 50% of the entire mass is
finer

d0 m normalized grain size
dm m reference grain size (=0.05 cm)
Dα

m m2/s free molecular diffusion of NAPL in
phase α

Dα
n m2/s diffusion-dispersion tensor of the

NAPL component phase α

δ — exponent on Peclet number for
Gilliland-Sherwood model

Fα kg/m3/s specific source/sink term of phase α

F ng kg/m3/s specific mass transfer term of NAPL
into gas phase

H — dimensionless Henry’s constant
kng s− 1 mass transfer rate coefficient
Pe — Péclet number
φ — porosity
ρα kg/m3 density of phase α

S α — volumetric saturation of phase α

S n ,0 — initial NAPL saturation of source zone
Sh — Sherwood number
Sh0 — empirical constant for

Gilliland-Sherwood correlation
vα m/s apparent macroscopic velocity of

phase α

X α
n kg/kg mass fraction of NAPL component in

phase α

t s time
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Jakub Solovský a, Radek Fučík a, Michael R. Plampin b, Tissa H. Illangasekare c, 
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Based on experimental evidence and using mathematical modeling, inter-phase mass 
transfer processes of CO2 exsolving from and dissolving into water in heterogeneous porous 
media are investigated under two fundamentally different flow conditions: in a quasi one 
dimensional vertical column and in a two-dimensional tank with a lateral background 
water flow, both at laboratory scale. In both cases, the CO2 dissolved in water under a 
given overpressure is injected for a certain period at the bottom of the tank, exsolves, 
and migrates upwards. A layer of fine sand is present in the tanks designed to mimic 
geological scenarios of accumulation and trapping of exsolved CO2 in shallow aquifers. 
Then, clean water is injected and the accumulated CO2 is dissolved back into the flowing 
water. The study aims to point out the differences in the mass transfer processes between 
the quasi-1D and 2D cases using a mathematical model of two-phase compositional flow in 
heterogeneous porous media calibrated to the experimental datasets, and expose strategies 
that should be explored in future research. Additionally, temperature variations observed 
during the 2D experiments allow for analysis of isothermal versus non-isothermal effects 
on the processes of multiphase CO2 evolution. The mathematical model is discretized and 
solved using the mixed hybrid finite element method in 2D that allows for the simulation 
of both advection- and diffusion-dominated processes accurately.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

To protect human health and the environment from potential deleterious impacts of CO2 leakage from deep geologic 
sequestration sites, it is important to understand the multiphase flow processes that may occur when CO2 enters shallow 
aquifer systems. The exsolved gas can accumulate below low-permeability layers resulting in structural trapping [12]. The 
shallow groundwater flowing around and through these trapped zones will re-dissolve the gaseous CO2, and even though 
the dissolution process has detrimental effects on the water quality [27], it will help to attenuate the migration of the 
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leaked gas [21]. Because water with a higher dissolved CO2 concentration is heavier than clean water, it will sink and thus 
reduce potential subsequent release of gas back into the atmosphere [1–3].

During transport into and within the shallow subsurface, changes in pressure, temperature, and surrounding chemical 
composition induce complex multiphase flow phenomena such as dissolution, exsolution, expansion, and migration of gas 
phase CO2 in otherwise water-saturated media. These processes, defined collectively as multiphase CO2 evolution, have 
received significant attention in recent years. However, considerable gaps remain in our understanding of these processes, 
particularly regarding the fundamental interaction between the fluids in the pore space; that is, the mass transfer of CO2
among aqueous and gaseous phases during flow through porous media. This study aims to help fill that knowledge gap by 
comparing a model capable of incorporating various conceptualizations of mass transfer with data from highly controlled 
laboratory experiments.

The goal of the present work is not to validate the numerical model, because kinetic mass transfer models for sim-
ilar problems have already been validated [8], but rather to demonstrate the conditions under which the kinetic mass 
transfer affects the multiphase evolution of CO2 within shallow aquifers. While previous studies have focused primarily on 
pore- to core-scale interactions between supercritical CO2 and brine under deep reservoir conditions, we instead analyze 
intermediate-scale interactions between gas phase CO2 and freshwater under low temperatures and pressures, so that the 
associated conclusions may help in the design of monitoring, verification, and risk assessment strategies in the field. We 
hypothesize that kinetic mass transfer will be important to capture the behavior observed in the experiments under certain 
flow conditions within shallow aquifers, but that the equilibrium approximation will also be sufficient in some scenarios.

1.1. Overview

In general, there are two principal approaches to modeling inter-phase mass transfer from sources of trapped NAPL 
(non-aqueous phase liquid) or gas (in this case CO2): equilibrium and kinetic. The equilibrium approach assumes that the 
flowing water close to the NAPL/gas source is at the solubility limit with respect to the dissolved phase of the otherwise 
NAPL-phase constituent. In situations where the groundwater velocities are low, resulting in large residence times for the 
water to be in contact with the separate phase fluid, the concentrations attain equilibrium almost instantaneously.

While the equilibrium model works well in some situations [22], we demonstrate that for other scenarios, the equi-
librium model cannot correctly describe the behavior of the multiphase system, and that a more advanced approach is 
therefore needed. To address the more complex scenarios, a kinetic mass transfer model is employed in this work, in which 
the mass transfer rate is defined by rate coefficients. These phenomenological coefficients are defined in terms of corre-
lations containing dimensionless numbers with parameters that are fitted to experimental data (e.g. Gililland-Sherwood 
correlations) [14], and can be described in terms of physical processes at the pore scale. However, for practical applications, 
these coefficients must be determined empirically at the macroscopic scale.

Both the exsolution of previously dissolved gas from an over-saturated solution and the dissolution of trapped separate 
phase gas into previously under-saturated water are processes of mass transfer between two phases. Both processes are 
generally assumed to be functions of temperature and several dimensionless quantities. In equilibrium-based models, the 
rates of exsolution and dissolution are assumed to be equal (both are instantaneous), but in kinetic models, the rates of 
dissolution and exsolution can be different. Moreover, they can also depend on the geometry of the flow field [23].

The primary goal of this paper is to demonstrate the conditions under which more complex non-equilibrium mass 
transfer processes occur and also elucidate conditions under which the simplified model is sufficient for the description 
of the system. The previous works generally isolated various aspects of the system, but did not broadly compare various 
scenarios against one another to draw more general conclusions about the conditions that lead to the different types of 
mass transfer processes. Therefore, this work again aims to help fill that knowledge gap.

1.2. Experiments and goals of the study

In this work, we propose a mathematical model that describes two-phase compositional flow including kinetic mass 
transfer, and investigate how this process affects CO2 fate and transport in shallow aquifers. This goal was accomplished by 
comparing results of numerical simulations to laboratory data on exsolution, structural trapping, and dissolution of gaseous 
CO2 that was previously generated via intermediate-scale experiments conducted at the Center for Experimental Study of 
Subsurface Environmental Processes (CESEP) at the Colorado School of Mines. These experiments were unique and valuable 
in that they were conducted in test systems that were large enough to allow for flow processes similar to those that would 
occur in the field settings, but within a laboratory environment that allowed for careful control of external conditions and 
acquisition of data at higher temporal and spatial resolutions than would be possible to obtain in the field. The experiments 
focused on multiphase CO2 evolution in shallow aquifers, and were designed to represent hypothetical scenarios related to 
CO2 leakage from deep geologic sequestration sites.

The model developed in this study was compared against two different sets of experiments carried out at CESEP: a 
series of six experiments performed in a quasi-1D “rectangular column” test system, and two experiments conducted in a 
larger, more complex 2D test system “large tank”. Both systems incorporated layered heterogeneous porous media packing 
configurations designed to mimic geologic facies transitions in the field. The heterogeneity configuration of the porous 
media in the experiment was simpler than the one that can usually be expected in the field. However, such a simplified 
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configuration of a single fine sand layer with various levels of contrast allows us to study the effects of heterogeneity on a 
fundamental level.

The column experiments are referred to as “quasi-1D” because the fluids were allowed to move laterally as well as 
vertically in this test system, but the sealed vertical walls restricted the flow field to a predominantly vertical orientation. 
To more closely mimic the complex 3D processes that occur in the field, the large tank experiments established a fully 2D 
flow field by incorporating inlet/outlet boundaries on both vertical sides of the tank, thus allowing fluids to move freely in 
two dimensions.

The results from the large tank experiments were previously published by Plampin et al. [21], who built upon several 
similar experimental studies [18–20,25]. In a previous benchmark modeling study [22], data from some of these previous 
studies were compared against a model that incorporated only equilibrium mass transfer. This paper, on the other hand, 
aims to provide more general insights into the complex processes of mass transfer/transport of CO2 in the subsurface. We 
demonstrate that the proposed complex model is necessary to correctly describe the physical behavior of some scenarios. 
We also identify areas where more experimental data are needed to fully explain the multiphase CO2 evolution processes.

1.3. Paper structure

The paper is organized as follows. In Section 2, the mathematical model describing multiphase compositional flow in 
porous media is presented together with a brief description of the numerical method used to solve the resulting system of 
transient partial differential equations. Then, in Sections 3 and 4, comparisons with experimental data for both experiments 
justify the usage of the complex mathematical model proposed in Section 2. In the last section, the main findings are 
summarized and conclusions regarding further research efforts are drawn.

2. Mathematical model

The mathematical model describing the two-phase compositional flow in porous media that incorporates the phenomena 
studied in this work is presented in this section.

2.1. Governing equations of two phase flow in porous media

The governing equations are adopted from [4,11,16] and the quantities corresponding to the liquid (wetting) and gas 
(non-wetting) phases are denoted by indices � and g , respectively.

For each phase α ∈ {�, g}, the mass balance is given by

∂(φSαρα)

∂t
+ ∇ · (ρα �vα) = fα, (1)

where φ [−] is the material porosity and Sα [−], ρα [kg m−3], �vα [m s−1], fα [kg m−3 s−1] are the α-phase saturation, 
density, velocity, and the sink or source term.

The velocity �vα in the mass balance equation (1) is given by Darcy’s law

�vα = −λα K (∇pα − ρα �g), (2)

where �g [m s−2] is the gravitational acceleration vector, K [m2] is the intrinsic permeability, pα [Pa] is the α-phase pressure, 
λα = krα /μα [Pa−1 s−1] denotes the mobility of phase α where μα [Pa s] is the dynamic viscosity, and krα(Sα) [−] denotes 
the relative permeability. We also introduce the total mobility λt = λg + λ� .

In this work, the fluid properties were assumed to be static with ρ� = 997.78 kg m−3, ρg = 1.98 kg m−3, μ� = 9.72 ·
10−4 Pa s, and μg = 1.48 · 10−5 Pa s.

This assumption is justified by the fact that the pressure range in the experiments was rather narrow, and while the 
temperature variations (discussed later in Section 4.5) were more significant, the associated changes to fundamental fluid 
properties were still outweighed by the changes in interphase interactions (i.e., CO2 gas solubility). Across the temperature 
difference of about 11 ◦C observed in one of the experiments, all relevant fluid property changes were within 5 percent 
of the original value, except the liquid phase viscosity, which was within about 25 percent [31]. By contrast, the Henry’s 
law coefficient changed by 36 percent across this temperature range. In this study, we were interested in the interphase 
mass transfer processes, which are mostly controlled by the physical quantities related to phase interaction and not by 
the changes in properties of either fluid alone. Therefore, the effects of temperature variations were only incorporated in 
the solubility term. Accounting for changes to fundamental fluid properties due to changes in temperature and pressure 
conditions is beyond the scope of the paper as it would require a more complex mathematical model and the experiments 
considered in this work were not carried out with this purpose.

The pressure difference at the interface between the wetting and non-wetting phases is defined as the capillary pressure 
pc = pg − p� and it is assumed to be a function of the liquid phase saturation S� only [4,5,11]. This dependency is expressed 
by empirical relations. In this work, the Brooks–Corey model [6] is used in the form
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pB&C
c (S�) = pd(Se

�)
− 1

λ , (3)

where pd [Pa] is the entry pressure, λ [−] is related to the pore size distribution, and Se
α denotes the effective saturation 

defined by

Se
α = Sα − Srα

1 − Srg − Sr�
, (4)

where Srα is the residual saturation of phase α.
For the relative permeability functions kr� and krg , the Burdine model [7] with Brooks–Corey parameters is used in the 

form

kB
r�(S�) = (Se

�)
2+3λ

λ , (5)

kB
rg(S g) = (Se

g)
2
(

1 − (1 − Se
g)

2+λ
λ

)
. (6)

By definition, the residual saturation Srα describes the fraction of pore volume occupied by phase α that cannot be 
mechanically displaced. The values of Srα are empirical and are obtained during drainage and imbibition experiments [24]. 
However, as reported by [22,30], the concept of (mechanically) immobile residual saturation is not sufficient for model-
ing gas dissolution and exsolution processes, especially in cases, where no gas is initially present in the porous media. 
Consequently, Srg = 0 is used in (4).

On the other hand, experimental evidence [22,30] indicates that a certain threshold of gas saturation has to be reached 
before the gas phase becomes mobile. Such a value is referred to as the critical gas saturation Sc and the non-wetting phase 
(gas) relative permeability function krg is modified as

krg(S g) =
{

0, if S g < Sc,

kB
rg(

S g−Sc
1−Sc

), otherwise.
(7)

2.2. Component transport

In this work, the liquid phase is assumed to be a two component mixture: water and dissolved CO2 whereas the gas 
phase as a single component: pure CO2. Based on [16], the compositional balance equation for CO2 dissolved in the liquid 
phase is added to the two phase flow equations (1) and (2) as

∂(φS�ρ� X)

∂t
+ ∇ · (ρ��v X ) = f X , (8)

where X [−] is the mass fraction of CO2, f X [kg m−3 s−1] is the sink or source term, and �v X [m s−1] is the velocity of the 
CO2 component given by:

�v X = X �v� − τ�φS�D�∇ X (9)

where D� [m2 s−1] is the free molecular diffusion of CO2 in water, D� = 1.92 ·10−9 m2 s−1, and τ� [−] is the tortuosity given 
by τ� = φ1/3 S7/3

� based on [15].

2.3. Kinetic mass transfer

The mass transfer of CO2 between both phases (i.e., the dissolution and exsolution processes) is mediated through the 
sink/source terms f X in Eq. (8) and fα in Eq. (1). Based on [17], the kinetic mass transfer model is represented by

− f g = f� = f X = k(Cs − Xρ�), (10)

where Cs [kg m−3] is the saturated CO2 concentration and k [s−1] is the effective (lumped) mass transfer rate coefficient. In 
general, the effective rate coefficient k is a function of the interfacial area, temperature, properties of porous media, or flow 
velocity as was discussed in [17], but it is beyond the scope of the present study to address dependency of k on all these 
quantities since the experiments considered in this work were carried out to address only a few key parameters that affects 
the multiphase CO2 evolution. It is further conceptualized that the effective mass transfer coefficient k can be generally 
different for exsolution and dissolution, and denoted by kexs and kdis , respectively.

The kinetic model on a given element at a certain time allows for only one of the processes (exsolution vs. dissolution) 
to occur based on the sign of the source term given by Eq. (10) (whether the current concentration is higher or lower than 
the solubility limit). When the concentration equals the solubility limit, the source term given by Eq. (10) is zero, so the 
mass transfer also becomes zero and this state is referred to as equilibrium. In the kinetic model, equilibrium is reached 

................................ Článek v Journal of Computational Physics

121



J. Solovský et al. / Journal of Computational Physics 405 (2020) 109178 5

after a certain time (the mass transfer rate decreases with the concentration approaching the solubility limit). This is in 
contrast with the equilibrium mass transfer model which assumes that the equilibrium is reached immediately.

In Sections 3 and 4, this concept is explored and compared to the experimental data.
In order to determine the water solubility limit Cs of CO2 as a function of the gas pressure, Henry’s law is employed in 

the form:

Cs = pg

K H
Mg, (11)

where K H [Pa mol−1 m3] is Henry’s constant and Mg [kg mol−1] is the molar mass of CO2, Mg = 44.01 g mol−1.
The experiments considered in this paper were assumed to be run under isothermal conditions. However, these con-

ditions were not maintained for all experiments. Later in Section 4, we show that thermal effects cannot be neglected. 
Because the temperature fluctuations most significantly affect Cs through the temperature-dependent Henry’s constant K H , 
the Van’t Hoff equation is employed in the form

K H = K H,ref e
−C

(
1
T − 1

Tref

)
(12)

where T [K ] is the temperature, K H,ref is the value of Henry’s constant at a reference temperature Tref [K ], and C [K ] is 
the gas-specific constant [26], i.e., K H,ref = 2979.97 Pa mol−1 m3, Tref = 298.15 K, and C = 2400 K.

2.4. Numerical method and implementation remarks

The numerical method for solving the governing equations described in the previous sections is implemented using a 
general numerical solver proposed in [10]. The numerical scheme is based on the mixed-hybrid finite element method 
which combines velocity discretizations in the lowest order Raviart-Thomas space with a piecewise constant approximation 
for the scalar variables.

The main benefit of the numerical method is that it can be used for accurate simulation of degenerate diffusion or 
advection-dominated problems like the one discussed here. For more details refer to [10], where the numerical method was 
tested against known solution problems of two-phase flow in heterogeneous porous media and two-phase compositional 
flow. The numerical scheme was found to be convergent with the first order of accuracy.

The applicability of the numerical method for heterogeneous porous media is further discussed in [29] together with 
parallel implementations of the method on GPU [10] or on CPU using MPI [28].

In brevity, the method is designed to solve the system of n partial differential equations in the coefficient form in a 
d-dimensional polygonal domain 	 ⊂ Rd and a time interval [0, t f in]:

n∑
j=1

Ni, j
∂ Z j

∂t
+

n∑
j=1

�ui, j · ∇ Z j + ∇ ·
⎡
⎣mi

⎛
⎝−

n∑
j=1

Di, j∇ Z j + �wi

⎞
⎠

⎤
⎦ = f i, (13)

where Z j = Z j(t, �x), j = 1, 2, . . . , n, represent the unknown variables, �x ∈ 	, t ∈ [0, t f in]. Eq. (13) is further supplemented 
with either Dirichlet or Neumann boundary conditions, [10].

The system of governing equations given by Eqs. (1), (2), (8), and (10) are represented by (13) using n = 3, d = 2, Z1 = pc , 
Z2 = pg , Z3 = X , and

(
Ni, j

)
i, j∈3̂

=
⎛
⎜⎝

−φρ�
dS�

dpc
0 0

−φρg
dS�

dpc
φS g

dρg
dpg

0

0 0 φS�ρ�

⎞
⎟⎠ ,

(
�ui, j

)
i, j∈3̂

=
⎛
⎝ �0 �0 �0

�0 �0 �0
�0 �0 ρ��v�

⎞
⎠ ,

(
Di, j

)
i, j∈3̂

=
⎛
⎝λt K −λt K 0

0 λt K 0
0 0 τ�
S�D�

⎞
⎠ ,

(
mi

)
i∈3̂

=
⎛
⎜⎝ ρ�

λ�

λt

ρg
λg
λt

ρ�

⎞
⎟⎠ ,

(
�wi

)
i∈3̂

=
⎛
⎝−λtρ�K �g

λtρg K �g
�0

⎞
⎠ ,

(
f i

)
i∈3̂

=
⎛
⎝ − f�

f g

f� − X f�

⎞
⎠ ,

where 3̂ = {1, 2, 3}.
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Table 1
Material properties used in the column experiment based on [21,18].

Symbol Identification φ K pd λ Sr�

Units [−] [m2] [Pa] [−] [−]
Accusand #20/30 0.32 2.3 × 10−10 1200 7.33 0.084
Accusand #50/70 0.34 3.0 × 10−11 3400 16.9 0.207

Table 2
Settings of the column experiments described in Section 3. The material properties are listed in Table 1. The 
experiment duration in the last column is selected as the final time t f in of the simulation.

Id. Overpressure Inflow rate Injection period Experiment duration
[kPa]

[
ml min−1]

[h] [h]

LS 12 4 104.80 150
LF 12 40 10.67 70
MS 20 4 92.62 186
MF 20 40 10.45 73
HS 30 4 98.76 212
HF 30 40 10.20 76

3. Quasi-1D case

First, a quasi-1D column experiment with heterogeneous sand packing is considered with a predominant vertical flow 
field in which the CO2 exsolution, trapping, and dissolution processes were investigated.

The computational study presented in this section aims to find the optimal values of the model parameters (critical gas 
saturation and mass transfer coefficients) that control the multiphase CO2 evolution in the experimental setup and to use 
the calibrated numerical model to investigate the spatial and temporal evolution of CO2 in the column.

3.1. Experimental setup

A series of quasi-1D experiments was carried out in a rectangular column tank packed in a configuration that mimics 
the apex of an anticlinal geological feature. Fig. 1 shows the column experiment configuration and port positions, where the 
gas saturation was measured. Properties of the sands used in the experiments are summarized in Table 1.

The packing configuration (sand properties and position of the ports) remained the same for all six column experiments.
Each column experiment consisted of two consecutive injection periods. First, CO2-saturated water was injected into the 

column through the injection port located at the bottom of the tank for a given period of time. A portion of the dissolved 
CO2 exsolved into the gas phase, migrated upwards, and accumulated under the coarse-fine sand interface. Then, clean 
de-ionized (DI) water was injected into the column through the same injection port and the gaseous CO2 dissolved into the 
clean water and was transported upwards.

The experiments varied in (a) the pressure at which the injected water was saturated by CO2 (characterized by the 
overpressure with respect to the atmospheric pressure in the laboratory) and therefore the amount of CO2 dissolved in 
water at the inflow, (b) the inflow rate, and (c) the length of the injection period. In Table 2, the settings of the experiments 
are summarized and the following two-letter notation is introduced. The first letter denotes the overpressure of the injected 
CO2: L = low (12 kPa), M = medium (20 kPa), and H = high (30 kPa), whereas the second letter describes the inflow rate: 
S = slow (4 ml min−1) and F = fast (40 ml min−1).

3.2. Computational study setup

The main goal of the computational study is to determine optimal (best-fitted) values of the unknown model parameters 
kexs , kdis (the mass transfer coefficients for exsolution and dissolution, respectively), and Sc (the critical gas saturation) 
based on the experimental data. The experimental procedure previously described in Section 3.1 is for the purposes of 
the computational study divided into three stages in which 1) exsolution, 2) accumulation, and 3) dissolution were the 
dominant processes and are therefore investigated consecutively. The division into (almost) isolated stages (the exsolution 
and accumulation both occurred during the CO2-saturated water injection) allows us to use each of them to determine the 
aforementioned unknown parameters separately as will be discussed in the following sections.

The mesh used in the numerical simulations is shown in Fig. 1. The mesh consisted of 2552 elements and was locally 
refined in the vicinity of the material interfaces. The mesh resolution was sufficient to capture all effects investigated in 
this work. At the same time, the coarseness of the mesh allowed many computations with various model parameters to be 
carried out efficiently.

Initially at t = 0, the tank contains only pure water with no inflow or outflow: X = 0, pc = pd (which corresponds to 
S g = 0), and pg = pc + p� , where the hydrostatic pressure profile for p� was prescribed. The final time of each simulation 
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Fig. 1. The column experiment configuration and the triangular mesh of 2552 elements used in the numerical simulations.

t f in is the same as the final time of the corresponding experiment shown in Table 2. Constant time steps of 5 s, 2 s, and 
1 s were selected for the low, medium, and high overpressure experiments, respectively.

The boundary conditions are given as follows. At �w and �b , no flow boundary condition is prescribed for both phases 
as well as for the dissolved CO2. At �in , no flow boundary condition for the gas phase is prescribed for the whole duration 
of the experiment. During the injection period, the Neumann boundary condition for the water inflow velocity u� and the 
Dirichlet boundary condition for the CO2 mass fraction X based on the values in Table 2 are prescribed at �in . During 
the rest of each experiment, clean water is injected with a given injection schedule shown in Table 3, i.e., the Dirichlet 
boundary condition for X = 0 and the Neumann boundary condition for u� are prescribed at �in based on the inflow rate 
given in Table 3. Between the individual injections (rows in Table 3), there is always a one minute break where the injection 
is stopped that during the experiment allowed for the preparation of the next injection. This break is represented by zero 
Neumann boundary condition u� = 0.

At the upper boundary �t , the Dirichlet boundary conditions pc = pd , pg = pref , and ∇ X = 0 are prescribed with pref =
82 kPa as the reference atmospheric pressure in the laboratory (at the altitude of approximately 1800 m above sea level). 
This setting mimics the experimental setup on the upper boundary that allowed for the free outflow of gas and water with 
dissolved CO2.

3.3. Stage 1: exsolution

During the exsolution stage, the CO2 dissolved in water is injected into the tank and exsolves. For the medium and high 
overpressure experiments, the gaseous CO2 is detected in the lower ports (Ports 22 - 24) far from the fine layer barrier.

After the initial growth, the measured gas saturation values lose the underlying growing trend and the oscillations 
center around a constant value as shown in Fig. 2. In the experiment, the fluctuations are caused by the changes in the 
gas distribution at the pore scale. For the slow experiment run, there is more time for this diffusive redistribution to occur 
when the water is not flowing that fast. Therefore, the fluctuations for the slow runs are more significant.

These plateau values represent the fraction of gas phase trapped in the porous medium that remains immobile and can 
be directly interpreted as the critical saturation Sc .

Combining all four medium and high overpressure experiments, the value of the critical gas saturation is estimated to 
be Sc = 0.25 which is also in agreement with [22].

The dependency of the numerical results on the values of Sc for experiment HS is illustrated in Fig. 3, where the 
numerical results for the critical gas saturation values 0.05, 0.1, 0.15, 0.2, 0.25, 0.3 are compared. These results indicate that 
the estimated value Sc = 0.25 is a sufficiently good approximation.

Note that no information about Sc can be obtained during this stage for the low overpressure experiments LS and LF 
because CO2 does not exsolve before it reaches the middle region of the sand column close to the heterogeneity. Hence, a 
different mechanism attributed to the capillary barrier of the fine sand is responsible for the detected CO2 saturation values 
that are also much higher than those measured in the lower ports for high overpressure experiments.
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Table 3
Clean DI water injection schedule for the column experiments.

Id. LS LF MS MF HS HF

duration [h] 12.15 12.44 2.80 14.34 2.87 15.70
inflow rate [ml min−1] 6 8 32 6 32 6

duration [h] 2.53 2.58 16.83 2.35 14.53 3.03
inflow rate [ml min−1] 32 32 6 32 8 32

duration [h] 2.80 3.28 2.67 2.62 2.7 2.98
inflow rate [ml min−1] 32 32 32 32 32 32

duration [h] 3.15 2.25 3.07 2.95 2.67 3.22
inflow rate [ml min−1] 32 32 32 32 32 32

duration [h] 15.57 14.91 2.3 16.67 2.78 15.67
inflow rate [ml min−1] 6 6 32 6 32 6

duration [h] 2.98 2.93 15.95 3.17 12.68 2.6
inflow rate [ml min−1] 32 32 6 32 8 32

duration [h] 5.60 2.45 3.17 3.65 3.93 2.57
inflow rate [ml min−1] 16 32 32 32 32 32

duration [h] – 2.92 3.02 16.47 2.73 1.7
inflow rate [ml min−1] – 32 32 6 32 32

duration [h] – 14.6 1.82 – 3.30 2.87
inflow rate [ml min−1] – 6 32 – 32 32

duration [h] – – 15.28 – 14.733 12.183
inflow rate [ml min−1] – – 6 – 6 8

duration [h] – – 3.28 – 4.40 2.05
inflow rate [ml min−1] – – 32 – 16 32

duration [h] – – 3.30 – 44.92 –
inflow rate [ml min−1] – – 32 – 2 –

duration [h] – – 1.17 – – –
inflow rate [ml min−1] – – 32 – – –

duration [h] – – 17.22 – – –
inflow rate [ml min−1] – – 6 – – –

3.4. Stage 2: accumulation

During the accumulation stage of the experiment, the injection of water with dissolved CO2 continues and as more CO2
exsolves and migrates upwards, the gaseous phase accumulates below the fine layer which, due to a higher entry pressure, 
acts as a capillary barrier. As a result, the gas saturation below the fine layer reaches up to almost 0.9 as measured in Port 
14 placed directly below the heterogeneity. Because of this significant accumulation, this port is selected to demonstrate 
the dynamics of the mass transfer in this section.

To capture the experimentally observed gas accumulation by the numerical model, enough CO2 needs to be produced 
during the exsolution process. For each experimental run, a parameter sensitivity study was carried out in order to deter-
mine the optimal value of kexs . Many numerical results were computed for a series of values of kexs with a selected step of 
0.01 [s−1].

The optimal values of kexs were subsequently selected among the results of numerically computed S g values such that 
they best-fitted the experimentally measured S g values in all the ports during the accumulation stage. The best fit is 
considered in terms of the sum of Euclidean norms of difference between the numerical solution and experimental data (L2
norm over a given time interval) for all the ports.

The numerical results show that substantially large values of kexs have to be considered to produce enough gaseous CO2
to match the experimental data. Furthermore, a certain threshold k∗

exs = 5 s−1 exists for which the rate of exsolved CO2 is 
maximal, i.e., the numerical results are the same for k∗

exs and for all kexs > k∗
exs as illustrated in Fig. 4 for the HS experiment. 

Similar dynamics can be observed for all the column experiments and the numerical results show that this threshold value 
is the same for all the experiments. These findings indicate that a near-equilibrium rather than a rate-limited kinetic mass 
transfer process is observed during the exsolution stage for all the column experiments.

3.5. Stage 3: dissolution

During the last stage, clean water is injected into the tank and the gaseous CO2 present in the tank dissolves into the 
flowing water. The evolution of the experimentally measured gas saturation indicates that similar to the exsolution process, 
the dissolution is rapid. Parameter sensitivity studies were again carried out for each experimental run to determine the 
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Fig. 2. Medium and high overpressure experiments, measured gas saturation and highlighted value of critical gas saturation Sc = 0.25. (For interpretation 
of the colors in the figure(s), the reader is referred to the web version of this article.)

optimal values of kdis in the same way as in the previous section. The best fit is considered in terms of the sum of Euclidean 
norms of difference between the numerical solution and experiment for all the ports.

As in the previous section, the results show that a substantially large value of kdis > k∗
dis (with k∗

dis = 5 s−1 as the 
threshold value) is the optimal choice that captures the dissolution rate. The dynamics of the dissolution process and the 
threshold value are illustrated in Fig. 5 for Port 14 of the HS experiment. The dissolution rate is represented by the slope 
of the gas saturation curve. These findings are the same for all the experiments indicating that the CO2 dissolution can be 
also interpreted as the near-equilibrium mass transfer process.

3.6. Discussion of results

The division of the experiments into three stages allowed for determination of the optimal values of the model parame-
ters kexs , kdis , and Sc . The influence of the parameter variations was demonstrated for selected experiments and ports. For 
all computations discussed in this section, the following values of the model parameters, obtained as described above, are 
used: Sc = 0.25, kexs = kdis = 5 s−1.

Different settings of each experiment such as the overpressure or injection rate summarized in Table 2 allow to observe 
and explain processes of multiphase CO2 evolution in porous media using both experimental and numerical data from 
specific ports as shown in Figs. 6–8, where an overall comparison of the numerical results against the experimental in 
selected ports is presented for all column experiments.

Once the numerical model is calibrated to fit (in terms of the Euclidean norm) the point-based experimental readings 
in all the ports, it can be used to recover more details about the spatial and temporal evolution of CO2 such as the gas 
formation, migration, accumulation, and dissolution.

First, in Fig. 9, the vertical gas saturation profiles are compared in the middle of the tank at the end of the injection 
period of each experiment. The gas saturation profiles of the exsolved CO2 are almost identical for both slow and fast inflow 
rates implicating that the injected CO2 overpressure is the main quantity in consideration that affects the depth, where the 
exsolved CO2 is first detected.

In Figs. 6, 7, and 8, the accumulation of gaseous CO2 induced by the heterogeneity is observed at Port 14 (placed directly 
below the material interface). In this region, the amount of trapped gas is not governed by the value of the critical gas 
saturation, instead, the difference in porous media entry pressures (i.e., the capillary barrier) plays the key role [19]. On the 
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Fig. 3. Experiment HS, gas saturation S g for various values of critical gas saturation and for large mass transfer rate coefficients kexs = kdis = 5 s−1.

Fig. 4. Experiment HS, gas saturation in Port 14 for various values of mass transfer coefficient for exsolution kexs .

coarse-fine sand interface, the capillary pressure must reach the entry pressure of the fine sand before the gas can penetrate 
into the fine sand layer [9,13].

At Port 8 located inside the fine layer, the influence of the material interface can be observed in the opposite configu-
ration (coarse sand above the fine one) than before at Port 14. As expected, both numerical results and experimental data 
in Figs. 6, 7, and 8 indicate that no gas accumulation occurs. Measurements show that the behavior of the system is very 
similar to the lower ports (Ports 22-24) studied in Stage 1: a plateau gas saturation profile is detected and controlled by the 
critical gas saturation which seems to have the same value for both coarse and fine sands.

In Fig. 10, the water flow velocities (given by Darcy’s law in Eq. (2)) in the middle of the tank are shown. We selected 
HS and HF experiments to demonstrate the range of velocity observed in the column experiment during both exsolu-
tion (CO2-saturated water injection) and dissolution (clean water injection) stages for the experiments. The inflow rates of 
CO2-saturated water for the HS and HF experiments are 4 ml min−1 and 40 ml min−1 respectively (see Table 2). The vertical 
profiles at the start of the experiment when no gas is presented in the tank are shown in Fig. 10a. The high overpressure 
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Fig. 5. Experiment HS, gas saturation in Port 14 for various values of mass transfer coefficient for dissolution kdis .

Fig. 6. Low overpressure column experiments LS and LF, gas saturation S g in selected ports.

experiments are chosen because of the most significant gas accumulation in the tank to demonstrate the impact of the gas 
phase present in the tank on the velocity as shown in Fig. 10b, where the velocity at the end of the injection period is 
given. The corresponding gas saturation profiles are shown in Fig. 9. The results show a significant drop in velocity mag-
nitude in the regions of high gas saturation. During the CO2-saturated water, the injection rate was constant then during 
the clean water injection, the flow rate varied. The HS and HF experiment allows us to show also the range of the velocity 
during the dissolution stage, because the flow rates after the CO2-saturated water injection stopped are 32 ml min−1 and 
6 ml min−1 (see Table 3) which gives the lower and upper bound of flow rates for the column experiments during the clean 
water injection (with the exception of the end of HS experiment, however, there was already almost no gas phase presented 
during this low flow rate). In Fig. 10c, we show the velocity at the start of the clean water injection. The corresponding gas 
saturation profiles at this time are identical to those shown in Fig. 9. The x-axis range is chosen with respect to the velocity 
magnitude in the tank, therefore, the highest velocity magnitude in the vicinity of the injection port is out of the range in 
Fig. 10, the maximal value of 13.16 m day−1 is reached during the 40 ml min−1 injection rate.

Altogether, the quasi-1D computational study showed that the numerical model is capable to capture the dynamics of 
the exsolution and dissolution processes observed in the experiments. In the lower region of the column, the critical gas 
saturation proved to be the best modeling concept that can explain the relatively large values of S g measured during the 
injection period of the experiment. The optimal values of kexs and kdis were determined to be the same and equal (or larger) 
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Fig. 7. Medium overpressure column experiments MS and MF, gas saturation S g in selected ports.

Fig. 8. High overpressure column experiments HS and HF, gas saturation S g in selected ports.
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Fig. 9. Gas saturation distribution over the y-axis (tank height) of the tank at the end of the injection period for the column experiments. The material 
interfaces are depicted using the dashed lines.

Fig. 10. Water velocity profile over the y-axis (tank height) in the middle of the tank for the HS and HF high overpressure column experiments. The 
material interfaces are depicted using the dashed lines.

to the threshold rate of 5 s−1, for which further increase of the coefficients has a negligible effect on the numerical results. 
As a result of this conclusion, any value larger than the threshold can be used to obtain the match with the experimental 
data. Therefore, the threshold value 5 s−1 was chosen, taking into account the computational efficiency and properties of 
the numerical scheme to avoid enforcing too short of time steps while ensuring stability, thus avoiding unnecessary increase 
of the computational time. The rapidity of both exsolution and dissolution processes indicate that the kinetic mass transfer 
model acts as the equilibrium one.

Negative values of the gas saturation were measured during the experiment, however, these values were very small. 
These negative saturation readings were obtained for all experiments when there is no gas in the vicinity of the port. How-
ever, due to various y-axis ranges, they are visible only in the ports, where no gas was detected for the whole duration of 
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Fig. 11. The large tank experiment configuration adapted from [21] and the triangular mesh of 5638 elements used in numerical simulations. EC stands for 
the electric conductivity sensor and EC-5, EC-TM, and 5TE denote the specific type of a sensor, for more details, we refer the reader to [21].

the experiment. The negative saturation values are attributed to the post-processing calibration technique with the error of 
the gas saturation measurements of approximately ±0.05. The negative readings reported here are within the measurement 
error.

4. 2D case

In order to study two dimensional multiphase evolution of CO2, two larger laboratory scale tank experiments are con-
sidered with a heterogeneous sand packing and a fully developed two dimensional flow field. As in the quasi-1D case, the 
numerical model is first calibrated using experimental data measured in selected ports and then, the numerical results are 
used to recover and investigate the spatio-temporal evolution of CO2. The main goal of the computational study is to de-
termine whether and how the CO2 exsolution and dissolution processes differ from the equilibrium ones observed in the 
quasi-1D column in Section 3. Moreover, the effects of varying temperature are also investigated due to the violation of the 
isothermal assumption during one of the experiments.

4.1. Experimental setup

Fig. 11 shows the configuration of the large tank experiments including port positions where the gas saturation was 
measured. The clay and gravel regions shown in Fig. 11 are neglected in the model. In the experiment, the gravel layers 
are added to uniformly distribute the inflow and outflow boundary conditions. In the model, the boundary conditions are 
prescribed along the whole corresponding segment of the boundary.

The clay blocks work as impermeable obstacles for the flow and in the model, they are treated as impermeable domains.
At the beginning of each experiment, a lateral flow of DI water through the tank was established by positioning constant 

head devices on both sides of the tank. Then, the CO2 saturated water (saturated at 13 kPa overpressure) was injected 
through the injection port located near the bottom of the tank for a given period of time with the injection rate of 
11.2 ml min−1. In the mesh, the injection port is represented by a square with 1 cm long side that are treated as internal 
mesh boundaries through which the CO2-saturated water is injected.

The dissolved CO2 plume spread in the tank and a portion of CO2 exsolved, which then migrated through the tank as 
a gas phase. After the injection was stopped, the experiment continued with the lateral flow of clean DI water only. The 
dissolved CO2 plume was transported further to the outflow side of the tank and the gaseous CO2 dissolved back into the 
flowing water.
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Table 4
Material properties used in the large tank experiment based on [21,18].

Symbol Identification φ K pd λ Sr�

Units [−] [m2] [Pa] [−] [−]
Granusil #20/30 0.41 1.21 × 10−10 1580 5.79 0.10
Accusand #40/50 0.42 5.23 × 10−11 1940 4.09 0.07
Unimin #110 and #250 0.35 6.39 × 10−14 8100 5.35 0.17

Fig. 12. Air temperature during the high and low contrast experiments.

Two large tank experiments were conducted, which differed in the material of the middle layer and the length of the 
injection period. In the first large tank experiment (denoted as the high contrast experiment), the layer consisted of a very 
fine sand Unimin #110 and #250 as shown in Fig. 11. In the second large tank experiment (denoted as the low contrast 
experiment), the layer consisted of sand Accusand #40/50 that was only slightly finer than the surrounding coarse sand 
Granusil #20/30. Parameters of these sands are listed in Table 4.

The CO2-saturated water injection period lasted for 1.88 days in the high contrast experiment and for 2.43 days in the 
low contrast experiment. In this work, we focus on the first ten days of the experiment. Port positions were the same for 
both experiments and the lateral water flow rate through the tank was very similar for both runs.

During the low contrast experiment, the temperature was almost constant. The difference between the lowest and high-
est temperature during the experiment was less than 2 ◦C as shown in Fig. 12. However, significantly different temperature 
measurements were obtained for the high contrast experiment. The temperature exhibited fluctuations of more than 10 ◦C
on a daily basis as shown in Fig. 12 which was caused by the problems with the air conditioning in the CESEP experi-
mental facility. Because the large tank experiments were originally not designed to study thermal effects, the tank was not 
insulated, nor the temperature, heat fluxes, or thermal conductivity of the sands/tanks walls were measured. Hence, due to 
lack of information concerning initial and boundary conditions, the energy (heat) balance equation is not included in the 
mathematical model. The thermal effects are at least compensated through Cs which is the only parameter considered as a 
function of the measured temperature. Such a simplification is justifiable because the tank is narrow (6 cm) compared to its 
other dimensions (4.88 m in length and 1.17 m in height), so with non-insulated walls, it is safe to assume a uniform tem-
perature distribution within the tank and consider only a temporal violation of the isothermal assumption, not the spatial 
one.

For more details about the large tank experiments, see [21].

4.2. Computational study setup

The main goal of the computational study in the 2D large tank case is to determine whether the CO2 exsolution and 
dissolution occur under equilibrium or kinetic (rate-limited) conditions. As in the quasi-1D case, the first goal of the compu-
tational study is to determine the optimal values of kexs , kdis , and Sc compared to the experimental readings from selected 
ports. Then, the calibrated mathematical model is used to investigate the fundamental differences between the large tank 
and column experiments and, moreover, the influence of temperature.

Fig. 11 shows the computational domain used in the numerical simulations and the triangular mesh consisting of 5638 
elements which is locally refined in the vicinity of the injection port. The mesh resolution is sufficient enough to capture the 
mass transfer and transport processes of CO2 and rather coarse at the same time to reduce the computational cost allowing 
to compute many simulations with variable model parameters. For simplicity, the interior region of the tank without the 
gravel boundary regions is considered only. Such a simplification is found reasonable since in the experiment, the main role 
of the gravel is to uniformly distribute the affluent and effluent water along the interior boundaries.

Initially at t = 0, the tank contains only pure water: X = 0, pc = pd (which corresponds to S g = 0, and pg = pc + p�

where the hydrostatic profile for p� was prescribed. For both low and high contrast experiments, the final time is t f in =
10 days and the time step of 5 s is used.
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The boundary conditions are given as follows. No flow boundary condition is prescribed at �w and �b for both phases 
and for the CO2 mass fraction. At the injection port �in , no flow condition for the gas phase is prescribed for the whole 
duration of the experiment. During the injection period, the Neumann boundary condition is prescribed for the water inflow 
velocity u� and the Dirichlet boundary condition for the CO2 mass fraction X as described in Section 4.1. For the rest of the 
experiment, no flow boundary condition is prescribed for water and for the CO2 mass fraction at �in . At �it and �ib , X = 0, 
pc = pd , and pg = pc + p� where the hydrostatic profile for water pressure p� corresponding to the constant head device 
on the left side of the tank are prescribed. At �ot , �oc , and �ob , the Neumann boundary condition for the water velocity u�

is set based on the experimental data, [21], and for the remaining unknowns, ∇ X = 0 and the no flow boundary condition 
for the gas phase are prescribed. This approach allowed for the establishment of lateral flow and accurate reproduction 
of the water flow field in the tank. At the upper boundary �t , the gas pressure pg = pref is kept constant, where pref =
82 kPa is the reference atmospheric pressure in the laboratory, ∇ X = 0, and the no flow boundary condition for water are 
prescribed.

Similar to the column experiment, the experimental procedure described in Section 4.1 can be divided into two stages: 
1) exsolution and 2) dissolution. The experiment was designed to (almost) isolate the exsolution and dissolution processes 
which helps to determine the unknown parameters of the model independently. For this experiment, there is no separate 
stage to determine the critical gas saturation.

4.3. Critical gas saturation

Unlike in the quasi-1D case, however, the value of the critical saturation Sc cannot be determined directly from the 
port readings during the exsolution stages. In contrast with the column experiments, there are no gas saturation data ports 
located close to the injection port. Moreover, the only significant gas phase accumulation was observed directly below 
the fine sand layer. However, the accumulation in this region is controlled by the capillary barrier of the finer sand and, 
therefore, gives no information about the critical gas saturation. Likewise, gas saturation readings in the lower homogeneous 
region of the sand tank are quite low in comparison with the column experiments (approximately of 0.1) which indicates 
that the role of the critical gas saturation is not as important as in the column experiments. The critical saturation is defined 
as a threshold at which the gas phase becomes mobile. The gas phase evolution in the ports observed in this experiment is 
mainly driven by a flow of water with dissolved gas and exsolution rather than by a flow of mobile gas plume. Therefore, 
the only conclusion that can be drawn about the critical gas saturation from this experiment is that the value is at least 
0.1.

4.4. Stage 1: exsolution

During the exsolution stage, the CO2 dissolved in water is injected into the tank and exsolves in the vicinity of the 
injection port. The dissolved CO2 is also transported by the background lateral flow in the downstream direction allowing 
gas to exsolve further away from the injection port and not only directly above it. As shown in Fig. 13, the gas phase is well 
detected in Ports D4, D6, E4, F3 (and others).

In this section, we consider the low contrast experiment and the isothermal model is used. First, the model was cali-
brated with respect to kexs . Many numerical realizations were computed for a series of values of kexs with a selected step 
of 0.001 [s−1]. In all the ports, the numerical results of S g were compared to the experimental data and the difference 
between them was measured using the Euclidean norm.

For both experiments (with temperature-corrected Cs), the optimal value of kexs = 0.005 s−1 that minimized the differ-
ence was determined. Compared to the column experiments, significantly lower values of the mass transfer coefficients must 
be used in order to capture the gas evolution properly as illustrated in Fig. 14. For the increasing value of the mass transfer 
coefficient, the amount of gas detected in the downstream ports (Ports E4 and E5) decreases. For large, near-equilibrium 
values of kexs comparable to those in the column experiments, CO2 exsolves rapidly near the injection port and migrates 
upwards (see Port D4), therefore, less CO2 remains dissolved in water and little or almost no gas is detected in the down-
stream ports (Ports E4 and F5) as shown in Fig. 14. This is also demonstrated in Fig. 15, where the comparison between the 
gas saturation results for the near-equilibrium (with kexs = 0.1 s−1) and rate limited kinetic (with kexs = 0.005 s−1) models 
is shown.

4.5. Thermal effects

In the previous section, we investigated the low contrast experiment and the isothermal model. Without the consider-
ation of thermal effects, however, it is impossible to find a suitable value of kexs to match the high-contrast experimental 
data. This is illustrated in Figs. 16 and 17, where the gas saturation distributions are compared for constant Cs based on 
a time-averaged temperature of 19 ◦C and variable temperature-corrected values of Cs . For the constant temperature cases, 
the gas distribution evolution appears to be the same for both low and high contrast experiments. Since the temperature 
variations were small during the low contrast experiment, very similar results are also obtained for the variable temperature 
as shown in Fig. 16. However, the results for the high contrast experiment in Fig. 17 show a substantially different spatial
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Fig. 13. Large tank experiments, gas saturation S g , selected ports for the low and high contrast cases.

gas evolution compared to the constant temperature cases that include the barrier effect below the fine layer and larger 
downstream spreading of the gas phase.

4.6. Stage 2: dissolution

For the dissolution process, an analogous model calibration procedure (with the temperature-corrected Cs ) was carried 
out with the resulting optimal value of kdis = 0.002 s−1, the same again for both experiments. In Fig. 13, the comparison of 
the numerical results to the experimental data at selected ports demonstrates that despite of the complexity of the large 
tank experiments, the numerical model is able to capture the gas saturation evolution sufficiently well.
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Fig. 14. Gas saturation S g , various coefficients for exsolution.

4.7. Discussion of results

In Fig. 18, the water flow velocities (given by Darcy’s law in Eq. (2)) at the level of the injection port (y = 0.1 m) and 
below the fine sand layer (y = 0.7 m) are shown. During the large tank experiments, there are not so significant changes in 
the flow rate as in the column experiments, therefore, we show the velocity profiles at the start of the experiment and after 
48 hours when the gas accumulation is observed below the fine sand layer (although less significant than during the column 
experiments) for both low and high contrast experiments. There is a difference in the velocity magnitude at the level of 
the injection port at the later time because at t = 48 h in the high contrast experiment, CO2-saturated water injection had 
already ended, while it was still occurring at this time in the low contrast experiment. The corresponding gas saturation 
distribution is shown in Fig. 15 and Fig. 17 for low contrast and high contrast (non-isothermal model), respectively. The 
numerical results show that the velocity is similar for both low and high contrast experiments and a decrease in the 
velocity caused by the accumulated gas can be observed for the high contrast experiment in Fig. 18b. The y-axis range is 
chosen with respect to the velocity magnitude in the tank, therefore, the maximal value of 2.85 m day−1 in the vicinity of 
the injection port is out of the range in Fig. 18.

The computational study revealed that the equilibrium mass transfer model overpredicts the CO2 exsolution in the 
vicinity of the injection port in the large tank experiments, where the two dimensional flow field is present. For specific 
values of the mass transfer rate coefficients, the kinetic model is able to capture the experimentally observed gas saturation 
evolution. The optimal values of the mass transfer rate coefficients differ for the exsolution and dissolution processes, 
indicating that the exsolution is approximately 2.5 times faster than the dissolution. This effect indicates that these processes 
differ and further emphasizes the necessity of the kinetic mass transfer model that can take this difference into account. 
In general, the mass transfer rate coefficients kexs and kdis are considered quite low, which means that the mass transfer 
is rate-limited. However, it is beyond the scope of this paper to rigorously investigate the mass transfer coefficients as a 
function of flow properties and further research is needed that would extend the understanding of the gas evolution in 
porous media.

5. Concluding remarks

Potential contamination of shallow freshwater aquifers caused by leakage of CO2 from deep geologic sequestration sites 
constitutes a significant risk, the extent and severity of which depend on complex multiphase flow phenomena that control 
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Fig. 15. The gas saturation evolution using the near equilibrium (left) and rate-limited kinetic (right) mass transfer models for the low contrast experiment.

the distribution of CO2 in the aquifer. One of the least well-understood aspects of the multiphase flow system is the process 
of CO2 mass transfer between aqueous and gaseous phases in the presence of flowing groundwater within macroscopic, 
heterogeneous, porous media systems. Because these processes are exceedingly difficult to observe in the field directly, this 
study uses experimental data gathered from well-controlled, large-scale laboratory experiments to test the capabilities of an 
innovative multiphase flow model capable of representing various types of mass transfer processes.

In general, the results indicate that multiphase CO2 evolution attenuates transport within shallow aquifers, due to dy-
namic, non-instantaneous exsolution and dissolution processes, and the mathematical model proposed in this work was able 
to adequately capture the most important processes observed in the experiments. The kinetic mass transfer model was able 
to reproduce the near-equilibrium mass transfer observed in the quasi-1D column experiments as well as the much slower 
exsolution and dissolution observed in the 2D large tank experiments. The numerical and experimental results presented 
here also indicate that in the more complex 2D case, dissolution and exsolution rates differ, and the kinetic model was able 
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Fig. 16. Gas saturation S g , comparison of isothermal (left) and non-isothermal (right) models for low contrast experiments.

to quantify this difference. The model was also able to explain significant effects that temperature had on multiphase CO2
evolution in multi-dimensional porous media systems.

In both experiments, the model captured the effect of heterogeneity on the gas accumulation and confirmed that het-
erogeneity, even in the simple form presented in the experiment, plays a significant role in the multiphase CO2 evolution. 
The nuanced effects of this system component need to be carefully addressed in the future by analyzing more complex het-
erogeneous scenarios. In both cases studied herein, we decided to use the uniform sampling approach of the mass transfer 
coefficients values and, therefore, used rather coarse meshes. Such a sensitivity study allowed us to investigate the impact 
of various mass transfer coefficients on the numerical results.

The difference between the quasi-1D and 2D cases (where the equilibrium and rate-limited approaches, respectively, 
were found applicable) can possibly be explained by different flow rates of water through the gas-occupied region of the 
system. However, the velocity profiles shown in Figs. 10 and 18 indicate that the velocity magnitude would not be solely 
responsible for the fundamentally different results for the quasi-1D and 2D case. The flow velocity magnitude in the 2D 
case is comparable to the velocity magnitude during the CO2-saturated water injection for the slow column experiments. 
Moreover, during the clean water injection for all column experiments, the flow rate varied and a rather low inflow rate of 
6 ml min−1 was employed at least once.
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Fig. 17. Gas saturation S g , comparison of isothermal (left) and non-isothermal (right) models for high contrast experiments.

Fig. 18. Water velocity profile over the x-axis at the level of the injection port (y = 0.1 m) and below the fine sand layer (y = 0.7 m) for large tank 
experiments. The position of the injection port is depicted using the dashed line.
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In the quasi-1D case, water is forced through the gas accumulation, and the dynamic inter-phase contact is therefore 
likely fast enough that equilibrium mass transfer is applicable. In the 2D case, however, the water flow paths can more 
easily avoid the gas phase, meaning slower contact with the gas phase, and thus slower dissolution. Further investigation 
is needed to rigorously test these ideas. The results presented here also demonstrated that multiphase CO2 evolution is 
sensitive to temperature changes. We thoroughly investigated the mass transfer process, however, many processes that 
could affect the mass transport but were not the driving mechanisms for the processes studied here were neglected or 
simplified in this work. These include the dependence of all quantities on temperature and mechanical dispersion.

In this paper, we discussed the fundamental difference of mass transfer and transport processes between the quasi-1D 
and 2D cases. Hence, a question arises about the nature of these processes in 3D and their relation to the 2D case. Such a 
question is beyond the scope of the present study, however, based on the results presented here, such a study seems to be 
a necessary next step in understanding complex 3D field–scale processes.
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In this paper, we present a new two-temperature mathematical model for a thermo-chemical energy 

storage based on the adsorption and desorption of the water vapor in zeolite 13X. The adsorption pro- 

cess is modelled using the Linear Driving Force (LDF) model and the Langmuir-Freundlich isotherms. A 

numerical solver based on the mixed-hybrid finite element method and operator splitting technique is 

proposed. Furthermore, we present a computational study of the charging and discharging processes of 

the thermo-chemical energy storage emphasising the behaviour of the two temperatures: fluid tempera- 

ture and zeolite temperature. 

© 2019 Elsevier Ltd. All rights reserved. 

1. Introduction 

The transition from fossil fuels to cleaner and renewable energy 

sources is currently one of the highest world priorities. According 

to the International Energy Association (IEA), buildings consume 

35% of the world energy and cause approximately 33% of global 

CO 2 emissions [1] . Solar energy is one of the most suitable choices 

for replacing fossil fuels. However, to use solar energy to its maxi- 

mum potential, proper heat energy storage has to be designed. 

In recent years, various approaches for the heat energy storage 

have been proposed and studied. These approaches can be divided 

into three categories based on how the heat is stored: latent, sen- 

sible, or thermo-chemical. The first one uses Phase Change Ma- 

terials (PCMs), where the latent heat is released when the phase 

change occurs. Review of these materials and their usage in the 

heating of buildings are presented, e.g., in [2–4] . In the sensible 

TES (Thermal Energy Storage) system, the energy is stored or re- 

leased by increasing or decreasing the temperature of the storage 

medium. A one or two-tank molten salt are examples of such ma- 

terials [5,6] . The state of the art of this approach can be found in, 

e.g., [7] . The last category is the thermo-chemical energy storage, 

∗ Corresponding author. 

E-mail address: jiri.mikyska@fjfi.cvut.cz (J. Mikyška). 

where the heat �H is released due to a chemical reaction 

A.B + �H ⇐⇒ A + B 

for some materials A and B , where the symbol . represents a chem- 

ical bond. The modelling and the numerical simulation of these 

energy storages are our main subjects of focus. There exist many 

concepts and materials which can be used for energy storage. Hy- 

drogen systems with metallic hydrides for storing hydrogen were 

one of the first concepts in the 90s for the hydrogen engines. Later, 

a concept for thermal energy storage was proposed in [8] . Other 

possibilities include carbonate systems with CO 2 [9] or calcina- 

tion with CaO [10] . A review on high-temperature thermo-chemical 

heat energy storage can be found in [11] . 

In this work, we are interested in the modelling of the thermo- 

chemical heat energy storage using the zeolite, which is a crys- 

talline aluminosilicate with a specific structure and a large inter- 

nal surface area. A specific zeolite (e.g., 13X) can adsorb water and 

release heat. Such process can be described as 

A. H 2 O + �H ⇐⇒ A + H 2 O . 

The properties of the zeolite 13X have been studied experimentally 

and also theoretically [12–14] . Furthermore, a variety of numerical 

models has been proposed. In [15,16] , a numerical model with only 

one temperature has been presented. The model includes a heat 

https://doi.org/10.1016/j.ijheatmasstransfer.2019.119050 
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loss due to the reactor wall. The numerical model is solved us- 

ing COMSOL Multiphysics software [17] , but no additional informa- 

tion about the numerical solver is given. Another one-temperature 

model has been presented in [13] where the momentum conserva- 

tion is calculated with the extended Brinkman equation [18,19] and 

again, no information about the numerical solution is provided. In 

[20] , a two-dimensional and a two-temperature model is presented 

and solved using the Gear’s method [21] in Matlab software pack- 

age [22] . In [23] , a particle simulation in a rotating drum was per- 

formed to survey particle mixing. The adsorption was implemented 

in a CFD discrete particle solver for thermodynamic studies. Simu- 

lations were performed using the Navier-Stokes Solver ANSYS FLU- 

ENT [24] . In [25] , a two-temperature model is developed, and a 

finite volume approach for the discretization is used. The resulting 

differential equations are solved again using the Gear’s method. 

In this work, we use a different approach from those published 

previously. In our model, we employ a two-temperature approach. 

One temperature ( T f ) is assigned to the fluid, the other one ( T s ) 

to the zeolite (solid matrix). Therefore, we do not assume a local 

thermal equilibrium and study the behaviour of individual temper- 

atures before, during, and after adsorption or desorption process. 

In Section 4 , we will show that with an appropriate parameter 

adaptation, the temperature difference can be significant. There- 

fore, the assumption of the local thermal equilibrium is not pos- 

sible, and the two-temperature model is necessary for precise sim- 

ulation. One another feature arises from this two-temperature ap- 

proach. In this approach, numerical constants such as the heat ca- 

pacities are easily computable for both systems, and no averaging 

between them or other procedure has to be performed. Another 

difference from most published papers is our numerical solver, 

which is based on the mixed-hybrid finite element method (MH- 

FEM) with a semi-implicit approach for the time discretization 

[26] . MHFEM is superior to the methods described above in that 

it approximates scalar variables and their gradients with the same 

order of accuracy. In the previous approaches, which are based 

on finite difference, finite volume or classical finite element meth- 

ods, the gradients of scalar variables are evaluated by performing 

numerical differentiation, which leads to the loss of accuracy. As 

these gradients are needed to evaluate transport velocities, the ac- 

curate approximation of these gradients is important for the ac- 

curacy of the whole transport simulation. Another unique feature 

of our approach is the use of the operator splitting approach. This 

approach enables to decouple computation of the transport from 

the computation of the adsorption. It is therefore possible to use 

different time steps for the computation of transport of heat and 

mass between the cells and for the processes occurring within a 

cell (adsorption). As the speeds of both processes can be very dif- 

ferent, the splitting technique make it possible to use smaller time 

steps for adsorption without the need for unnecessarily small time 

steps for the transport simulation. This results in much more effi- 

cient computation compared to the case when all these processes 

are treated using the same time stepping scheme. 

The structure of this paper is as follows. In Section 2 , the math- 

ematical model is presented. In Section 3 , a description of the nu- 

merical solution is provided. In Section 4 , computational studies 

for the charging and discharging processes of the thermo-chemical 

energy storage are presented. In Section 5 , the results are discussed 

and some conclusions are drawn. 

2. Physical and mathematical model 

In this paper, the studied system is a fixed packed bed filled 

with zeolite 13X beads. Dry (humid) air is supplied to the bed, and 

the desorption (adsorption) process of the water vapor in the zeo- 

lite takes place. During the desorption (adsorption) process, the ze- 

olite beads do not change position in the bed and create a porous 

medium with a fixed solid matrix. 

Our mathematical model consists of four balance equations rep- 

resenting the balance of mass, the water mass fraction, the energy 

of the fluid, and the energy of the solid matrix: 

φ
∂ρ f 

∂t 
+ ∇·(ρ f v 

)
= 0 , (1) 

φρ f 

∂w w 

∂t 
+ ρ f v · ∇ w w 

+ ∇·(−ρ f D pm 

∇ w w 

)
= −(1 − φ) ρs 

∂q 

∂t 
M w 

, 

(2) 

φρ f c v 
∂T f 

∂t 
+ ∇·(ρ f c v T f v − k f ∇ T f 

)
− T f ∇· (ρ f c v v 

)
−φ

∂P 

∂t 
− β

(
T s − T f 

)
= 0 , (3) 

(1 − φ) ρs c s 
∂T s 

∂t 
− ∇·(k s ∇ T s 

)
− β

(
T f − T s 

)
= ( 1 − φ) ρs 

∂q 

∂t 
�H, 

(4) 

respectively, where φ [-] is the porosity, ρ f [kg m 

−3 ] is the fluid 

mass density, v [m s −1 ] is the velocity of the fluid, w w 

[-] is the 

water mass fraction, D pm 

[m 

2 s −1 ] is the diffusive coefficient, ρs 

[kg m 

−3 ] is the density of the zeolite particle, q [mol kg −1 ] is the 

adsorbed water vapor in the zeolite, M w 

[kg mol −1 ] is the molar 

mass of water, c v [J kg −1 K 

−1 ] is the specific heat of fluid at con- 

stant volume, T f [K] is the temperature of the fluid, k f [W m 

−1 K 

−1 ] 

is the thermal conductivity of the fluid, P [Pa] is the pressure, β
[W K 

−1 ] is the heat transfer coefficient between the fluid and the 

solid matrix (zeolite), T s [K] is the temperature of the solid matrix, 

c s [J kg −1 K 

−1 ] is the specific heat of solid matrix, k s [W m 

−1 K 

−1 ] 

is the thermal conductivity of the solid matrix, and �H [J mol −1 ] 

is the isosteric heat of the adsorption. 

The velocity v of the fluid is given by the Darcy’s law 

v = − K 

μ

(∇ P − ρ f g 

)
, (5) 

where K [m 

2 ] is the intrinsic permeability, μ [Pa s] is the dynamic 

viscosity, and g [m s −2 ] is the gravity vector. In our model, the 

gravity is neglected, i.e., g = 0 . The diffusive coefficient D pm 

is cal- 

culated using [27] 

D pm 

= φτD m 

, (6) 

where τ is the tortuosity and D m 

is the molecular diffusion. The 

tortuosity is calculated using Millington-Quirk model [28] 

τ = φ
1 
3 . (7) 

The system of the balance laws is supplemented by the equation 

of state of the ideal gas [29] 

P 
(
T , ρ f , w w 

)
= 

(
(1 − w w 

) ρ f 

M a 
+ 

w w 

ρ f 

M w 

)
RT , (8) 

where M a is the molar mass of air and R is the universal gas con- 

stant. The heat transfer coefficient β is modelled [24] using 

β = 6 

k f (1 − φ) φNu 

d 2 s 

, (9) 

where d s is the diameter of the zeolite particle and the Nus- 

selt number Nu expresses an increase in the heat flux by convec- 

tion compared to the case when there is only conduction and no 

convection. The Nusselt number is calculated using correlation by 

Gunn [30] 

Nu = 

(
7 − 10 φ + 5 φ2 

)(
1 + 0 . 7 Re 0 . 2 P r 

1 
3 

)
+ 

(
1 . 33 − 2 . 4 φ + 1 . 2 φ2 

)
Re 0 . 7 P r 

1 
3 , (10) 
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where the Reynolds number Re and the Prandtl number Pr are 

calculated using 

P r = 

c p μ

k f 
, (11) 

Re = 

ρ f d s 

μ
| v | . (12) 

The specific heats c v and c p are calculated using 

c v ( w w 

) = w w 

c v ,w 

+ (1 − w w 

) c v ,a , (13) 

c p ( w w 

) = w w 

c p,w 

+ (1 − w w 

) c p,a , (14) 

where c i,j for i ∈ { v, p } and j ∈ { w, a } are the specific heats at con- 

stant pressure (subscript p ) or volume (subscript v ) of the water 

vapor and air, respectively. 

The adsorbed water vapor q = q (t, x ) in the zeolite is modelled 

using the kinetic model. We choose the Linear Driving Force (LDF) 

model which is frequently used for the adsorption and desorption 

of the water vapor in the zeolite (e.g., [15,16,25] ). This model can 

be formulated as 

∂q 

∂t 
= k ∗LDF ( q 

∗ − q ) , (15) 

where k ∗LDF > 0 is the rate of the adsorption and q ∗ is the equilib- 

rium state. The rate of the adsorption is calculated using the rela- 

tion [31] 

k ∗LDF = 

k ∗

ρs RT s 
∂q ∗
∂P w 

, (16) 

where k ∗ is an empirical numerical constant. The equilibrium state 

q ∗ is model using the Langmuir-Freundlich isotherms 

q ∗ = 

q max (bP w 

) 1 /n 

1 + (bP w 

) 1 /n 
, (17) 

where q max is the maximum amount of the adsorbed water vapor 

in the zeolite and P w 

is the partial pressure of the water vapor. In 

the previous equation, b and n are parameters of the kinetic model, 

which can be calculated using [32] 

b = b 0 exp 

(
�E 

RT 0 

(
T 0 
T 

− 1 

))
, (18) 

1 

n 

= 

1 

n 0 

+ α
(

1 − T 0 
T 

)
, (19) 

where n 0 , �E, α, and q max are empirical constants. The tempera- 

ture T 0 is set to T 0 = 293 . 15 K. The isosteric heat of the adsorption 

�H is obtained using [32] 

�H = �E − αRT 0 n 

2 ln 

(
q 

q max − q 

)
. (20) 

In summary, our mathematical model consists of five equations: 

four balance Eqs. (1) –(4) and one kinetic Eq. (15) . To complete the 

mathematical model, the equations have to be equipped with ini- 

tial conditions and an appropriate set of boundary conditions. The 

initial conditions read as 

P (0 , x ) = P (ini ) , ∀ x ∈ 	, (21) 

w w 

(0 , x ) = w 

(ini ) 
w 

, ∀ x ∈ 	, (22) 

T f (0 , x ) = T (ini ) 
f 

, ∀ x ∈ 	, (23) 

T s (0 , x ) = T (ini ) 
s , ∀ x ∈ 	, (24) 

q (0 , x ) = q (ini ) , ∀ x ∈ 	. (25) 

In order to describe the boundary conditions, we define ∂	 as the 

boundary of 	 and for each variable ϕ ∈ { P, w w 

, T f , T s } denote 

�ϕ and �q ϕ the Dirichlet and the Neumann part of the boundary, 

respectively. These parts of the boundary have to satisfy 

�ϕ ∪ �q ϕ = ∂	, (26) 

�ϕ ∩ �q ϕ = ∅ , (27) 

for ϕ ∈ { P, w w 

, T f , T s }. Then, an appropriate set of boundary condi- 

tions for all t ∈ (0, t final ) reads as 

P (t, x ) = P (D) , ∀ x ∈ �P , q P (t, x ) · n = q (N ) 
P 

, ∀ x ∈ �q P , (28) 

w w 

(t, x ) = w 

(D) 
w 

, ∀ x ∈ �w w 
, q w w 

(t, x ) · n = q (N ) 
w w 

, ∀ x ∈ �q w w 
, 

(29) 

T f (t, x ) = T (D) 
f 

, ∀ x ∈ �T f , q T f (t, x ) · n = q (N ) 
T f 

, ∀ x ∈ �q T f 
, 

(30) 

T s (t, x ) = T (D) 
s , ∀ x ∈ �T s , q T s (t, x ) · n = q (N ) 

T s 
, ∀ x ∈ �q T s 

, (31) 

where n is the outward normal vector to the ∂	 and q ϕ for ϕ ∈ { P, 

w w 

, T f , T s } is the conservative flux. 

3. Numerical solution 

In this section, we describe the numerical algorithm for solv- 

ing the mathematical model. By �t , we denote the time step and 

define the time level t n by 

t n = n �t, n ∈ N 0 . (32) 

The system of Eqs. (1) –(4), (15) from the time level t n to the new 

time level t n +1 is solved in two steps using the operator splitting 

technique [33] . First, the system (1) –(4) is solved with time step 

�t and zero right-hand-sides, i.e. without the adsorption. Secondly, 

the following system of equations 

∂q 

∂t 
= k ∗LDF (q ∗ − q ) , (33) 

φρ f 

∂w w 

∂t 
= −(1 − φ) ρs 

∂q 

∂t 
M w 

, (34) 

(1 − φ) ρs c s 
∂T s 

∂t 
= (1 − φ) ρs 

∂q 

∂t 
�H, (35) 

is solved with the time step �t and with initial values being the 

solution of the first step. After these two steps, one computational 

time step �t is completed. This splitting technique is needed be- 

cause the adsorption is a very rapid process compared to the con- 

vection and diffusion. Since the adsorption process is rapid, the 

choice of the computation step �t is restricted. When the compu- 

tation step �t is too large, the simulated mass of water vapor ad- 

sorbed in the zeolite can exceed the total mass currently present in 

a given cell, thus resulting in negative w w 

and a failure of the com- 

putation. This problem occurs, for example, when w w 

= 0 . 01131 , 

T s = 294 . 15 K, q = 5 mol kg −1 , �t = 0 . 1 s, v = 0 m s −1 , and with 

parameters from Table 2 . After a single time step �t using the 

forward Euler method, the values will be q = 5 . 00213 mol kg −1 , 

w w 

= −0 . 0583083 , and the simulation will fail. With the strategy 

presented in Section 3.2 , the computational steps can be adapted 

and the situation when w w 

< 0 is avoided. In the next sections, we 

will describe both steps of this algorithm in details. 
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3.1. Numerical solution of Eqs. (1) –(4) with zero right-hand-sides 

The first step is solved using the mixed-hybrid finite element 
method implemented in a numerical library NumDwarf [26] which 

is designed to solve a system of n partial differential equation in 

the form 

n ∑ 

j=1 

N i, j 

∂Z j 

∂t 
+ 

n ∑ 

j=1 

u i, j · ∇ Z j + ∇·
[ 

m i 

( 

−
n ∑ 

j=1 

D i, j ∇ Z j + w i 

) 

+ 

n ∑ 

j=1 

Z j a i, j 

] 

+ 

n ∑ 

j=1 

r i, j Z j = f i (36) 

for i = 1 , . . . , n, where Z i = Z i ( t, x ) are the unknown functions, N i,j , 

r i,j , and m i are scalar coefficients, u i,j , w i , and a i,j are vector coeffi- 

cients, D i,j are matrix coefficients, t > 0 is time, and x ∈ R 

d is the 

spatial variable, where d is the dimension. The solver implemented 

in the NumDwarf library can solve the system (36) for an arbitrary 

dimension. The system (36) is supplemented by an initial condi- 

tion 

Z j ( 0 , x ) = Z ( 
ini ) 

j 
, ∀ x ∈ 	, j = 1 , . . . , n, (37) 

and boundary conditions for all t ∈ (0, t final ), 

Z j ( t, x ) = Z ( 
D ) 

j 
, ∀ x ∈ �Z j ⊂ ∂	, j = 1 , . . . , n, (38) 

q i ( t, x ) · n = q ( 
N ) 

i 
, ∀ x ∈ �q i ⊂ ∂	, i = 1 , . . . , n, (39) 

where q i is the conservative flux 

q i = m i 

( 

−
n ∑ 

j=1 

D i, j ∇ Z j + w i 

) 

. (40) 

The NumDwarf solver is based on the mixed-hybrid finite ele- 

ment method with the semi-implicit approach for the time dis- 

cretization. The main advantage of the mixed-hybrid finite element 

method is that the scalar unknowns Z j ( t , x ) and their fluxes q i are 

approximated with the same order of accuracy [34] . This prop- 

erty is not present in the finite volume methods where the ap- 

proximation of the fluxes is less accurate [35] . In the derivation 

of the NumDwarf solver, the authors assumed that the scalar un- 

knowns Z j ( t , x ) are continuously differentiable with respect to time 

t , weakly differentiable with respect to spatial vector x , and fluxes 

q i belong to the function space H (div, 	) [36] . Let K h is the spatial 

discretization of the computational domain 	. On each element 

K ∈ K h , the solver approximates q i in the lowest order Raviart- 

Thomas-Nédélec space RTN 0 ( K ) [34,37] . Furthermore, the i th equa- 

tion of (36) is discretized using a finite volume approach to obtain 

the averages of Z j over K ∈ K h 

Z j,K (t) = 

1 

| K| 
∫ 

k 

Z j (t, x )d x , (41) 

where | K | is the measure of element K . The resulting system of 

ODEs is discretized in time using the finite differences 

d Z j,K 

d t 
≈ Z j,K (t k +1 ) − Z j,K (t k ) 

�t 
, (42) 

for j = 1 , . . . , n . A semi-implicit approach for the time dicretization 

is adopted. In the time step from level t k to t k +1 , the unknowns 

Z j in r i,j are evaluated from level t k +1 , in a i,j from time level t k . In 

each time step, a single sparse system of linear equations is ob- 

tained and solved using a suitable direct or iterative solver. Here, 

the UMFPACK solver [38] is used. For more details the reader is 

referred to [26] . 

As the primary unknowns, we choose 

Z 1 = P, Z 2 = w w 

, Z 3 = T f , Z 4 = T s , (43) 

i.e., the pressure, the mass fraction of the water vapor, the tem- 

perature of the fluid, and the temperature of the zeolite, respec- 

tively. With these primary variables, the system of Eqs. (1) –(4) can 

be written in the form of Eq. (36) , if the non-zero coefficients in 

(36) are chosen as 

N = 

⎛ 

⎜ ⎝ 

φ
∂ρ f 

∂P 
�

∂ρ f 

∂w w 
�

∂ρ f 

∂T f 
0 

0 φρ f 0 0 

0 0 φρ f c v 0 

0 0 0 ( 1 − �) ρs c s 

⎞ 

⎟ ⎠ 

, (44) 

u = 

⎛ 

⎜ ⎝ 

0 0 0 0 

0 ρ f v 0 0 

0 0 c v v ρ f 0 

0 0 0 0 

⎞ 

⎟ ⎠ 

, m = 

⎛ 

⎜ ⎝ 

ρ f 

ρ f 

1 

1 

⎞ 

⎟ ⎠ 

, (45) 

D = 

⎛ 

⎜ ⎝ 

K 
μ 0 0 0 

0 D pm 

0 0 

0 0 k f 0 

0 0 0 k s 

⎞ 

⎟ ⎠ 

, r = 

⎛ 

⎜ ⎝ 

0 0 0 0 

0 0 0 0 

0 0 β −β
0 0 −β β

⎞ 

⎟ ⎠ 

. 

(46) 

3.2. Numerical solution with the source/sink terms 

In the second step of our numerical method, Eqs. (33) –(35) are 

solved in time interval [ t n , t n +1 ] using the fourth order Runge-Kutta 

method [39] . With time step η, the method iterates the solution 

using 

q (t + η, x ) = q (t, x ) + 

η

6 

(
k (1) 

1 
+ 2 k (1) 

2 
+ 2 k (1) 

3 
+ k (1) 

4 

)
, (47) 

w w 

(t + η, x ) = w w 

(t, x ) + 

η

6 

(
k (2) 

1 
+ 2 k (2) 

2 
+ 2 k (2) 

3 
+ k (2) 

4 

)
, (48) 

T s (t + η, x ) = T s (t, x ) + 

η

6 

(
k (3) 

1 
+ 2 k (3) 

2 
+ 2 k (3) 

3 
+ k (3) 

4 

)
. (49) 

Denoting the right-hand-side of the Eqs. (15) , (2) , and (4) by 

f (1) (q, w w 

, T s ) = k ∗LDF (q ∗ − q ) , (50) 

f (2) (q, w w 

, T s ) = − (1 − φ) ρs k 
∗
LDF (q ∗ − q ) M w 

φρ f 

, (51) 

f (3) (q, w w 

, T s ) = 

(1 − φ) k ∗LDF (q ∗ − q )�H 

c s 
, (52) 

respectively, the coefficients k (i ) 
j 

are calculated using 

k (i ) 
1 

= f (i ) ( q, w w 

, T s ) , (53) 

k (i ) 
2 

= f (i ) 
(
q + ηk (1) 

1 
/ 2 , w w 

+ ηk (2) 
1 

/ 2 , T s + ηk (3) 
1 

/ 2 

)
, (54) 

k (i ) 
3 

= f (i ) 
(
q + ηk (1) 

2 
/ 2 , w w 

+ ηk (2) 
2 

/ 2 , T s + ηk (3) 
2 

/ 2 

)
, (55) 

k (i ) 
4 

= f (i ) 
(
q + ηk (1) 

3 
, w w 

+ ηk (2) 
3 

, T s + ηk (3) 
3 

)
, (56) 

for i = 1 , 2 , 3 . We start our computation with step size η = �t . If 

w w 

(t + η, x ) < 0 , the computation step is discarded and the step 

size is adapted using 

η = −w w 

6 

k (2) 
1 

+ 2 k (2) 
2 

+ 2 k (2) 
3 

+ k (2) 
4 

. (57) 

The computation continues until t = t n +1 . 

..........................Článek v International Journal of Heat and Mass Transfer

145



T. Smejkal, J. Mikyška and R. Fu ̌cík / International Journal of Heat and Mass Transfer 148 (2020) 119050 5 

Table 1 

Parameters in the balance equations. 

parameter value 

φ [-] 0.35 

D m [m 

−2 s −1 ] 1 . 9 · 10 −9 

K [m 

2 ] 10 −10 

μ [Pa s] 1 . 8205 · 10 −5 

R [J mol −1 K −1 ] 8.3144621 

M a [kg mol −1 ] 0.02897 

M w [kg mol −1 ] 0.018 

c v, a [J kg −1 K −1 ] 718 

c v, w [J kg −1 K −1 ] 1460 

c p,a [J kg −1 K −1 ] 1005 

c p, w [J kg −1 K −1 ] 1870 

c s [J kg −1 K −1 ] 880 

k f [W m 

−1 K −1 ] 30 · 10 −3 

k s [W m 

−1 K −1 ] 0.4 

d s [m] 2 · 10 −3 

ρs [kg m 

−3 ] 1152 

g [m s −2 ] 0 

Table 2 

Parameters of the kinetic 

model for the zeolite 13X. 

Data taken from Gaeini et al. 

[16] . 

parameter value 

q max [mol kg −1 ] 19 

b 0 [Pa −1 ] 4.002 

�E [J mol −1 ] 65 572 

n 0 [-] 2.976 

α [-] 0.377 

k ∗ [s −1 ] 7 

3.3. The full algorithm 

In this section, we summarize the essential steps of our numer- 

ical method: 

0. Let a final time t final , time step �t , and initial and boundary 

conditions be given. Set the iteration counter n = 0 . 

1. Solve system (1) –(4) from time level t n to time level t n +1 using 

the numerical procedure defined in Section 3.1 . 

2. Solve system (33) –(35) from time level t n to time level t n +1 us- 

ing the numerical procedure defined in Section 3.2 . Set the ini- 

tial conditions to the previously calculated values on time level 

t n +1 . 

3. If t n +1 = t final , terminate algorithm. Otherwise, set n = n + 1 and 

go to Step 1. 

4. Results 

In this section, we present simulated results using the model 

described in Section 3 . The numerical values for the coefficients 

used in Eqs. (1) –(4) are presented in Table 1 . The numerical values 

needed for the kinetic model are provided in Table 2 . These values 

are used for both adsorption and desorption processes. 

In our numerical study, the axial flow is neglected, therefore, 

a 1D model is satisfactory and the computation set 	 is an inter- 

val 	 = (0 , L ) . In the examples below, we use L = 0 . 5 m. A graph- 

ical schematic drawing is depicted in Fig. 1 . Two processes will 

be studied: the charging and the discharging process. During the 

charging process, hot air is drying the zeolite and the water vapor 

adsorbed in the zeolite is being desorbed. During the discharging 

process, humid air is supplied, the water vapor is being adsorbed 

in the zeolite, and the heat is released. In both cases, a computa- 

tional study is performed. Four different meshes and correspond- 

ing time steps are used. The individual time steps and meshes are 

presented in Table 3 . The errors of the numerical solution s ( j ) (su- 

Table 3 

Meshes and corresponding time steps 

used in the computation study. 

ID number of elements �t [s] 

1 25 4 · 10 −3 

2 50 2 · 10 −3 

3 100 1 · 10 −3 

4 200 5 · 10 −4 

perscript indicates which mesh was used) are measured in L 1 and 

L 2 norms which are defined as 

erro r ( 
j ) 

L 1 
= sup 

t∈ [ 0 ,t final ] 

∫ 
	

∣∣s ( j ) ( t, x ) − s ( exact ) ( t, x ) 
∣∣d x, (58) 

erro r ( 
j ) 

L 2 
= sup 

t∈ [ 0 ,t final ] 

(∫ 
	

∣∣s ( j ) ( t, x ) − s ( exact ) ( t, x ) 
∣∣2 

d x 

) 1 
2 

, (59) 

where s ( exact ) is the exact solution. As this solution is not avail- 

able, the solution on the finest mesh is used as the reference so- 

lution. Having the errors measured, the experimental order of con- 

vergence EOC can be determined as 

EOC (i ) 
j 

= 

ln er ror ( j−1) 
L i 

− ln er ror ( j) 
L i 

ln 2 

. (60) 

List of symbols 

Latin: 

b parameter of the kinetic model 

c v specific heat of fluid at constant volume 

c p specific heat of fluid at constant pressure 

c s specific heat of solid 

D pm diffusive coefficient 

d s diameter of zeolite particle 

EOC experimental order of convergence 

�H isosteric heat of adsorption 

k ∗LDF rate of adsorption 

k f thermal conductivity of fluid 

k s thermal conductivity of solid 

L lenght of computation set 

M w molar mass of water vapor 

n parameter of kinetic model 

Nu Nusselt number 

P pressure 

Pr Prandtl number 

q water vapor adsorbed in zeolite 

q ∗ equilibrium state 

q max maximum amount of water vapor adsorbed in zeolite 

Re Reynolds number 

t time 

t f inal final time of simulation 

T f temperature of fluid 

T s temperature of solid 

v velocity 

w w water mass fraction 

Greek: 

α parameter of kinetic model 

β heat transfer coefficient 

∂	 boundary of 	

φ porosity 

ρ f density of fluid 

ρs density of zeolite 

τ tortuosity 

η time step 

	 computation domain 

Subscripts: 

f fluid 

s solid 

w water 

a air 
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Fig. 1. A schematic drawing of the thermo-chemical battery with the Dirichlet boundary conditions during the charging process (red color) and during the discharging 

process (green color). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

4.1. Charging process 

In the first part of the computation study, the charging of a hy- 

pothetical thermo-chemical battery is modelled. The charging pro- 

cess is carried out by drying the zeolite with hot air. In our simu- 

lation, the temperature of the air is 423.15 K (150 ◦C). Since we do 

not have any experimental data, the results from this example will 

be used as the initial condition for the modelling of the discharg- 

ing process. The initial conditions are set to 

P (ini ) = 10 

5 Pa , (61) 

w 

(ini ) 
w 

= 0 . 00468 , (62) 

T (ini ) 
f 

= 294 . 65 K , (63) 

T (ini ) 
s = 294 . 65 K , (64) 

q (ini ) = 17 . 5 mol kg −1 . (65) 

The boundary ∂	 consists of two points x = 0 and x = L . The 

Dirichlet boundary conditions are 

P (D) = 10 

5 Pa , for x = L, (66) 

w 

(D) 
w 

= 0 . 009 , for x = 0 , (67) 

T (D) 
f 

= 423 . 15 K , for x = 0 . (68) 

The Dirichlet boundary conditions are also depicted in Fig. 1 . The 

value of the water vapor represents a relative humidity of approxi- 

mately 52% at 20 degrees Celsius. At P ( t , 0), we prescribe Neumann 

boundary condition for the flux 

q P · n = v (in f low ) ρ(in f low ) 
f 

= 0 . 311814 kg s −1 m 

−3 , (69) 

where n is the outward normal with respect to the corresponding 

part of the ∂	. This flux numerically represents the airflow rate 

of 1liter per second in a tube with a diameter of 0.07 m. In all 

other cases we prescribe zero Neumann boundary condition. The 

computation time is set to t f inal = 12 h. During the charging pro- 

cess, the amount of water vapor in the zeolite is decreasing and 

after approximately 11 h the system is in equilibrium. The result- 

ing water vapor q adsorbed in the zeolite profile after 12 h is given 

in Fig. 2 . Furthermore, the time developments of the water vapor 

adsorbed in the zeolite q , the water fraction w w 

, and the tempera- 

tures T f , T s at chosen points are depicted in Fig. 3 a–d, respectively. 

The chosen points are x 1 = 0 . 01 m, x 2 = 0 . 11 m, x 3 = 0 . 21 m, and 

x 4 = 0 . 41 m. The temperature steadily rises in all points as the hot- 

ter air is being pushed inside the tube. From the time development 

of the mass fraction of the water ( Fig. 3 b), one can observe the 

Fig. 2. Water vapor q in the zeolite after the charging (drying) process at the final 

time t = 12 h. 

Table 4 

Errors and experimental order of convergence of chosen 

variables during the charging (drying) process. The errors 

and experimental orders of convergence (EOC) are defined 

by Eqs. (58) –(60) . 

T f : 

mesh ID error L 1 error L 2 EOC 1 EOC 2 

1 8.49 · 10 2 4.90 · 10 1 

2 3.82 · 10 2 2.21 · 10 1 1.15 1.15 

3 1.30 · 10 2 7.54 1.55 1.55 

T s : 

mesh ID error L 1 error L 2 EOC 1 EOC 2 

1 8.35 · 10 2 4.82 · 10 1 

2 3.72 · 10 2 2.15 · 10 1 1.17 1.17 

3 1.25 · 10 2 7.24 1.57 1.57 

q : 

mesh ID error L 1 error L 2 EOC 1 EOC 2 

1 3.54 · 10 1 2.05 

2 1.54 · 10 1 8.89 ·10 −1 1.20 1.20 

3 5.11 2.95 ·10 −1 1.59 1.59 

w w : 

mesh ID error L 1 error L 2 EOC 1 EOC 2 

1 2.63 ·10 −1 1.52 ·10 −2 

2 1.25 ·10 −1 7.20 ·10 −3 1.08 1.08 

3 4.42 ·10 −2 2.55 ·10 −3 1.50 1.50 

strong increase of the water vapor in the first hours of the pro- 

cess. This increase is caused by the drying process when the water 

vapor is being desorbed from the zeolite and transported in the 

fluid. The most interesting is the time development of the water 

vapor adsorbed in the zeolite. In the first point x 1 = 0 . 01 m, the 

zeolite is dry in about 3 h. In other points the process is slower. In 

the last point x 4 = 0 . 41 m, the drying process is finished after ap- 

proximately 11 h. The convergence test, which was described at the 

beginning of this section, is presented in Table 4 where the errors 

of numerical solutions and experimental orders of convergence are 
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Fig. 3. Time development of the given primary variables at chosen points during the charging (drying) process using the finest mesh (mesh 4). 

Fig. 4. Time development of the difference in temperatures T f − T s at chosen points during the charging (drying) process using the finest mesh (mesh 4) (left). The magnifi- 

cation of the first hour of the process (right). 

calculated. In all cases, the experimental order of convergence is 

more than one. Therefore, the convergence of our method is veri- 

fied. In Fig. 5 , the comparison of the solutions on different meshes 

is presented. The time developments of the fluid temperatures T f at 

different points are depicted. One can observe that the most signif- 

icant changes are in the first point x = 0 . 01 m. In other cases, the 

time developments are almost identical. However, in all cases, the 

numerical solutions on the coarse mesh are underestimated. 

As we are using a two-temperature model, we can study a tem- 

perature difference between the fluid and zeolite temperatures. In 

Fig. 4 , the time development of the difference T f − T s of chosen 

points is depicted. One can observe that the difference is always 

non-negative, therefore, the fluid temperature is always higher 

than the temperature of the zeolite. The most significant differ- 

ence is at the left boundary (point x 1 = 0 . 010 m) where the value 

is up to 9.5 K. This is mainly caused by the boundary condition 

T f (t, 0) = 423 . 15 K which forced the temperature of the fluid to 

remain at this value at the left boundary. In the other chosen 

points, the difference is also positive with a higher difference in 

the first hour of the drying process. The difference at the begin- 

ning is caused by the desorption of the water vapor in the zeolite 

when the zeolite is cooled down. After approximately six hours, 

the difference in temperatures is negligible because the desorp- 

tion process is almost finished. This is in agreement with Fig. 3 a 
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Fig. 5. Comparison of the numerical solutions T f during the charging process on different meshes. 

where the amount of adsorbed water vapor q in the zeolite is 

depicted. 

4.2. Discharging process 

The second part of our numerical study is the discharging pro- 

cess when the zeolite adsorbs water vapor and its temperature 

rises. This is caused by the relatively wet air which is brought 

into contact with the zeolite. The discharging process will be stud- 

ied in two cases. First, with the diameter of the zeolite particles 

d s = 0 . 002 m. Second, we increase the diameter to d s = 0 . 01 m. 

As an initial condition for the water vapor adsorbed in the ze- 

olite q , the resulting state after the charging process is taken, see 

Fig. 2 . Other initial conditions are set to 

P (ini ) = 10 

5 Pa , (70) 

w 

(ini ) 
w 

= 0 . 00468 , (71) 

T (ini ) 
f 

= 294 . 65 K , (72) 

T (ini ) 
s = 294 . 65 K . (73) 

The boundary conditions have identical form as in the charging 

process, only the numerical values for the temperature and water 

mass fraction are different: 

w 

(D) 
w 

= 0 . 01131 , for x = 0 , (74) 

T (D) 
f 

= 295 . 15 K , for x = 0 . (75) 

The mass water fraction represents the relative humidity of ap- 

proximately 65% at 20 degrees Celsius. At P ( t , 0), we prescribe 

same Neumann boundary condition as in the charging process. The 

flux is set to 

q P · n = v (in f low ) ρ(in f low ) 
f 

= 0 . 311814 kg s −1 m 

−3 , (76) 

The computation time is set to t f inal = 8 h. First, we present com- 

putation results with diameter d s = 0 . 002 . Similarly to the charging 

process, Figs. 6 a–d show the time developments of the water vapor 

adsorbed in the zeolite, the water mass fraction, the fluid tempera- 

ture, and the zeolite temperature, respectively at chosen points. As 

the water vapor is being adsorbed, the temperature of the zeolite 

and consequently the temperature of the fluid steady rise and ap- 

proach toward the maximum, which is approximately 350 K. After 

the adsorption is finished, the system is in the equilibrium, and the 

temperatures start to decrease. In the case of point x 2 = 0 . 11 m, 

the temperature returns to its initial value in approximately two 

hours. These time developments of the temperatures are in agree- 

ment with the time development of the water vapor q in the ze- 

olite (see Fig. 6 a). At all points the water vapor adsorbed in the 

zeolite increases to its equilibrium value 16.81 mol kg −1 and re- 

mains on this level until the end of the computation. In Fig. 6 b, the 

time development of the water mass fraction is depicted, showing 

that for almost 5 h, the air leaving the area is completely dry since 

all water vapor is adsorbed in the zeolite. Only after 4 h the ad- 

sorption on the right side of the computation domain is completed 

and the leaving air starts having a higher mass water fraction. In 

Table 5 , the errors and the experimental orders of convergence are 

presented. It can be observed that all orders of convergence are 
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Fig. 6. Time development of the given primary variables at chosen points during the discharging (wetting) process with d s = 0 . 002 m using the finest mesh (mesh 4). 

Table 5 

Errors and experimental order of convergence of chosen 

variables during the discharging (wetting) process with 

d s = 0 . 002 m. The errors and experimental orders of con- 

vergence (EOC) are defined by Eqs. (58) –(60) . 

T f : 

mesh ID error L 1 error L 2 EOC 1 EOC 2 

1 2.12 · 10 3 1.22 · 10 2 

2 1.15 · 10 3 6.63 · 10 2 0.89 0.88 

3 4.48 · 10 2 2.59 · 10 1 1.36 1.36 

T s : 

mesh ID error L 1 error L 2 EOC 1 EOC 2 

1 2.10 · 10 3 1.21 · 10 2 

2 1.13 · 10 3 6.52 · 10 1 0.89 0.89 

3 4.36 · 10 2 2.52 · 10 1 1.37 1.37 

q : 

mesh ID error L 1 error L 2 EOC 1 EOC 2 

1 1.40 · 10 2 8.10 

2 6.23 · 10 1 3.60 1.17 1.17 

3 2.11 · 10 1 1.22 1.56 1.56 

w w : 

mesh ID error L 1 error L 2 EOC 1 EOC 2 

1 2.04 ·10 −1 1.18 ·10 −2 

2 9.65 ·10 −2 5.57 ·10 −3 1.08 1.08 

3 3.40 ·10 −2 1.96 ·10 −3 1.51 1.51 

around one. In the worst case 0.89, in the best case 1.56. The con- 

vergence is also illustrated in Fig. 7 , where the time development 

of the fluid temperature at different points is depicted. It can be 

observed that the use of a coarse mesh leads to an overestimation 

of the solution. This property can be observed in all time develop- 

ments. The most visible case is at the point x 1 = 0 . 01 m. This over- 

estimation is more significant than the underestimation observed 

during the charging process (see Fig. 5 ). Moreover, the errors dur- 

ing the discharging process are higher in comparison to the errors 

during the charging process. 

In Fig. 8 , the time development of the difference between the 

fluid and zeolite temperature during the discharging process is 

depicted. Two phenomena can be observed. The first one is the 

positive difference ( T f > T s ) in the first hour of the process. This 

is caused by the rapid adsorption of the initial water vapor. A 

closer examination of the data reveals that the initial water vapor 

w w 

= 0 . 00468 immediately decreases everywhere to an approxi- 

mate value w w 

= 10 −5 . The released heat is then transported by 

convection and creates this difference. The other one is the neg- 

ative difference ( T f < T s ), which happened at each point in a dif- 

ferent time. These are caused by the adsorption from the humid 

air which is prescribed by the boundary condition. Similarly to 

the charging process, the difference is the highest (2 K) at the 

left boundary where the boundary condition T f (t, x ) = 295 . 15 K 

fixes the fluid temperature. The temperature difference at the other 

points is at the maximum after approximately 1.5, 3, and 5 h, 

respectively. This time scale is in agreement with the adsorption 

time development. From the time development of the water vapor 

adsorbed in the zeolite ( Fig. 6 a) one can observe that the process 

at the chosen points is the fastest during the negative peaks in 

Fig. 8 . When the adsorption is not in progress, the difference of 

the temperatures is negligible and a local thermal equilibrium can 

be assumed. 

Článek v International Journal of Heat and Mass Transfer .........................

150



10 T. Smejkal, J. Mikyška and R. Fu ̌cík / International Journal of Heat and Mass Transfer 148 (2020) 119050 

Fig. 7. Comparison of the numerical solutions T f during the discharging (wetting) process with d s = 0 . 002 m on different meshes. 

Fig. 8. Time development of the difference in temperatures T f − T s at chosen points during the discharging (wetting) process using the finest mesh (mesh 4). 

Second, we present the results computed using the diameter 

of the zeolite d s = 0 . 01 m. In Figs. 9 a–d, the time developments 

of the water vapor adsorbed in the zeolite, the water mass frac- 

tion, the fluid temperature, and the zeolite temperature, respec- 

tively, are depicted. In comparison to the time developments with 

a smaller diameter, no significant changes are observed. In Table 6 , 

the errors and the experimental orders of convergence are pre- 

sented. In comparison to the values with smaller diameters, the 

errors are lower and the experimental orders of convergence are 

always higher. The minimum value of EOC is 0.99, the maximum 

is 1.59, indicating that that numerical scheme is convergent. In 

Fig. 10 , the time developments of the temperature of the fluid T f at 

different points are presented. Similarly to the discharging process 

with d s = 0 . 002 m, in all time developments, an overestimation of 

the solution on the coarse mesh can be observed. In Fig. 8 , the dif- 

ference of temperatures at chosen points on the finest mesh is de- 

picted. The development has a similar progress. At the beginning, 

the positive differences ( T f > T s ) are observed. Then, the negative 

differences ( T f < T s ) during the adsorption process are detected. At 

the end of the simulation, when the adsorption process is finished, 

the difference of the temperature is negligible. However, in com- 

parison with the setting of d s = 0 . 002 m, one can observe more 
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Fig. 9. Time development of the given primary variables at chosen points during the discharging (wetting) process with d s = 0 . 01 m using the finest mesh (mesh 4). 

Table 6 

Errors and experimental order of convergence of chosen 

variables during the discharging (wetting) process with 

d s = 0 . 01 m. The errors and experimental orders of con- 

vergence (EOC) are defined by Eqs. (58) –(60) . 

T f : 

mesh ID error L 1 error L 2 EOC 1 EOC 2 

1 8.44 · 10 2 4.87 · 10 1 

2 3.97 · 10 2 2.29 · 10 1 1.09 1.09 

3 1.39 · 10 2 8.05 1.51 1.51 

T s : 

mesh ID error L 1 error L 2 EOC 1 EOC 2 

1 8.68 · 10 2 5.01 · 10 1 

2 4.37 · 10 2 2.52 · 10 1 0.99 0.99 

3 1.63 · 10 2 9.40 1.42 1.42 

q : 

mesh ID error L 1 error L 2 EOC 1 EOC 2 

1 1.17 · 10 2 6.74 

2 5.05 · 10 1 2.92 1.21 1.21 

3 1.68 · 10 1 9.71 ·10 −1 1.59 1.59 

w w : 

mesh ID error L 1 error L 2 EOC 1 EOC 2 

1 1.50 ·10 −1 8.66 ·10 −3 

2 6.91 ·10 −2 3.99 ·10 −3 1.12 1.12 

3 2.40 ·10 −2 1.38 ·10 −3 1.53 1.53 

significant differences. With a larger diameter of the particles, the 

heat transfer coefficient has a lower value, and the difference be- 

tween the temperatures is, therefore, larger (approximately by the 

order of ten). The most significant difference is again in the vicinity 

of the left boundary, where the temperature difference is greater 

than 15 K. 

5. Conclusion 

In this work, we presented a two-temperature mathematical 

model of adsorption and desorption of water vapor in the zeo- 

lite 13X. The mathematical model consisted of four balance equa- 

tions and one kinetic equation based on the Linear Driving Force 

model and Langmuir-Freundlich isotherms. As we used the two- 

temperature model, the local thermal equilibrium was not as- 

sumed. The mathematical model was solved using the mixed- 

hybrid finite element method implemented in a numerical library 

NumDwarf. To handle the source/sink terms, the operator splitting 

technique was adopted. The computational study verified conver- 

gence in both charging and discharging processes. The experimen- 

tal orders of convergence were between 1 and 1.5. 

In the computational study, we investigated the behaviour of 

individual temperatures. During the charging process, when hot air 

was brought into contact with moist zeolite, the difference was 

only observed in the first hour of the process. During the discharg- 

ing process, when humid air was brought into contact with dry ze- 

olite, higher differences between the temperatures were observed. 

When the adsorption process was the most rapid, the maximum 

difference was approximately 2 K and was observed in the vicin- 

ity of the boundary. This high value was caused by the Dirichlet 

boundary condition. At other points, the difference was at maxi- 

mum approximately 0.7 K. However, with a parameter adaptation, 

the difference between the temperatures can be more significant. 
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Fig. 10. Comparison of the numerical solutions T f during the discharging (wetting) process with d s = 0 . 01 m on different meshes. 

We showed a computation study of the discharging process with 

an increased value of the diameter of zeolite d s = 0 . 01 m (the orig- 

inal value was d s = 0 . 002 m). The resulting temperature difference 

was approximately ten times larger. The maximum (approximately 

20 K) was observed in the vicinity of the left boundary, where the 

Dirichlet boundary condition was prescribed. 
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We propose a novel and efficient numerical approach for solving the pseudo two-dimensional multiscale model of the Li-ion cell
dynamics based on first principles, describing the ion diffusion through the electrolyte and the porous electrodes, electric potential
distribution, and Butler-Volmer kinetics. The numerical solution is obtained by the finite difference discretization of the diffusion
equations combinedwith an original iterative scheme for solving the integral formulation of the laws of electrochemical interactions.
We demonstrate that our implementation is fast and stable over the expected lifetime of the cell. In contrast to some simplified
models, it provides physically consistent results for a wide range of applied currents including high loads. The algorithm forms a
solid basis for simulations of cells and battery packs in hybrid electric vehicles, with possible straightforward extensions by aging
and heat effects.

1. Introduction

Modern Li-ion batteries possess advantages making them
a popular choice in many different applications. Their light
weight, low self-discharge rate, and performance especially
matter for power storage in hybrid electric vehicles (HEV).
There are ongoing efforts to optimize the control strategy
of the HEV powertrain in order to improve not only the
range of the vehicle, but also the total useful battery capacity
during its lifetime. Mathematical models of Li-ion cells based
on first principles provide insight into the dynamics of the
battery cycling and the information from the computational
simulations can be used during the design of the control
algorithms.

The basic reference for simulating Li-ion cell dynamics is
the isothermal model proposed by Newman and Tiedemann
[1] and Doyle et al. [2]. For the model with thermal effects
included, we refer the reader, for example, to Cai and White
[3], Kumaresan et al. [4], or Gu and Wang [5]. The aging
effects of Li-ion batteries are discussed, for example, by
Ramadass et al. [6, 7] or Ning et al. [8, 9].

Recently, several approximate techniques were success-
fully applied to reduce the computational complexity of these
models. In [10, 11], Subramanian et al. used perturbation
techniques. Model reduction and Chebyshev polynomial
methods were used by Bhikkaji and Söderström in [12]. In
Smith et al. [13], the residue grouping method was used. Cai
andWhite [14] developed a reduced-ordermodel bymeans of
orthogonal decomposition.

In our work, we strive to create a robust yet compu-
tationally efficient algorithm for predicting the state of Li-
ion batteries subject to intense and variable loading over
extended time periods. We adopt the full-order pseudo two-
dimensional model of Li-ion cell dynamics describing ion
diffusion through the electrolyte, charge flow, and the Butler-
Volmer kinetics, as summarized in [15]. We propose a novel
approach to the solution of electrochemical interactions by
means of integral reformulation of the governing equations
and an iterative scheme for their solution. As a result,
our algorithm remains stable for a wide range of applied
currents. The simulations are fast enough to cover the
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Figure 1: One-dimensional representation of the lithium-ion cell.

long term behavior of the battery while still resolving both
the macroscale diffusion processes across the cell as well
as position-dependent microscale dynamics in the porous
material of the electrodes (in contrast to the single-particle
models; see, e.g., [16, 17]).

The paper is structured as follows. In Section 2, we
present the summary of the mathematical model. Section 3
is dedicated to the derivation of the integral solution of
electrochemical interactions, leading to the formulation of
an iterative algorithm. In Section 4, we shortly comment
on the implementation of the algorithm so as to be able
to explain some further ideas. In Section 5, we first use
our model to replicate the study by Subramanian et al. [18]
and Dao et al. [15] and discuss the obtained outcomes.
Further on, we proceed with the analysis of the effect of the
numerical algorithm parameters.We draw conclusions about
the applicability of the proposed approach for long term
simulations.

2. Summary of the Mathematical Model

2.1. Geometrical Setting. As shown in Figure 1, the one-
dimensional representation of the lithium-ion cell computa-
tional domain Ω = [𝑥𝑎, 𝑥𝑑] is divided into three parts such
that Ω = Ω1 ∪ Ω2 ∪ Ω3, where Ω1 = [𝑥𝑎, 𝑥𝑏] is the positive
electrode, Ω2 = [𝑥𝑏, 𝑥𝑐] is the separator, and Ω3 = [𝑥𝑐, 𝑥𝑑] is
the negative electrode. Any single point 𝑥0 ∈ Ω corresponds
to a cross section through the real three-dimensional cell by
the plane 𝑥 = 𝑥0. Neither the area nor the shape of this cross
section are known or needed in the 1D model. All respective
quantities such as the applied current density 𝐼app and the
mass fluxes are calculated per unit cross section area.

In the following text, the quantities corresponding to
the solid electrodes and electrolyte are indexed by 𝑠 and 𝑒,
respectively, and the quantities defined inΩ𝑘 are enumerated
by the appropriate subdomain index 𝑘 ∈ {1, 2, 3}. The values
of all quantities depend on time 𝑡 which lies within the
intervalJ = (0, 𝑡final).
2.2. Diffusion of Li+ in the Electrolyte. Depending on the
mode of operation (charge/discharge), the lithium ions are
extracted (deintercalated) from the porous material of one
electrode, transferred through the electrolyte across the
separator by diffusion, and finally intercalated into the porous
material of the other electrode. Based on [15], the governing
equations for diffusion read

𝜖𝑘 𝜕𝑐𝑒,𝑘𝜕𝑡 = 𝜕𝜕𝑥 (𝐷𝑒𝜏𝑘 𝜕𝑐𝑒,𝑘𝜕𝑥 ) + (1 − 𝑡0+) 𝑎𝑘𝑗𝑘 in Ω𝑘 ×J (1)

for each 𝑘 ∈ {1, 2, 3}. The meanings of the symbols in (1) are
as follows.

𝑐𝑒,𝑘 [molm−3] denotes the concentration of Li+ in the
electrolyte.𝜖𝑘 [1] is the material porosity (void fraction).𝐷𝑒 [m2s−1] is the diffusion coefficient of Li+ in the
electrolyte.𝜏𝑘 [1] is the tortuosity factor of the porous medium
given by the Bruggeman relationship [19] 𝜏𝑘 = 𝜖brugg𝑘𝑘 ,
where 𝜖𝑘 [1] is the porosity of the medium and
brugg𝑘 [1] is the Bruggeman coefficient.𝑡0+ [1] is the transference number of Li+ in the elec-
trolyte.𝑗𝑘 [molm−2s−1] denotes the (de)intercalation flux of
Li+ from the internal surface of the porous material
into the electrolyte per unit surface area (𝑗2 = 0
as no lithium ions are stored in the material of the
separator).𝑎𝑘 [m−1] is the internal surface area of the porous
material per unit volume.

Equation (1) is accompanied by a number of boundary
conditions. First, the lithium ions cannot leave the outer
boundary of the cell which implies𝜕𝑐𝑒,1𝜕𝑥 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=𝑥𝑎 = 𝜕𝑐𝑒,3𝜕𝑥 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=𝑥𝑑 = 0. (2)

The other boundary conditions ensure continuity of the con-
centration in the electrolyte at the interdomain boundaries𝑐𝑒,2󵄨󵄨󵄨󵄨𝑥=𝑥𝑏 = 𝑐𝑒,1󵄨󵄨󵄨󵄨𝑥=𝑥𝑏 ,𝑐𝑒,3󵄨󵄨󵄨󵄨𝑥=𝑥𝑐 = 𝑐𝑒,2󵄨󵄨󵄨󵄨𝑥=𝑥𝑐 , (3)

as well as the continuity of the interdomain concentration
fluxes

𝐷𝑒𝜏2 𝜕𝑐𝑒,2𝜕𝑥 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=𝑥𝑏+ = 𝐷𝑒𝜏1 𝜕𝑐𝑒,1𝜕𝑥 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=𝑥𝑏− ,
𝐷𝑒𝜏3 𝜕𝑐𝑒,3𝜕𝑥 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=𝑥𝑐+ = 𝐷𝑒𝜏2 𝜕𝑐e,2𝜕𝑥 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=𝑥𝑐− .

(4)

The initial conditions are given by𝑐𝑒,𝑘󵄨󵄨󵄨󵄨𝑡=0 = 𝑐0𝑒,𝑘, in Ω𝑘, ∀𝑘 ∈ {1, 2, 3} . (5)

2.3. Diffusion inside the Porous Electrodes. The electrodes are
made of porousmaterial, that is, amixture of void space (filled
with electrolyte) and a solid continuum. At the microscopic
level, the solid matrix is modeled in the form of small spheri-
cal particles releasing (deintercalating) or absorbing (interca-
lating) lithium ions through their surface. Lithium then dif-
fuses through each particle in the radial direction according
to the current concentration distribution.

The material balance for lithium in a single active solid
material particle in the positive or negative electrode is
governed by Fick’s second law in spherical coordinates [3, 15]:𝜕𝑐𝑠,𝑘𝜕𝑡 = 𝐷𝑠𝑟2 𝜕𝜕𝑟 (𝑟2 𝜕𝑐𝑠,𝑘𝜕𝑟 ) in Ωpart,𝑘 × Ω𝑘 ×J (6)
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for each 𝑘 ∈ {1, 3}. The distance from the center of the
spherical particle 𝑟 lies in the intervalΩpart,𝑘 = (0, 𝑅𝑠,𝑘).𝑅𝑠,𝑘 is the radius of the solid particles in the electrodeΩ𝑘.𝑐𝑠,𝑘 [molm−3] is the concentration of lithium in the

particle.𝐷𝑠 [m2s−1] is the diffusion coefficient of lithium in
the particle.

The initial concentration distribution in a particle is given
by

𝑐𝑠,𝑘󵄨󵄨󵄨󵄨𝑡=0 = 𝑐0𝑠,𝑘 in Ωpart,𝑘 × Ω𝑘. (7)

At the center of the particle, the boundary condition

−𝐷𝑠 𝜕𝑐𝑠,𝑘𝜕𝑟 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑟=0 = 0 (8)

imposes zero flux of lithium. On the particle surface, the
flux is equal to the consumption/production rate of Li+ due
to the electrochemical reaction occurring at the solid/liquid
interface; that is,

−𝐷𝑠 𝜕𝑐𝑠,𝑘𝜕𝑟 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑟=𝑅𝑠,𝑘 = 𝑗𝑘. (9)

2.3.1. Scale Coupling. For each 𝑥 ∈ Ω𝑘, the number of spher-
ical particles per unit cross section area and in the range (𝑥,𝑥 + d𝑥) is

d𝑛𝑘 = 1 − 𝜖𝑘 − 𝜖𝑓,𝑘(4/3) 𝜋𝑅3𝑠,𝑘 d𝑥. (10)

The solid matrix occupies a volume fraction 1 − 𝜖𝑘 − 𝜖𝑓,𝑘,
because apart from electrolyte, there can be some amount
of inert material (filler) with the volume fraction 𝜖𝑓,𝑘 [15].
According to (10), the number of spherical particles per unit
volume at 𝑥 ∈ Ω𝑘 is

𝑛𝑘 = 1 − 𝜖𝑘 − 𝜖𝑓,𝑘(4/3) 𝜋𝑅3𝑠,𝑘 . (11)

All such particles are assumed to have the same radial
distribution of concentration 𝑐𝑠,𝑘. In particular, we denote the
concentration at the particle surface as

𝑐𝑠,surf ,𝑘 (𝑥, 𝑡) = 𝑐𝑠,𝑘 (𝑅𝑠,𝑘, 𝑥, 𝑡) . (12)

The total surface area of these particles per unit volume

𝑎𝑘 = 𝑛𝑘4𝜋𝑅2𝑠,𝑘 = 3 (1 − 𝜖𝑘 − 𝜖𝑓,𝑘)𝑅𝑠,𝑘 (13)

is a material property. Its values for some porous materials
can be found in literature [20], allowing the calculation of
the radius of the respective spherical particles 𝑅𝑠,𝑘 from
(13).

2.4. Electrochemical Interactions. Equations (1) and (6) deter-
mine the chemical state of the cell provided that the fluxes 𝑗1
and 𝑗3 are given.The connection between the concentrations
of lithium ions and the respective mass fluxes comes from the
modeling of the electrochemical interactions in the cell which
also allows the calculations of other quantities such as the cell
voltage. Whereas the diffusion equations in Sections 2.2 and
2.3 are readily prepared for numerical solution by standard
tools (e.g., the method of finite differences), the equations
summarized below require nontrivial treatment.

By the end of Section 2.4, the equations do not contain
partial derivatives with respect to 𝑡 and 𝑟. For any function𝑓 :Ω𝑘 ×J → R, 𝑘 ∈ {1, 2, 3}, we therefore simplify the notation𝜕𝑓/𝜕𝑥 to 𝑓󸀠.
2.4.1. Electrical Potential in the Porous Electrodes. The charge
continuity equations in the solid electrodes placed at Ω1 andΩ3 are given by Ohm’s law [15] as

𝜎eff𝑘 𝜙󸀠󸀠𝑠,𝑘 = 𝑎𝑘𝐹𝑗𝑘 in Ω𝑘 ×J, 𝑘 ∈ {1, 3} (14a)

with the boundary conditions

−𝜎eff1 𝜙󸀠𝑠,1 (𝑥𝑎) = 𝐼app, (14b)

−𝜎eff1 𝜙󸀠𝑠,1 (𝑥𝑏) = 0, (14c)

−𝜎eff3 𝜙󸀠𝑠,3 (𝑥𝑐) = 0, (14d)

−𝜎eff3 𝜙󸀠𝑠,3 (𝑥𝑑) = 𝐼app, (14e)

𝜙𝑠,3 (𝑥𝑑) = 0, (14f)

where 𝜙𝑠,𝑘 [V] is the solid phase electrical potential,𝐹 [Cmol−1] is Faraday’s constant,𝐼app [Am−2] is the current density applied to the
electrode (𝐼app > 0 corresponds to charging and 𝐼app <0 to discharging),𝐹𝑗𝑘 [Am−2] denotes the charge flux in terms of Li+
ions from the internal surface of the porous material
into the electrolyte per unit surface area,𝜎eff𝑘 [Sm−1] is the effective electronic conductivity
defined as

𝜎eff𝑘 = (1 − 𝜖𝑘 − 𝜖𝑓,𝑘) 𝜎𝑘, (15)

𝜎𝑘 [Sm−1] is the electronic conductivity.
2.4.2. Electrical Potential in the Electrolyte. Based on [15], the
charge continuity equation in the electrolyte is given by

(𝜅eff𝑘 𝜙󸀠𝑒,𝑘)󸀠 = −𝑎𝑘𝐹𝑗𝑘 + 2𝑅𝑇𝐹 (1 − 𝑡0+)(𝜅eff𝑘 𝑐󸀠𝑒,𝑘𝑐𝑒,𝑘)
󸀠

in Ω𝑘 ×J, 𝑘 ∈ {1, 2, 3}
(16a)
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with the boundary conditions

−𝜅eff1 𝜙󸀠𝑒,1 (𝑥𝑎) = 0, (16b)

−𝜅eff1 𝜙󸀠𝑒,1 (𝑥𝑏) = −𝜅eff2 𝜙󸀠𝑒,2 (𝑥𝑏) = 𝐼app, (16c)

−𝜅eff2 𝜙󸀠𝑒,2 (𝑥𝑐) = −𝜅eff3 𝜙󸀠𝑒,3 (𝑥𝑐) = 𝐼app, (16d)

−𝜅eff3 𝜙󸀠𝑒,3 (𝑥𝑑) = 0, (16e)

𝜙𝑒,1 (𝑥𝑏) = 𝜙𝑒,2 (𝑥𝑏) , (16f)

𝜙𝑒,2 (𝑥𝑐) = 𝜙𝑒,3 (𝑥𝑐) , (16g)

where 𝜙𝑒,𝑘 [V] is the electrical potential in the electrolyte,𝑅 [Jmol−1K−1] is the universal gas constant,𝑇 [K] is the temperature,𝜅eff𝑘 [Sm−1] is the effective ionic conductivity of the
electrolyte given by 𝜅eff𝑘 = 𝜏𝑘𝜅𝑘 that accounts for
the tortuous path of the porous medium, where𝜅𝑘 [Sm−1].

For the reference ionic conductivity 𝜅𝑘, we use the empirical
correlation reported in [15]:

𝜅𝑘 = 4.1253 ⋅ 10−2 + 5.007 ⋅ 10−4𝑐𝑒,𝑘 − 4.7212⋅ 10−7𝑐2𝑒,𝑘 + 1.5094 ⋅ 10−10𝑐3𝑒,𝑘 − 1.6018⋅ 10−14𝑐4𝑒,𝑘, 𝑘 ∈ {1, 2, 3} .
(17)

2.4.3. Butler-Volmer Reaction Kinetics. Lithium is conserved
and its fluxes from the solid particles and into the electrolyte
are both equal to 𝑗𝑘. The charge transfer 𝐹𝑗𝑘 is proportional
to the mass transfer and is subject to Butler-Volmer reaction
kinetics [6, 7, 15, 21] in the form

𝑗𝑘 = 𝛿𝑘 [exp(𝛼𝑎,𝑘𝐹𝑅𝑇 𝜂𝑘) − exp(−𝛼𝑐,𝑘𝐹𝑅𝑇 𝜂𝑘)] ,
𝑘 = 1, 3, (18a)

with

𝛿𝑘 = 𝐾𝑘 (𝑐𝑠,max,𝑘 − 𝑐𝑠,surf ,𝑘)1/2 𝑐1/2𝑠,surf ,𝑘𝑐1/2𝑒,𝑘 . (18b)

The meanings of the symbols in (18a) and (18b) are the
following:

𝐾𝑘 [mol−1/2m5/2s−1] is the reaction rate coefficient,𝛼𝑎,𝑘 and 𝛼𝑐,𝑘 [1] are the anodic and cathodic transfer
coefficients of electrochemical reaction,𝑐𝑠,max,𝑘 [molm−3] is the saturated concentration of Li+
ions in the solid phase,𝜂𝑘 [V] is the intercalation overpotential described as

𝜂𝑘 = 𝜙𝑠,𝑘 − 𝜙𝑒,𝑘 − 𝑈𝑘. (19)

In (19),𝑈𝑘 [V] is the open circuit potential determined by the
following empirical correlations:

𝑈1 = −4.875 + 5.839𝜃1 − 1.507𝜃31 + 0.531𝜃51𝜃1 − 1.005 ,
𝑈3 = 0.15 − 0.10𝜃3 + 0.00778𝜃3 , (20)

where 𝜃𝑘 = 𝑐𝑠,surf ,𝑘/𝑐𝑠,max,𝑘, 𝑘 = 1, 3.
3. Integral Solution of
Electrochemical Interactions

For a given time 𝑡, the flux 𝑗𝑘, 𝑘 ∈ {1, 3}, can be calculated
by the solution of the system of two differential equations
(14a) and (16a) and the algebraic equation (18a) for the
unknowns 𝜙𝑒,𝑘, 𝜙𝑠,𝑘, 𝜂𝑘, and 𝑗𝑘, together with the respective
boundary conditions (see Section 2.4). It turns out that this
set of equations can be transformed into a system of two
ordinary differential equations (ODEs) for 𝜂𝑘 and 𝐽𝑘, where
by 𝐽𝑘 we denote the integratedmass transfer function defined
by

𝐽𝑘 (𝑥) = ∫𝑥
𝑥ℓ,𝑘

𝑗𝑘 (𝜉) d𝜉, ∀𝑥 ∈ [𝑥ℓ,𝑘, 𝑥𝑟,𝑘] , 𝑘 ∈ {1, 3} , (21)

and 𝑥ℓ,𝑘, 𝑥𝑟,𝑘 represent the left and right boundary coordi-
nates ofΩ𝑘, respectively.
3.1. Derivation of theDifferential Equations. In order to derive
the ODE for 𝜂𝑘, we first integrate (14a) with respect to 𝑥 over
the interval (𝑥ℓ,𝑘, 𝑥) ⊂ Ω𝑘, 𝑘 ∈ {1, 3}. Using the boundary
conditions (14b) and (14d), we obtain

𝜙󸀠𝑠,1 = 𝑎1𝐹𝜎eff1 𝐽1 − 𝐼app𝜎eff1 , ∀𝑥 ∈ Ω1, (22a)

𝜙󸀠𝑠,3 = 𝑎3𝐹𝜎eff3 𝐽3, ∀𝑥 ∈ Ω3. (22b)

Similarly, by integrating (16a) for 𝑘 ∈ {1, 2, 3} and using
the boundary conditions (16b), (16c), and (16d), we arrive
at

𝜙󸀠𝑒,1 = −𝑎1𝐹𝜅eff1 𝐽1 + 2𝑅𝑇𝐹 (1 − 𝑡0+) 𝑐󸀠𝑒,1𝑐𝑒,1 , ∀𝑥 ∈ Ω1, (22c)

𝜙󸀠𝑒,2 = 2𝑅𝑇𝐹 (1 − 𝑡0+) 𝑐󸀠𝑒,2𝑐𝑒,2 − 𝐼app𝜅eff2 , ∀𝑥 ∈ Ω2, (22d)

𝜙󸀠𝑒,3 = −𝑎3𝐹𝜅eff3 𝐽3 + 2𝑅𝑇𝐹 (1 − 𝑡0+) 𝑐󸀠𝑒,3𝑐𝑒,3 − 𝐼app𝜅eff3 ,
∀𝑥 ∈ Ω3.

(22e)
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Subtractions of (22c) from (22a) and (22e) from (22b) allow
expressing the derivative of 𝜂𝑘 defined by (19) as

𝜂󸀠1 = 𝑎1𝐹𝐽1 𝜎eff1 + 𝜅eff1𝜎eff1 𝜅eff1 − 𝐼app𝜎eff1 − 2𝑅𝑇𝐹 (1 − 𝑡0+) 𝑐󸀠𝑒,1𝑐𝑒,1− 𝑈󸀠1,
(23a)

𝜂󸀠3 = 𝑎3𝐹𝐽3 𝜎eff3 + 𝜅eff3𝜎eff3 𝜅eff3 + 𝐼app𝜅eff3 − 2𝑅𝑇𝐹 (1 − 𝑡0+) 𝑐󸀠𝑒,3𝑐𝑒,3− 𝑈󸀠3.
(23b)

The ODE for 𝐽𝑘 is given directly by the Butler-Volmer
reaction kinetics (18a) in the form

𝐽󸀠𝑘 = 𝛿𝑘 [exp(𝛼𝑎,𝑘𝐹𝑅𝑇 𝜂𝑘) − exp(−𝛼𝑐,𝑘𝐹𝑅𝑇 𝜂𝑘)] ,
𝑘 = 1, 3. (24)

Differentiating (24) with respect to 𝑥 and plugging in 𝜂𝑘 from
(23a) and (23b), respectively, lead to a single second-order
ODE for 𝐽𝑘. The corresponding boundary conditions follow
from the definition of 𝐽𝑘 given by (21) and evaluation of (22a),
(22b) at 𝑥 = 𝑥𝑏 and 𝑥 = 𝑥𝑐 together with the boundary
conditions given by (14c) and (14e). They read𝐽1 (𝑥𝑎) = 0,

𝐽1 (𝑥𝑏) = 𝐼app𝑎1𝐹,
(25a)

𝐽3 (𝑥𝑐) = 0,
𝐽3 (𝑥𝑑) = −𝐼app𝑎3𝐹, (25b)

and they complete twowell posed problems for the unknowns𝐽1 and 𝐽3.
However, in the following, we use (23a) and (23b),

(24), and (25a) and (25b) and transform them into integral
equations that can be solved iteratively bymeans of numerical
integration.

3.2. ODE System in General Form. Assume a general coef-
ficient form of ODEs ((23a) and (23b)) and (24) in the
following compact form:𝜂󸀠 (𝑥) = 𝛼 (𝑥) 𝐽 (𝑥) + 𝛽 (𝑥) , (26a)

𝐽󸀠 (𝑥) = B (𝜂 (𝑥) , 𝑥) , (26b)

where
B (𝜂 (𝑥) , 𝑥) = 𝛿 (𝑥)

⋅ (exp (𝛼𝑎𝛾 (𝑥) 𝜂 (𝑥)) − exp (−𝛼𝑐𝛾 (𝑥) 𝜂 (𝑥))) , (26c)

for all 𝑥 ∈ (𝑥𝑙, 𝑥𝑟) with the following boundary conditions:𝐽 (𝑥𝑙) = 0, (26d)

𝐽 (𝑥𝑟) = 𝜀, (26e)

where 𝑥𝑙 = 𝑥𝑙,𝑘, 𝑥𝑟 = 𝑥𝑟,𝑘, 𝛼𝑎 = 𝛼𝑎,𝑘, 𝛼𝑐 = 𝛼𝑐,𝑘, the coefficients𝛿 = 𝛿𝑘 are given by (18b), and 𝛼 = 𝛼𝑘, 𝛽 = 𝛽𝑘, and 𝜀 = 𝜀𝑘
correspond to the following domain-defined coefficients
(denoted by the indices 𝑘 = 1 and 𝑘 = 3):

𝛼1 = 𝑎1𝐹𝜎1 + 𝜅eff1𝜎1𝜅eff1 ,
𝛼3 = 𝑎3𝐹𝜎3 + 𝜅eff3𝜎3𝜅eff3 ,
𝛽1 = −𝐼app𝜎1 − 2𝑅𝑇𝐹 (1 − 𝑡0+) 𝑐󸀠𝑒,1𝑐𝑒,1 − 𝑈󸀠1,
𝛽3 = 𝐼app𝜅eff3 − 2𝑅𝑇𝐹 (1 − 𝑡0+) 𝑐󸀠𝑒,3𝑐𝑒,3 − 𝑈󸀠3,
𝛾1 = 𝐹𝑅𝑇,
𝛾3 = 𝐹𝑅𝑇,
𝜀1 = 𝐼app𝑎1𝐹,
𝜀3 = −𝐼app𝑎3𝐹.

(27)

3.3. Derivation of the Integral Equation. Integrating (26a),
(26b), (26c), (26d), and (26e) from𝑥𝑙 to𝑥 ∈ [𝑥𝑙, 𝑥𝑟], we obtain

𝜂 (𝑥) = 𝜆 + ∫𝑥
𝑥𝑙

𝛼 (𝜁) 𝐽 (𝜁) + 𝛽 (𝜁) d𝜁, (28a)

𝐽 (𝑥) = ∫𝑥
𝑥𝑙

B (𝜂 (𝜁) , 𝜁) d𝜁, (28b)

where, in (28a), 𝜆 = 𝜂(𝑥𝑙) is the unknown integration
constant and in (28b) the boundary condition given by (26d)
was already employed.

Equations (28a) and (28b) can be combined into a single
integral equation in two different ways:

𝜂 (𝑥) = 𝜆 + ∫𝑥
𝑥𝑙

𝛼 (𝜁) ∫𝜁
𝑥𝑙

B (𝜂 (𝜉) , 𝜉) d𝜉 + 𝛽 (𝜁) d𝜁, (29)

or

𝐽 (𝑥) = ∫𝑥
𝑥𝑙

B(𝜆 + ∫𝜁
𝑥𝑙

𝛼 (𝜉) 𝐽 (𝜉) + 𝛽 (𝜉) d𝜉, 𝜁) d𝜁. (30)

3.4. Equation for𝜆. The integral equation given by (30) allows
determining the value of the unknown integration constant 𝜆
since the remaining boundary condition given by (26e)
implies

𝜀 = ∫𝑥𝑟
𝑥𝑙

B(𝜆 + ∫𝜁
𝑥𝑙

𝛼 (𝜉) 𝐽 (𝜉) + 𝛽 (𝜉) d𝜉, 𝜁) d𝜁. (31)
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Under the assumption of constant temperature 𝑇, 𝛾
becomes constant in (26c). As a result, (26c) and (31) can be
combined to obtain 𝜀 = Λ𝛼𝑎𝐼𝑎 − Λ−𝛼𝑐𝐼𝑐, (32)

where Λ = exp(𝛾𝜆) denotes the term with the unknown
parameter 𝜆 and the coefficients 𝐼𝑎 and 𝐼𝑐 read as𝐼𝑎

= ∫𝑥𝑟
𝑥𝑙

𝛿 (𝜁) exp(𝛼𝑎𝛾∫𝜁
𝑥𝑙

𝛼 (𝜉) 𝐽 (𝜉) + 𝛽 (𝜉) d𝜉) d𝜁, (33a)

𝐼𝑐
= ∫𝑥𝑟
𝑥𝑙

𝛿 (𝜁) exp(−𝛼𝑐𝛾∫𝜁
𝑥𝑙

𝛼 (𝜉) 𝐽 (𝜉) + 𝛽 (𝜉) d𝜉) d𝜁. (33b)

If 𝛼𝑎 = 𝛼𝑐, (32) is easily resolved by

Λ𝛼𝑎 = Λ𝛼𝑐 = 𝜀 + √𝜀2 + 4𝐼𝑎𝐼𝑐2𝐼𝑎 ; (34a)

that is,

𝜆 = 1𝛾 ln(𝜀 + √𝜀2 + 4𝐼𝑎𝐼𝑐2𝐼𝑎 ). (34b)

In general, (32) is a highly nonlinear equation that needs to
be solved numerically.

3.5. Iterative Scheme for Solving the Integral Equation. We
propose the following iterative scheme for solving the integral
equation given by (30):𝐽𝑛+1 (𝑥)

= ∫𝑥
𝑥𝑙

B(𝜆𝑛 + ∫𝜁
𝑥𝑙

𝛼 (𝜉) 𝐽𝑛 (𝜉) + 𝛽 (𝜉) d𝜉, 𝜁) d𝜁, (35)

𝐽𝑛+1 (𝑥) = (1 − 𝜔) 𝐽𝑛 (𝑥) + 𝜔𝐽𝑛+1 (𝑥) , (36)

where 𝜆𝑛 is the solution of (32) which has to be updated at
every iteration step for given 𝐽𝑛, 𝑛 = 0, 1, 2, . . ., and 𝜔 ∈ (0, 1]
is a relaxation coefficient that serves as a tuning parameter
allowing control of the convergence of the iteration scheme.
Note that, with values of 𝜔 close to 1, the iterative scheme
given by (35) diverges rapidly because of the exponential
functions in (26c). As the initial guess in (35), we choose𝐽0 ≡ 0 in the first call to the iterative solver and the previously
calculated value of 𝐽 in the subsequent calls. The iterative
process is terminated when the norm of 𝐽𝑛+1 is below a given
threshold 𝜗. The values of 𝜔 and 𝜗 are discussed further in
Section 5.2.

3.6. Computational Algorithm for Solving the System of ODEs.
Let us summarize the algorithm that allows computing the
electrolyte and the solid phase electrical potentials and the
respective charge fluxes. The steps of the computational
algorithm are as follows:

(1) In the given time step, use the prescribed profiles of𝑐𝑒,𝑘 and 𝑐𝑠,surf ,𝑘 and the value of 𝐼app to solve (26a),
(26b), (26c), (26d), and (26e) using the iteration
scheme given by (35) to obtain the integrated charge
fluxes 𝐽1 and 𝐽3.

(2) Compute the intercalation overpotentials 𝜂1 and 𝜂3
using (28a).

(3) Compute the fluxes 𝑗1 = 𝐽󸀠1 and 𝑗3 = 𝐽󸀠3 from (26b);
that is, 𝑗1(𝑥) = B(𝜂1(𝑥), 𝑥), and 𝑗3(𝑥) = B(𝜂3(𝑥), 𝑥),
respectively.

(4) Compute 𝜙𝑠,3 by integrating (22b) and using the
boundary condition given by (14f).

(5) Compute 𝜙𝑒,3 by integrating (22e) and using the
boundary condition that follows from (19) as𝜙𝑒,3 (𝑥𝑐) = 𝜙𝑠,3 (𝑥𝑐) − 𝜂3 (𝑥𝑐) − 𝑈3 (𝑥𝑐) . (37)

(6) Compute 𝜙𝑒,2 by integrating (22d) and using the
boundary condition given by (16g).

(7) Compute 𝜙𝑒,1 by integrating (22c) and using the
boundary condition given by (16f).

(8) Compute 𝜙𝑠,1 by integrating (22a) and using the
boundary condition that follows from (19) as𝜙𝑠,1 (𝑥𝑏) = 𝜙𝑒,1 (𝑥𝑏) − 𝜂1 (𝑥𝑏) − 𝑈1 (𝑥𝑏) . (38)

(9) The value of 𝜙𝑠,1(𝑥𝑎) represents the external apparent
voltage of the cell.

4. Implementation of the
Numerical Algorithm

There are two diffusion processes on different time and spatial
scales in themodel.They are both solved by the implicit Euler
scheme of the finite difference method [22] with generally
different time steps. In Ω, (1) is solved on a grid of 𝑁
uniformly spaced nodes 𝑥0, . . . , 𝑥𝑁−1 and the positions of the
individual grid nodes determine their correspondence to the
domainsΩ𝑘, 𝑘 ∈ {1, 2, 3}. This grid is also used for numerical
integration in the algorithm described in Section 3. For each
node 𝑥𝑖 ∈ Ω𝑘, 𝑘 ∈ {1, 3}, another mesh of 𝑀 nodes exists
that discretizes the interval [0, 𝑅𝑠,𝑘], where (6) is solved. The
algorithm uses multiple time scales to update the individual
quantities. It carries out the diffusion in the solid particles for
each 𝑥𝑖 with a constant time step Δ𝑡. After a given number of
time steps, the integral solver is called, which updates the val-
ues of 𝑗𝑘 for each 𝑥𝑖. For the time period between the updates
of 𝑗𝑘, the macroscopic diffusion in the electrolyte governed
by (1) and the microscopic diffusion in the spherical particles
governed by (6) are completely independent. This allows a
suitable multiple of Δ𝑡 to be used as the time step for the
diffusion in the electrolyte.

5. Simulation Results

In this section, we demonstrate the capabilities of our algo-
rithm and investigate its behavior depending on the settings
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Table 1: Model parameters based on literature values [15, 18].

(a) Global parameters

Parameter Unit Value𝑡0+ [1] 0.363𝐹 [Cmol−1] 96487𝑇 [K] 298.15𝑥𝑎 [𝜇m] 0𝑥𝑏 [𝜇m] 80𝑥𝑐 [𝜇m] 105𝑥𝑑 [𝜇m] 193𝐷𝑒 [m2 s−1] 7.5 × 10−10
(b) Domain-specific parameters

Parameter Unit Positive electrode Ω1 Separator Ω2 Negative electrode Ω3𝑘 1 2 3𝜎𝑘 [Sm−1] 100 100𝜖𝑓,𝑘 [1] 0.025 0.0326𝜖𝑘 [1] 0.385 0.724 0.485
brugg𝑘 [1] 4 4 4𝛼𝑎,𝑘 [1] 0.5 0.5𝛼𝑐,𝑘 [1] 0.5 0.5𝑐𝑠,max,𝑘 [kmolm−3] 51.554 30.555𝑅𝑠,𝑘 [𝜇m] 2 2𝐾𝑘 [mol−0.5m2.5 s−1] 2.3444 × 10−11 5.0307 × 10−11𝐷𝑠,𝑘 [m2 s−1] 1 × 10−14 3.9 × 10−14𝑐0𝑠,𝑘 [kmolm−3] 0.4955 ⋅ 𝑐𝑠,max,1 0.8551 ⋅ 𝑐𝑠,max,3𝑐0𝑒,𝑘 [kmolm−3] 1 1 1

of the numerical solver parameters. For all simulations, we
use the model parameters taken from [15, 18], as summarized
in Table 1.

5.1. Single Discharge Cycle. We compare the results of our
algorithm to those described in [15, 18]. In Figure 2(a), the
evolution of cell voltage during one discharge cycle with low
discharge currents (0.5C, 1C) is shown. Our results coincide
almost completely with the simulations using the full-order
finite difference model by Subramanian et al. [18]. There is
also a fair agreement with the results of the simplified and
reducedmodel proposed byDao et al. [15].Thenotable excep-
tion is the initial part of the evolutionwhereDao et al. observe
no voltage drop because of loading.

The situation changes for higher discharge currents (2C,
3C, and 4C), as plotted in Figure 2(b). In this case, the results
of the simplified model are completely different from ours.
Again, the simplified model does not account for immediate
voltage drop due to an increased load. On the other hand,
the voltage readings at 𝑡 = 0 based on our model form an
almost perfectly linear dependence on the applied current, as
can be seen in Figure 3. This is in correspondence with the
usual representation of battery cells in DC electrical circuits
where a constant internal resistance is considered.

The above arguments indicate that the reduced model
ceases to be valid for higher currents while our proposed

model continues to provide expected and consistent results
(see also the model comparison in [17]). Unfortunately, the
results of the full-order model from [18] are not available for
currents above 1C, although the authors state that they are
able to simulate such situations. The insufficient information
contained in the reduced model can also be demonstrated on
Li+ concentration profiles in the electrolyte. Significant differ-
ences occur even for low currents, as can be seen in Figure 4.
In Figure 5, the concentration profile comparison with
another implementation of the full-order model [3] is pro-
vided. Qualitatively, the agreement is satisfactory. However,
completematch of the curves could not be achieved due to the
lack of information about the model parameters in [3].

5.2. Properties of the Numerical Solver. We are interested
in the influence of the numerical solver parameters on the
accuracy and speed of the simulation. Several tests were
performed, involving the parameters explained in Section 4.
As the test vehicle, the voltage curve of a single discharge cycle
with various values of the applied current was used.

(i) We tested several grid resolutions in the spatial
domain Ω, ranging from 𝑁 = 20 to 𝑁 = 800.
For each value of 𝑁, uniform grids from 𝑀 = 20
to 𝑀 = 400 were utilized for diffusion inside the
spherical particles. For the 1C applied current and𝑀
fixed, the solution is almost independent of the value
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Figure 2: Cell voltage evolution during one deep discharge cycle. (a) Discharge currents 0.5C and 1C; comparison of our results (thick solid
lines in the background) with Dao et al. ([15], dashed lines) and Subramanian et al. ([18], dotted lines). (b) Discharge currents 2C, 3C, and
4C; comparison of our results (thick lines) with Dao et al. ([15], thin lines). The same line styles correspond to the same discharge current.
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Figure 3:The almost perfectly linear dependence of the cell voltage on the applied current.The solid line connects the subsequent data points;
the dashed line connects the first and the last point.

of 𝑁 provided that 𝑁 ≥ 50. For different values of𝑀, there are slight differences mostly in the final part
of the voltage curve, as demonstrated in Figure 6. As𝑀 increases, the differences between the subsequent
cases become smaller, which suggests convergence
of the numerical method. No rigorous convergence
tests (such as measuring the experimental order of
convergence [23]) were performed, though. With
higher applied currents, the value of𝑁 also affects the
shape of the voltage curve. For the 2C applied current,
the differences in the results become negligible for
any combination of 𝑀 and 𝑁 satisfying 𝑀 > 200,𝑁 > 200.
The simulation of the whole 1C discharge cycle with𝑀 = 𝑁 = 100, Δ𝑡 = 10−1 s, 𝜔 = 0.05, and 𝜗 = 10−13
can be performed in less than 10 seconds on a single
core of an Intel i7-6700K@ 4GHzCPU, which is 350x

faster than the real discharge process on average. Our
computational tests indicate that decreasing𝑀 and𝑁
below approximately 50 nodes (and losing accuracy as
seen in Figure 6) is not necessarily beneficial for the
computational time.

(ii) As explained in Section 4, the integral solver need
not be called in every time step. We performed some
computations with a fixed (and unnecessarily small)
time step Δ𝑡 = 10−3 s.The integral solver was set to be
called in the intervals𝑚⋅Δ𝑡, for several different values
of𝑚 ∈ N. In addition, the diffusion in electrolyte was
also solved using the time step 𝑚 ⋅ Δ𝑡. All the results
were virtually identical. The numbers of iterations of
the integral solver for all these cases are summarized
in Figure 7. As expected, the number of iterations in
bothΩ1 andΩ3 is higher when the solver is called less
frequently because the previous solution is used as the
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Figure 4: Comparison of the spatial profiles of 𝑐𝑒 at selected time levels. Thick lines represent our results, thin lines are the results from [15].
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Figure 5: Comparison of the spatial profiles of 𝑐𝑒 at the end of 1C
discharge cycle (𝑡 = 3500 s). The solid line represents our results;
the thick dashed line is the result from [3].

initial guess for the next iteration. In fact, calling the
solver in long time steps brings little computational
time savings, as demonstrated in Figure 8.

(iii) Next, the influence of the relaxation parameter 𝜔
was investigated. The maximum value of 𝜔 sufficient
for the convergence of the integral solver depends
on the applied current and other settings (e.g., the
approximate bounds are 𝜔 < 10−1 for 1C discharge

and 𝜔 < 2 × 10−3 for 4C discharge). However,
once such value is found, it is undesirable to further
decrease𝜔 as it only leads to prolonged computational
times. Provided that the integral solver converges, its
accuracy is only controlled by the value of 𝜗 and is
independent of the setting of 𝜔.

For long term simulations with other included effects
such as battery aging, the basic version of the algorithm
has to be stable over extended time periods. We performed
a stability test by simulating over 1000 constant current
charge/discharge cycles in the prescribed voltage range. The
results in Figure 9 testify that the algorithm not only exhibits
excellent stability, but also allows long simulations as its
computational time is many hundreds of times shorter than
the real duration of the simulated processes.

6. Conclusion

We have developed an efficient numerical algorithm for the
solution of the full-order version of the well known model of
Li-ion cell dynamics, as used by [15, 18]. For low to moderate
applied currents, the obtained simulation results are in good
agreement with the studies performed in both [15, 18]. For
higher discharge rates, our algorithm proves to maintain
physically consistent behavior in contrast to the simplified
model by [15]. Moreover, its implementation is fast and
stable enough to enable cycling simulations over the expected
lifetime of the cell. These properties justify the choice of
the full-order model for our ongoing efforts to simulate the
behavior of both individual cells and battery packs installed in
hybrid electric vehicles.The proposed numerical algorithm is
a convenient basis for such efforts, as it allows straightforward
generalizations in order to incorporate heat effects and aging
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Figure 6:The voltage curves for one 1C discharge cycle in simulations using different mesh resolutions for the discretization of the spherical
particles. The marked region of the plot is zoomed in to better illustrate the differences. 𝑁 = 100, Δ𝑡 = 10−1 s, 𝜔 = 0.05, and 𝜗 = 10−13.
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Figure 7: The number of iterations of the integral solver depending on the frequency of its calls. Discharge current 1C: 𝑁 = 100,𝑀 = 50,Δ𝑡 = 10−3 s, 𝜔 = 0.05, and 𝜗 = 10−13.
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phenomena in the scope of the models found, for example, in
[3, 6–9].
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PART 1 DISPERSIVITY IN SOIL AND THE UP-MOST
GROUNDWATER OF GEOLOGIC FORMATIONS

15.1 INTRODUCTION

This section focuses on dispersion, a primary process that contributes to the trans-
port of dissolved chemicals (solutes) in porous media. The specific porous medium
that is of focus is the upper water-bearing zones of subsurface geologic formations.
This part of the subsurface is bounded by the ground surface as the upper boundary,
where the intergranular spaces of the soil are only partially filled with water with
the rest of the pore spaces occupied by air. This zone is referred to as the unsatu-
rated, partially saturated or vadose zone of the aquifer. When water, the wetting fluid,
and air, the nonwetting fluid, occupy the same pore space, the surface tension at the
water/air interfaces results in the water pressure to be less than the air pressure (neg-
ative gauge pressure). The bottom boundary of the unsaturated zone below which the
pores are filled with water is the water table. In the absence of fluid interfaces, the
water pressure is higher than atmospheric pressure (positive gauge pressure). This
aquifer zone is referred to as the saturated zone. When water-soluble chemicals enter
unsaturated or saturated zones of aquifers, they are transported through two primary
mechanisms, namely advection and dispersion. The process of advection that is a
result of water flow was discussed in Chapter 11. A second process that contributes
to the transport of dissolved chemicals both in the unsaturated and saturated zones of
aquifers is associated with hydrodynamic mixing, resulting from the velocity varia-
tions that occur at the microscopic pore scale. This process is parameterized through
a relationship that contains the pore-water velocity and a parameter that is referred
to as dispersivity. In most practical field situations, the dispersivity cannot be mea-
sured at the pore scale. The dispersivity values that are estimated from field-scale
observations or tracer tests depend on the spatial variability of soil characteristics in
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space and the scale of the measurement. Hence, the dispersivity is considered to be
scale-dependent.

The outline of the material to be presented is as follows. The physical process
that contributes to hydrodynamic dispersion and how the process is parameterized at
the macroscopic scale is reviewed. A summary of existing knowledge on the scale
dependence of dispersivity is presented. This will be followed by a discussion on how
the parameter is estimated in the field using various field testing methods. Finally, two
example applications will be presented to demonstrate how this process is modeled.

15.2 TRANSPORT PROCESS: DIFFERENTIAL ADVECTION

Consider two fluids of equal viscosity and equal density. One of the fluids is displacing
the other one from a porous medium. Initially, also assume that the flow is one-
dimensional. The mean position of the front of the second fluid will evolve according
to the mean advective velocity. However, as the displacement progresses, both fluids
will mix due to diffusion and mechanical dispersion.

Mechanical dispersion is the tendency for fluids to spread out from the flow lines
that they would be expected to follow according to the advective hydraulics of the flow
system. This spreading process results from microscopic velocity variations, causing
fluid particles to move at various velocities through the tortuous paths of the medium.
There are three basic mechanisms producing these pore-scale velocity variations: (1)
the variability in pore lengths, which causes fluid elements starting at a given distance
from each other and proceeding at the same velocity not to remain the same distance
apart, (2) friction along soil grains and viscous shear forces, yielding a smaller veloc-
ity at the border of a pore, and a maximum velocity at its center, and (3) the variability
in pore sizes, which results in a variability of pore-scale velocity. Mechanical disper-
sion is a nonsteady and irreversible process, as initial fluid distributions cannot be
recovered by reversing the flow direction.

Figure 15.1 describes the classical laboratory column experiment used to deter-
mine mechanical dispersion. Steady-state flow is established in a column packed
with a homogeneous granular medium. A nonreactive tracer at concentration C0
[ML−3] is continuously introduced at the upstream end of the column from time
t0 [T]. If the column is initially solute-free, the tracer input can be represented
as a step-function (Figure 15.1b). The relative concentration C/C0 [−] of the col-
umn outflow is plotted as a function of time (Figure 15.1c). This type of curve is
called a breakthrough curve. If there is no mixing of any sort, the plot of C/C0 is
a step change from 0 to 1 at t = tm, where tm corresponds to advective transport
through the column. If the only mixing process taking place is molecular diffusion,
sharp concentration gradients will be smoothened out and the plot of C/C0 will
slightly spread. In real situations, mechanical mixing will cause a significantly larger
spreading of concentration distributions. An early breakthrough will be observed for
t � tm as a result of microscopic velocities larger than the mean velocity. Recip-
rocally, the concentration distribution will also exhibit a long tail for t � tm due
to fluid particles moving along slow-velocity flow lines. When diffusion can be
neglected, the plot of C/C0 is therefore a representation of the pore-scale velocity
distribution.
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FIGURE 15.1 One-dimensional column experiment: (a) Sketch of the column device;
(b) step-function input of tracer; and (c) Relative tracer concentration at column outlet and
the effect of advection, diffusion, and dispersion. (After Freeze, A.R. and Cherry, J.A. 1979.
Groundwater, Upper Saddle River, Prentice Hall, NJ.)

When the transport problem is multidimensional, even if the flow system remains
one-dimensional, a solute plume originating from a point source will disperse both lon-
gitudinally and transversely to mean flow direction. Transverse dispersion is caused
by the fact that the flow paths can split and branch out to the side to bypass soil grains
as a fluid flows through a porous medium. This will occur even in the laminar flow
conditions that are prevalent in groundwater flow.

15.3 TRANSPORT THEORY

15.3.1 HYDRODYNAMIC DISPERSION AT THE MICROSCOPIC PORE SCALE

As the effect of dispersion is similar to that of diffusion, the dispersive solute flux is
classically represented using a diffusion-like or Fickian law:

Jm = −θDm∇C, (15.1)

where Jm [ML−2T−1] is the dispersive solute mass flux in direction, θ [−] is the
volumetric water content, and Dm [L2T−1] is a fictitious diffusion coefficient called
mechanical dispersion. As mechanical dispersion is mathematically analogous to dif-
fusion at the microscopic scale and as both processes cannot be separated from each
other in flowing groundwater, they are usually combined into a single parameter called
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hydrodynamic dispersion coefficient:

D = Dm + Dd, (15.2)

where Dd [L2T−1] an effective diffusion coefficient. In a three-dimensional system,
the hydrodynamic dispersion coefficient is a second-order tensor that takes the form

D =
⎡
⎣Dxx Dyx Dzx

Dxy Dyy Dzy
Dxz Dyz Dzz

⎤
⎦ , (15.3)

In a uniform flow field, if the principal directions of the dispersion tensor are aligned
with the principal directions of the velocity flow field, the dispersion coefficient tensor
can be reduced to

D =
⎡
⎣DL 0 0

0 DTH 0
0 0 DTV

⎤
⎦ . (15.4)

where DL [L2T−1] is a longitudinal hydrodynamic dispersion coefficient, and DTH and
DTV [L2T−1] are horizontal and vertical transverse hydrodynamic dispersion coeffi-
cients, respectively. When horizontal and vertical transverse dispersion coefficients
are equal, one defines DT = DTH = DTV.

The relative contribution of mechanical dispersion and diffusion to solute transport
is evaluated using Peclet numbers. A Peclet number is a dimensionless number that
relates the effectiveness of mass transport by advection to the effectiveness of mass
transport by diffusion or dispersion. Peclet numbers have the general form

Pe = vd

Dd
or Pe = vL

DL
.

v = q/θ[LT−1] is the average pore-water velocity and q [LT−1] is the specific dis-
charge of water through the porous medium, or the Darcy velocity. d [L] is a
characteristic grain size and L [L] is a characteristic transport distance. For low Peclet
numbers, DL and DT are both equal to the effective diffusion coefficient. At larger
Peclet numbers, longitudinal and transverse coefficients of hydrodynamic dispersion
are found to depend strongly on the average pore-scale water velocity. The exact rela-
tionship between pore-scale dispersion and velocity can obtained from theoretical
considerations for simple or hypothetical pore systems (Saffman, 1959). Except in
the case of very simple conceptual models, one can generally find that the coefficients
of hydrodynamic dispersion are linearly related to velocity

DL = Dd + αLv, (15.5a)

DTH = Dd + αTHv, (15.5b)

DTV = Dd + αTVv, (15.5c)
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where αL, αTH, and αTV [L] are characteristic lengths called longitudinal dispersivity,
horizontal transverse dispersivity, and vertical transverse dispersivity, respectively.
Since dispersivities quantify mechanical dispersion resulting from pore-scale velocity
variations, they are characteristic properties of a medium. Field-studies have shown
that Equations 15.5a through 15.5c are also valid at large scale, for typical groundwater
flow conditions. For example, Klotz et al. (1980) investigated a more general relation
DL = AvB + Dd and found that exponent B should be close to 1. They also showed
the dependence of dispersivity to soil sedimentological properties.

Equations 15.5a through 15.5c have been shown to accurately model dispersion
in saturated porous media and for a stationary flow in unsaturated media. In transient
conditions, however, the relationship between hydrodynamic dispersion coefficients
and velocity becomes more complicated. In unsaturated media, the water content of
the soil changes with the water flux. Hence, the structure of the water-filled pore
space also changes with the water flux. The flow field, and therefore the distribution
of pore velocities, depends on the saturation of the medium (Flury et al., 1994). As a
consequence, dispersivity coefficients are strongly impacted by the volumetric water
content. Usually, dispersivity is found to increase when the water content decreases as
a result of the larger tortuosity of solute trajectories and a disconnection of continuous
flow paths (Vanclooster et al., 2006). In some cases, especially when the activation
of macropores significantly enhances pore-water variability, dispersivity is found
to increase with volumetric water content. Currently, there is no unique validated
theoretical model available for dispersivity in transient unsaturated flow.

15.3.2 GOVERNING EQUATIONS

Combining advective flux and Fickian hydrodynamic dispersive flux, and applying
the principle of mass conservation over a representative elementary volume of soil
yields

∂θC

∂t
= ∇ · (θD · ∇C − C · q(θ)), (15.6)

where the specific discharge of water through the porous medium depends on the
volumetric water content of the medium. Equation 15.6 is the governing equation for
solute transport in unsaturated porous media. It is usually referred to as the advection–
dispersion equation (ADE) or the convection–dispersion equation. The initial and
boundary value problem obtained by combining the above second-order PDE with the
initial concentration distribution in the medium and appropriate boundary conditions
is solved to obtain space–time distributions of solute concentrations. It must be noted
that specific discharge and volumetric water content to be used in Equation 15.6 must
be obtained by separately solving the unsaturated flow equation.

In unsaturated medium, especially at low water content, the liquid phase is not
fully connected, and therefore not fully participating to the flow. In such a situation,
Equation 15.6 must be augmented by a sink term that accounts for mass exchange by
diffusion toward stagnant zones. This type of model is usually referred to as a mobile–
immobile model, or a two-region model (Coats and Smith, 1964; van Genuchten and
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Wierenga, 1978).

∂θmCm

∂t
+ ∂θimCim

∂t
= ∇ · (θmD · ∇Cm − Cm · q(θm)), (15.7)

where θm [−] and θim [−] are the volumetric fraction of mobile and immobile water,
respectively. Cm [ML−3] and Cim [ML−3] are solute concentrations in the mobile
and immobile zone respectively. In this case, D refers to hydrodynamic dispersion in
the mobile zone. As an additional unknown appears in Equation 15.7, an additional
relationship is required to solve the problem. Usually, it comes from the assumption
of linear nonequilibrium or rate-limited mass transfer (Coats and Smith, 1964)

∂Cim

∂t
= ω(Cm − Cim), (15.8)

where ω [T−1] is a mass transfer rate coefficient (see Part 2). A one-dimensional
diffusion model can also be used (Rao et al., 1980). Breakthrough curves computed
from Equation 15.7 are characterized by a significant tailing and longer times to reach
a unit relative concentration as a result of slow diffusion exchange of solutes between
the mobile and the immobile zone.

15.3.3 HYDRODYNAMIC DISPERSION AT THE MACROSCALE

The traditional approach to modeling transport in natural formations is to assume that
the advection–dispersion equation also holds at large scale. However, field investiga-
tions show in a consistent manner that the values of dispersion coefficients derived
under laboratory conditions do not apply to large scale transport. Whereas typical val-
ues of dispersivity from column experiments range between 0.01 and 0.1 m, values
of macroscopic dispersivity (or macrodispersivity) are in general three to four orders
of magnitude larger (Gelhar et al., 1992; Lallemand-Barres and Peaudecerf, 1978). It
has also been widely observed that field-scale dispersion coefficients increase with
distance and with time (Sauty, 1980).

The main key to understanding this scale effects is heterogeneity. Dispersion is an
advective process, as it is caused by variations in fluid velocity. However, variations in
fluid velocity do not only take place at the pore scale, but also occurs at larger scales,
ranging from macroscopic to megascopic. At the field scale, commonly encountered
geological structures influence contaminant transport drastically, leading to velocity
variations over several orders of magnitude. This includes the effects of stratifica-
tion and the presence of lenses with higher or lower permeability. At the megascopic
scale, differences between geologic formations also cause nonideality in solute trans-
port. As the flow path increases in length, a solute plume can encounter greater and
greater variations in the aquifer, causing the variability of the velocity field to increase.
Because dispersivity is related to the variability of the velocity, neglecting or ignor-
ing the true velocity distribution (i.e., by replacing the heterogeneous medium by an
equivalent homogeneous one) must be compensated for by a corresponding higher
apparent (or effective) dispersivity, leading to what is commonly called the scale
effect of dispersion.
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15.3.4 UPSCALING MODELS FOR DISPERSION COEFFICIENTS

During the past three decades, a number of theoretical studies have been carried out to
describe field-scale dispersive mixing as a function of soil heterogeneity and develop
upscaling methods for the estimation of macrodispersivities. These upscaling methods
can usually be categorized into deterministic or stochastic methods.

Deterministic upscaling methods require the spatial variability of the hydraulic
conductivity of the soil to be fully characterized. Flow and transport are solved for
a given set of initial and boundary conditions, either using analytical or numeri-
cal methods. Macroscopic mixing properties of the heterogeneous medium are then
obtained by assuming that the solute plume is migrating in an equivalent homogeneous
medium. Historically, deterministic upscaling models turned out to be mostly applied
to compute macrodispersion coefficients of perfectly stratified aquifers (Berentsen,
2005, 2007; Guven et al., 1984; Marle et al., 1967; Mercado, 1967).

The idea behind stochastic models is that soil properties cannot be practically fully
characterized. To a certain extent, the hydraulic conductivity exhibits random patterns,
which result in a statistical uncertainty of concentration distributions. Stochastic anal-
ysis enables the variability in flow and transport to be related to the variability and
the spatial structure associated to hydraulic properties of the heterogeneous medium
considered. Let us define Y as the natural logarithm of the hydraulic conductivity
K , and assume that Y is normally distributed. This assumption accommodates the
large hydraulic variations that can be found in the field and excludes negative val-
ues, which is consistent with the physical requirement that permeability is positive.
The distribution of Y is fully characterized by its mean and its covariance function.
The covariance function describes the variability of Y , based on two parameters: The
variance σ2

Y [−] and the correlation length λ [m]. The variance is a measure of the
degree of variability of Y , whereas λ quantifies its spatial variability. A large value of
λ indicates that Y values are correlated over large distances. On the contrary, a small
value of λ indicates that there is no particular spatial structure for Y . λ can therefore
be understood as a characteristic length of heterogeneity.

Stochastic upscaling theories are found to be attractive since they allow the
estimation of macrodispersion coefficients based on a statistical description of
soil heterogeneity. They also allow the demonstration of the scale-dependence of
macrodispersion coefficients. For large scale, stochastic theories usually predict the
convergence of macrodispersion coefficients toward constant asymptotic values. For
example, the asymptotic value of longitudinal macrodispersivity α∗

L for a saturated
isotropic medium with αL � λ is given by (Dagan, 1984; Gelhar and Axness, 1983)

α∗
L(∞) = σ2

Y
λ

γ2
, (15.9)

where γ [−] is a flow factor accounting for the dependency of effective permeability on
dimensionality. In two-dimensional situations, γ = 1, whereas in three-dimensional
situations, γ = exp(σ2

Y/6). It must be noted that Dagan (1984) states that γ should
be kept equal to 1 in all situations. Equation 15.9 shows that macrodispersivity is
directly linked to the structure of the log-hydraulic conductivity field, and increases
when the variability of Y increases. Similar analytical expressions can be obtained
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for transverse macrodispersivity α∗
T

α∗
T (∞) = σ2

Y
αL + 3αT

8
(2D), (15.10a)

α∗
T (∞) = σ2

Y
αL + 4αT

15γ2
(3D), (15.10b)

where Equations 15.10a and 15.10b are applicable to two-dimensional (2D) and
three-dimensional (3D) plumes, respectively. As for longitudinal macrodispersivity,
transverse macrodispersivity is thus found to depend on the dimensionality of the
problem considered. Equations 15.10a and 15.10b also show that when local mixing
can be neglected, heterogeneity does not produce any macroscale transverse spread-
ing. Gelhar and Axness (1983) have computed exact expressions for α∗

L and α∗
T under

various conditions. Time-dependent analytical solutions of α∗
L in two- and three-

dimensional isotropic media are given by Dagan (1988). Other authors have derived
analytical expressions in other specific cases (see the reviews by Dagan, 1989; Gel-
har, 1993; Rubin, 2003). Stochastic theories are typically limited to σ2

Y � 1 and to
situations where λ is much smaller than the scale of the problem.

The authors have also applied stochastic methods to situations where hydraulic
conductivity is not log-normally distributed. Rubin (1995) and Stauffer and Rauber
(1998) propose analytical expressions for macrodispersion coefficients in aquifers
made of two materials of different hydraulic conductivity. Stochastic methods have
also been applied to situations where heterogeneity cannot be characterized using a
single finite correlation scale (Di Federico and Neuman, 1998; Rajaram and Gelhar,
1995; Zhan and Wheatcraft, 1996).

Most of the results presented above are related to solute transport in saturated
heterogeneous media. In the vadose zone, the variability in water saturation usually
contributes to enhance the variability in water velocity, and therefore solute spreading
(Russo, 1998). However, it has been shown that macrodispersion coefficients for
solute transport in unsaturated soils characterized by strong stratification are usually
smaller than saturated values, especially at low water content (Harter and Zhang,
1999).

15.4 ESTIMATION OF TRANSPORT PARAMETERS

Although the theoretical studies reported in previous section have generated some
important answers to key questions regarding scale effects, the estimation of disper-
sivities from the practitioner’s point of view still faces a lot of difficulties. Stochastic
upscaling methods for dispersivities require a significant amount of data to deter-
mine the statistical characteristics of hydraulic conductivity variations for a given
site. Considering the costs of field investigation, it is generally rare to find a site that
has enough data points for this kind of statistical evaluation.

Currently, the only practically viable method to obtain a priori estimates of disper-
sivities is by means of empirical approaches, which are based on regression curves
fitted on dispersivity data. In this section, major compilations of existing data on
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dispersivity are reported, and regression laws are provided as rule-of-thumb estima-
tions of core- and field-scale dispersivity coefficients. Then, laboratory methods to
determine longitudinal and transverse dispersivity are described. Finally, field-scale
tracer testing methodologies are presented. Indeed, sound field-scale modeling of
solute transport cannot rely only on bulk a priori values or laboratory-scale estimates
of solute transport parameters. In situ tracer tests must be conducted in order to
understand site-specific advection and dispersion processes.

The methods reported below all assume that the medium under investigation is
homogeneous. Hence, the methods allow the estimation of effective dispersivity coef-
ficients at the scale of interest. However, for the sake of simplicity, the notation αL
will be used throughout this section, instead of α∗

L.

15.4.1 REGRESSION LAWS TO ESTIMATE DISPERSIVITY COEFFICIENTS

There are currently large controversial views regarding the interpretation of compiled
field data to obtain universal scaling laws for dispersivity coefficients. Whereas some
authors say that a single universal regression line would ignore the fact that different
aquifers may have different degrees of heterogeneity at a given scale (Gelhar et al.,
1992), others state that, on average, all aquifers have a similar behavior at a give scale
and individual departures from the universal scaling rule must be viewed as local
fluctuations around the mean behavior (Neuman, 1990). Moreover, uncertainty is
often attached to field dispersivity values. Numerous factors, such as actual injection
conditions, solute density effects, or even temporal variations of the advective flow
regime or biased interpretation techniques, are likely to be interpreted as dispersion.
Even at the laboratory scale, Bromly et al. (2007) showed that dispersivity values were
highly dependent on the type and on the size of experimental device. The empirical
laws presented in this section should therefore be used with extreme caution.

Table 15.1 reports several empirical laws to estimate core-scale dispersivities based
on other physical properties of the soil, such as porosity n [−], median grain size d50

TABLE 15.1
Regression Laws for Core-Scale Dispersivity Coefficients (mm)

Regression Law Applicability Source

αL = 1.75 d50 Perkins and Johnston, 1963
αL = 3.49 Cu−1.41 Xu and Eckstein, 1995
αL = −3.51 + 4.41 Cu Glass beads Xu and Eckstein, 1997
αL = −25.47 + 12.40/n Glass beads Xu and Eckstein, 1997
αL = 0.46 + 0.85 d50 Glass beads, Cu = 1 Xu and Eckstein, 1997
αL = −3.15 + 0.85 d50 + 3.55 Cu Glass beads, Cu < 2 Xu and Eckstein, 1997
αL = −2.17 + 0.81 d50 + 2.73 Cu Glass beads, Cu < 3 Xu and Eckstein, 1997
αL = −2.75 + 4.08 Cu Glass beads, Cu < 4 Xu and Eckstein, 1997

αL = 1.25 d50S−1.2
w Glass beads, Sw > 0.8 Haga et al., 1999

αL = 1.11 d50S−3.1
w Glass beads, Sw < 0.8 Haga et al., 1999

αL = d50a−1S−2
we a = 6a∗/n∗ + 0.015 Sato et al., 2003

αT = 0.055 d50 Perkins and Johnston, 1963
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[mm] or coefficient of uniformity Cu = d60/d10 [−]. Mean grain size and uniformity
of grain size are usually considered as the two most important factors affecting grain
size. For relatively uniform materials, dispersivity is directly proportional to median
grain size. For less uniform materials, the shape of the particle size distribution is the
dominant factor for dispersivity and αL is directly proportional to the coefficient of
uniformity. Dispersivity is also found to be inversely proportional to porosity.

In unsaturated media, the estimation of pore-scale dispersivity is complicated by
its additional dependence on the saturation degree Sw [−]. The saturation degree is
the volume of water per unit pore volume of the medium. It is usually related to the
capillary pressure. In an isolated unsaturated soil pore, a curved interface appears
between air and water phases and a pressure difference exists across the interface.
This pressure difference depends on the interfacial forces between air and water and
on the radius of the pore. Following standard conventions, the capillary pressure is
defined as the difference between the pressure in the air phase and in the water phase.
At the continuum scale, there exists a relationship between capillary pressure and the
saturation of the porous medium. A porous medium consists of a distribution of pores
with different radii. If an increasing macroscopic capillary pressure is applied to a
porous media, the air phase would invade the larger pores and the water phase would
be present in smaller pores. The larger sized pores could not support the capillary
pressure and would release water. Thus, the larger the capillary pressure, the smaller
amount of water will be present in the porous medium. The relationship between
capillary pressure and the water phase content is referred to as the capillary pressure
curve or the retention function, which is an intrinsic property of a porous medium. A
well-known model for the retention function of a porous medium is the model of van
Genuchten (van Genuchten, 1980, 1991). It is characterized by two parameters a∗
[cm−1] and n∗ [−]. a∗ is related to the threshold capillary pressure required to start
draining the porous medium. Hence, it is also related to the smallest pore size of the
medium. n∗ is related to the distribution of pore size. A small value of n∗ reflects a
large distribution of pore size, while a small value of n∗ would apply to a relatively
uniform porous medium (Lu and Likos, 2004). In the model of Sato et al. (2003), the
pore-scale dispersivity is expressed as a function of the van Genuchten parameters and
as a function of effective saturation degree (see Table 15.1). The effective saturation
degree Swe [−] links with the saturation degree using Swe = (Sw − Swr)/(1 − Swr),
where Swr [−] is the residual saturation degree. The longitudinal dispersivity tends
to increase when the saturation of the medium decreases. For example, the equations
provided by Haga et al. (1999) reported in Table 15.1 predict that dispersivity is 1.8
times larger at a saturation degree of 80% as compared to full saturation, 4.3 times
larger at a saturation degree of 60%, and 15.2 times larger at a saturation degree of 40%.

Figure 15.2 shows one of the most recent compilations of longitudinal dispersivity
values in field-scale saturated-flow situations. The trend for αL to increase with scale
L is relatively clear. Field data typically range between 0.01 m and 5500 m at scales
of 0.75 m to 100 km. Also, the values for porous (unconsolidated) and fractured
(consolidated rock) media tend to scatter over a similar range. At a given scale, the
longitudinal dispersivity typically ranges over 2–3 orders of magnitude. This degree of
variation can be explained in terms of stochastic macrodispersion theories presented in
Section 15.3.3. When the reliability of the data is accounted for, the scale dependence
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FIGURE 15.2 Field-scale longitudinal dispersivity coefficients as a function of scale.
[Adapted from Schulze-Makuch, D. 2005. Longitudinal dispersivity data and implications
for scaling behavior. Ground Water 43(3): 443–456.]

of longitudinal dispersivity is less obvious: There are no high-reliability points at
scales larger than 300 m. This reflects the fact that large-scale αL values are almost
exclusively obtained from contamination plume simulations or environmental tracer
studies. As large-scale controlled tracer experiments require a very long period of
time, such experiments have not been conducted.

Scaling relationships for longitudinal dispersivities are usually described using
power laws of the form

αL = cLd, (15.11)

where c [L1−d] is a characteristic property of the medium and d [−] a scaling expo-
nent. Early attempts to fit a regression law on compiled field data yielded a simple
rule αL = L/10 (Lallemand-Barres and Peaudecerf, 1978). Later, Neuman (1990)
found αL = 0.175 L1.46, valid for L < 3500 m. He also fitted two separate regression
lines for L < 100 m and L > 100 m. He found αL = 0.0169 L1.53 for L < 100 m
and αL = 0.32 L1.83 for L > 100 m. Recently, Schulze-Makuch (2005) performed
regressions on field data accounting for their reliability. He found αL = 0.2 L0.44
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using high-reliability dispersivity data only for unconsolidated sands. He also estab-
lished regression laws for consolidated rocks of various types. Other authors have
also provided other regression laws (Arya, 1986; Xu and Eckstein, 1995).

Gelhar et al. (1992) caution users routinely adopting αL values from Figure 15.2
or from a linear representation of the data. Instead, users should favor the use of
dispersivity values in the lower half of the range at any given scale. If values in the
upper part of the range are adopted, excessively large dilution may be predicted and
the environmental consequences misrepresented.

Field data on transverse dispersivity are relatively scarce, and available data are
generally of a lower reliability compared to longitudinal dispersivity. Only Gelhar
et al. (1992) provide a compilation of αTH and αTV values, but they do not provide
regression laws. Typically, values of αTH are found to be about one order of magnitude
smaller than αL, while values of αTV are about two orders of magnitude smaller than
αL. The smaller values of αTV reflect the roughly horizontal stratification of hydraulic
conductivity in permeable sedimentary materials. Small αTV values also imply that
contaminant plumes will potentially show very limited vertical mixing with high
concentrations at given horizons. The trend for transverse dispersivity coefficients to
increase with scale is usually less clear due to the low reliability of larger-scale data,
generally based on contaminant events, for which sources are ill-defined.

15.4.2 LABORATORY METHODS FOR THE DETERMINATION OF DISPERSIVITY

15.4.2.1 Methods for Column Tests

Pore-scale longitudinal dispersivity can be determined in the laboratory using columns
packed with the porous media under investigation. The device is similar to that
depicted in Figure 15.1 for saturated flow experiments. Under unsaturated flow con-
ditions, flow boundary conditions must be adapted. Usually, the column is placed
vertically, with an irrigation system on top, imposing a constant discharge. One
appropriate analytical solution to the advection-equation is (Kreft and Zuber, 1978)

C

C0
= 1

2
erfc

(
L − vt

2
√

DLt

)
+ 1

2
exp

(
vL

DL

)
erfc

(
L + vt

2
√

DLt

)
, (15.12)

where, in unsaturated conditions, v = v(θ) and DL = DL(θ). erfc is the comple-
mentary error function. It assumes as initial condition C(x, 0) = 0, and as boundary
conditions C(0, t) = C0 and C(∞, t) = 0. Fitting of this solution (e.g., using a
least-square criterion) onto observed breakthrough curves allows the simultaneous
determination of DL and v.

For high Peclet numbers, the second term in Equation 15.12 can be neglected.
Rewriting this equation for saturated conditions using the number of pore volumes
U = vt/L [−] as temporal variable yields

C

C0
= 1

2
erfc

⎛
⎜⎝ 1 − U

2
√

UDL
vL

⎞
⎟⎠ . (15.13)
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This equation has several properties that render the estimation of v and DL eas-
ier: The plot of the outlet concentration curve as a function of J = (U − 1)/

√
U

corresponds to a normal probability distribution with a mean μJ = 0 and a stan-
dard deviation σJ = √

2DL/vL. The plot C/C0 versus J on normal probability paper
should therefore be linear. The mean pore velocity is estimated using v = L/tm, tm
corresponding to C/C0 = 0.5. The value of DL is found from

DL = vL

8
(J0.84 − J0.16)

2, (15.14)

where J0.16 and J0.84 are the values of J corresponding to 16% and 84% of relative
concentration, respectively.

This method is typically valid when effluent concentrations are measured. When
using a measurement device that allows the measurement of pore-water concentra-
tions, other boundary conditions apply to the advection equation and Equation 15.12 is
not valid anymore (Kreft and Zuber, 1978; van Genuchten and Parker, 1984).Attention
must also be paid to experimental artifacts arising from specific laboratory devices.
For example, if injection is performed in a volume of water outside of the column
(like a device to maintain the piezometric head), the actual injection condition is not
an instantaneous step variation. Due to mixing with the volume of water, the injection
is actually exponential. Not accounting for such effects can result in a serious bias in
the estimated values of dispersivity (Novakowski, 1992).

15.4.2.2 Device for Transverse Dispersivity

Existing methods to estimate transverse dispersion are usually based either on tracer
tests or on dissolution tests. Dissolution tests generally imply groundwater flow along
a stagnant zone containing constant concentration gas (Klenk and Grathwohl, 2002;
McCarthy and Johnson, 1993), NAPL (Oostrom et al., 1999a; 1999b; Pearce et al.,
1994) or solid (Delgado and Guedes de Carvalho, 2001; Guedes de Carvalho and
Delgado, 1999; 2000). Transverse dispersivity can then be inferred from the rate
of dissolution of the third phase that is obtained through solute breakthrough curve
measurements at the laboratory model outlet.

Most of laboratory tracer tests designed to determine transverse dispersion coeffi-
cients are performed in a uniform flow at constant mean velocity. Blackwell (1962),
Hassinger and von Rosenberg (1968), and recently Frippiat et al. (2008) used the so-
called “annulus-and-core” approach, in which the inlet and the outlet cross-sections
of a column are divided into two concentric zones. The concentration of the solution
flowing in the inner inlet zone (the core) is rapidly increased, while the solution in the
outer inlet zone (the annulus) is kept solute-free. Transverse dispersivity is computed
by comparing steady-state concentration of effluent solutions in the outlet annulus and
core zones. Divided inlets were also adopted in several other column studies involving
intrusive local concentration measurements (Bruch, 1970; Grane and Gardner, 1960;
Han et al., 1985; Harleman and Rumer, 1963; Perkins and Johnston, 1963; Zhang
et al., 2006). Other authors preferred point injection (Pisani and Tosi, 1994; Robbins,
1989). A few specific devices imply nonuniform flow: Cirpka and Kitanidis (2001)
and Benekos et al. (2006) investigate flow and transport in a helix and in a cochlea

© 2011 by Taylor and Francis Group, LLC

Kapitola v Handbook of Chemical Mass Transport in the Environment ....................

182



Dispersion and Mass Transfer Coefficients in Groundwater 427

to determine transverse dispersivity. Kim et al. (2004) determined local longitudinal
and transverse dispersivities in a laboratory aquifer model with a local recharge zone.

15.4.3 FIELD METHODS FOR THE DETERMINATION OF DISPERSIVITY COEFFICIENTS

In theory, velocity and dispersivities can be estimated from virtually any test where
tracer is added in a controlled way to the groundwater. However, a few standard
tests are generally preferred because simple procedures are available to interpret the
results. The choice of which test configuration to adopt then results from practical or
economical constrains, from the duration of test, to the number of observation wells,
to the spatial scale to investigate.

Standard tracer tests are typically used at relatively small field scales. Estimates of
dispersivity at scales larger than several hundred of meters usually rely on different
methods, either using historical contamination data or exploiting natural variations in
the chemistry of natural recharge of the aquifer. However, estimates of advection and
dispersion based on data from contaminant plumes or environmental tracer measure-
ments are less reliable than field tracer tests, since there is a larger uncertainty in the
location and the intensity of source zone. Often, there is also an inadequate number
of sampling points.

15.4.3.1 Natural Gradient Tests

The natural gradient test involves monitoring a small volume of tracer as it moves
down the flow system. The resulting concentration distributions provide the data nec-
essary to determine advective velocities, dispersivities, but also chemical parameters.
This type of test is usually considered to be of a high reliability. When the test is
performed in a supposedly homogeneous formation using a fully penetrating well,
a two-dimensional analytical solution of the advection–dispersion equation can be
used (Domenico and Schwartz, 1997):

C

C0
= V/b

4πt
√

DLDT
exp

(
− (x − vt)2

4DLt
− y2

4DTt

)
, (15.15)

in which it is assumed that the injection well is located at the origin of the coordinate
system and that velocity is constant and aligned with the x-axis. V [L3] is the volume
of tracer solution injected and b [L] is the thickness of the aquifer. When the injection
well is screened on a very small portion of its length, the three-dimensional solution
of the advection–dispersion equation must be used (Domenico and Schwartz, 1997):

C

C0
= V

8(πt)3/2
√

DLDTHDTV
exp

(
− (x − vt)2

4DLt
− y2

4DTHt
− z2

4DTVt

)
. (15.16)

Dispersivity coefficients can be estimated by fitting Equation 15.15 or 15.16 on con-
centration data monitored in observation wells. Other analytical solutions are also
available when the lateral extent of the source cannot be neglected or for sorbing or
decaying tracer species (see, e.g., Domenico and Schwartz, 1997).
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15.4.3.2 Forced Gradient Test

Forced gradient tests are conducted using injection and/or pumping wells, locally
increasing hydraulic gradients at levels significantly larger than those naturally occur-
ring in aquifers. The advantage is that test duration is greatly diminished. Compared
to a natural gradient test of the same duration, the tested volume of the aquifer is
also usually larger. As a result, due to the unavoidable heterogeneity of the soil, dis-
persivities obtained from forced-gradient tests are also usually larger than the values
obtained from natural gradient tests performed in the same aquifer (Fernandez-Garcia
et al., 2005; Tiedeman and Hsieh, 2004).

15.4.3.2.1 Single-Well Injection or Withdrawal Test

The single-well injection test involves pumping at a constant rate. In case an obser-
vation well is located close to the injection well, observed concentrations during the
injection phase can be fitted using (Gelhar and Collins, 1971)

C

C0
= 1

2
erfc

⎛
⎜⎝ r2 − R∗2

(
16
3 αL

(
R∗3 − r3

w
))1/2

⎞
⎟⎠ , (15.17)

R∗ [L] being the mean radial position of the tracer front

R∗ =
√

Qt

πbθ
, (15.18)

and r [L] is the radial position from the injection well, rw [L] is the radius of the
well, Q [L3T−1] is the injection rate and b [L] the thickness of the aquifer. Values of
longitudinal dispersivity determined using this type of test are usually considered to
be relatively reliable (Gelhar et al., 1992).

In the single-well withdrawal test, a radially converging steady-state flow field
is established by pumping at a constant rate in a well. A fixed amount of tracer
is injected in a second well. A solute plume develops and starts to migrate toward
the pumping well. Analytical solutions for concentration in the pumping well under
such conditions are not straightforward to evaluate and often imply semianalytical
expressions with power series (Chen, 1999; Moench, 1989). Simplified solutions
are given by Sauty (1980), and Welty and Gelhar (1994). One of the advantages
of the single-well withdrawal test is that it allows the simultaneous estimation of
longitudinal and transverse dispersivities. However, since the converging flow field
tends to counteract spreading due to longitudinal dispersion, αL estimates are thought
to be of a lower reliability.

15.4.3.2.2 Single-Well Push–Pull Test

This type of test involves two distinct flow phases. First, tracer is injected in a well
at a constant flow rate. The tracer is moving radially from the well. After a certain
period of injection, flow is reversed and the tracer is pumped out of the soil at the same
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rate. The tracer is moving radially toward the pumping well. The single-well push–
pull test does not require any observation well: Concentrations are monitored at the
well during the recovery phase. Measured data can be analyzed using the analytical
solution developed by Gelhar and Collins (1971):

C

C0
= 1

2
erfc

⎛
⎜⎜⎜⎜⎜⎝
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− 1

(
16

3
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])1/2

⎞
⎟⎟⎟⎟⎟⎠

. (15.19)

where Vi [L3] is the total volume of water injected in the aquifer during the first phase,
and Vp = Vp(t) [L3] is the volume of water withdrawn from the aquifer at time t of
phase 2.

The single-well push–pull test is a small-scale test and is generally found to have
a limited applicability in estimating macrodispersivities. The dispersion process in a
single-well push–pull test is significantly different from that of unidirectional flow:
Macrodispersion near the injection well results from differential advection caused by
vertical variations in hydraulic conductivity. As a result, the tracer travels at different
velocities as it radiates outwards. But it will also travel with the same velocity pattern
as it goes back to the production well. This means that the mixing process is partially
reversible and that the dispersivity might be underestimated compared to that of
unidirectional flow.

15.4.3.2.3 Two-Well Tracer Test

In the two-well test, water is pumped from one well and injected into the other at
the same rate to create a steady-state flow regime. The tracer is added in the injec-
tion well and monitored in the withdrawal well. Also, dispersivity estimates can be
improved by adding more observation wells between the pumping-injection doublets.
In general, these tests can be performed over several hundreds of meters in sandy for-
mations. Analytical solutions are provided by Grove and Beetem (1970) and Maloof
and Protopapas (2001).

Dirac input should be preferred rather than step input. A potential problem with the
step input test configuration is that the breakthrough curve is not strongly influenced
by dispersion except in the early stages, when concentrations are low. For this rea-
son, tests based on this approach are generally considered to produce low-reliability
dispersivity data.

15.5 EXAMPLE CALCULATIONS

15.5.1 LABORATORY ESTIMATION OF αL FOR AN UNSATURATED MEDIUM SAND

Problem description: Figure 15.3 shows the results of two one-dimensional lab-
oratory test performed by Sato et al. (2003). The porous medium consists of a
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FIGURE 15.3 Experimental breakthrough curves for Toyoura sand and fitted solutions
of the advection–dispersion equation. (After Sato, T., Tanahashi, H. and Loaiciga, H.A.
2003. Solute dispersion in a variably saturated sand. Water Resources Research 39: doi:
10.1029/2002WR001649.)

repacked sample of Toyoura sand, a medium sand characterized by a median grain
size d50 = 180 μm and van Genuchten parameters a∗ = 0.036 cm−1 and n∗ = 4.2.
The column has an internal diameter of 5 cm and a length of 12 cm. Steady-state
unsaturated flow was established by injecting water at the top of the column at a
constant rate and draining water at the bottom of the column. Controlled air suction
was applied at the bottom of the column to suppress boundary effects and estab-
lish a constant vertical profile of water content through the column. Two tests are
reported: Test 1 was performed at a saturation of Sw = 49.4%, and Test 2 was per-
formed at a saturation of Sw = 88.4%. A pore-water velocity of 0.5 cm/min was used
for each test.

Question: Determine experimental values of longitudinal dispersivity from the
time series of concentration recorded during each column test.

Solution: For a homogeneous medium with a constant saturation degree, Equation
15.12 can be used to analyze the experimental data. Fitting of this equation to the
data (e.g., by minimizing the sum of the squared residuals between the equation and
the data) yields experimental dispersivity values of αL = 0.4 cm and αL = 0.06 cm
for Test 1 and Test 2, respectively. The corresponding column Peclet numbers are
Pe = 30 and Pe = 195 for Test 1 and Test 2, respectively. These values are large, so
the use of Equation 15.13 instead of Equation 15.12 yields relatively similar results.
Using the van Genuchten parameters of the saturation curve, the value of parame-
ter a was used in the empirical law established by Sato et al. (2003) is a = 0.066
(see Table 15.1). The empirical values of longitudinal dispersivity are then 0.27 cm
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and 0.08 cm for Test 1 and Test 2 respectively, which is reasonably close to actual
values.

15.5.2 ANALYSIS OF SINGLE-WELL WITHDRAWAL TESTS IN A

2D HETEROGENEOUS MEDIUM

Problem description: Chao et al. (2000) carried out intermediate-scale tracer experi-
ments in a two-dimensional horizontal laboratory tank (244 cm × 122 cm × 6.35 cm).
The tank was packed with five different sands, in order to create a heterogeneous
medium with well-defined statistical properties. The sands used were crushed silica
sands. The heterogeneous packing was designed to simulate a lognormal distribu-
tion of saturated hydraulic conductivity (K) using five different sands. The resulting
ln K distribution had a mean value of 4.75, a variance of 1.81, and an isotropic
correlation length of 10 cm (Figure 15.4). Convergent tracer tests were performed,
using potassium bromide as a conservative tracer. A total of 36 tracer tests were
carried out, in order to investigated the effect of (1) pumping rate; (2) distance
between injection well and pumping well; and (3) direction between injection well
and pumping well.

NW
N16 N12 NE

EL2

E18

SE

S16
S12

SW

W18

W12

Pumping port

: Pumping port : Injection ports

: #16: #36: #50: #70 : #8

FIGURE 15.4 Experimental representation of the two-dimensional laboratory tank, showing
the heterogeneous pattern of the hydraulic conductivity field and the locations of injection and
pumping ports. Each block has dimensions of 6.1 × 6.1 cm. The sands are referred to using
their respective sieve size. (From Chao, H.-C., Rajaram, H., and Illangasekare, T.H. 2000.
Water Resources Research 36(10): 2869–2884. With permission.)
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Question: Determine experimental values of longitudinal dispersivity from the
time series of concentration recorded during each tracer test.

Solution: The breakthrough curves from the tracer tests were analyzed using a
two-dimensional analytical solution provided by Welty and Gelhar (1994):
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(15.20)

where R [L] is the radial distance between the injection well and the pumping well. The
mean transit time t∗ [T] can be computed using Equation 15.18. A least-square crite-
rion was adopted to determine αL by fitting Equation 15.20 onto experimental data.As
summarized in Table 15.2, the dispersivity estimates ranged from 0.065 to 0.953 cm.
The high variability of αL reflects the variability of the hydraulic conductivity field.
Even at the same scale, different tracer tests in the same heterogeneous medium yield
widely different estimates of transport parameters. The estimated dispersivities at the
same scale varied by a factor of 2–6.

Chao et al. (2000) also performed a one-dimensional tracer test in their tank. They
obtained a longitudinal dispersivity of 12.0 cm. The theoretical value computed using
Equation 15.9 is 18.1 cm. Several factors account for this discrepancy:

TABLE 15.2
Dispersivity (cm) Estimates from Radial Flow
Tracer Experiments

Injection Radius
Port (cm) Q = 25 mL/min Q = 50 mL/min Q = 75 mL/min

NE 25.4 0.207 0.201 0.140
NW 25.4 0.182 0.245 0.146
SE 25.4 0.116 0.109 0.065
SW 25.4 0.329 0.370 0.399
E12 30.4 0.362 0.363 0.485
W12 30.4 0.439 0.333 0.225
S12 30.4 0.392 0.465 0.369
N12 30.4 a 0.482 0.499
E18 45.7 0.741 0.567 0.395
W18 45.7 0.658 0.777 0.953
S16 40.6 a a a

N16 40.6 0.368 0.439 0.303

Source: From Chao, H.-C., Rajaram, H., and T.H. Illangasekare. 2000. Water
Resources Research 36(10): 2869–2884. With permission.

a Unreliable data.
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• Dispersivity is actually scale-dependent, and the theoretical value computed
using Equation 15.9 is a large-scale asymptotic value, whereas the exper-
imental value corresponds to a finite displacement of about 22 correlation
lengths.

• The presence of lateral no-flow boundaries tends to decrease the overall
variability of flow, and therefore the macroscale value of dispersivity.

• The tracer test was carried out in a single realization of the heterogeneous
hydraulic conductivity field. There are number of other realizations satis-
fying the same statistical properties, each potentially yielding different αL
values. Since Equation 15.9 yields a theoretical value that represents the
average over all possible realizations of the K field, one could expect the
value of a single realization to be different.

The main reason for the discrepancy between the one-dimensional tracer test and
the radial tracer test lies in the dimension of the source zone. One-dimensional
tracer tests are characterized by a large source zone (i.e., the full cross-section of
the medium), whereas convergent tracer tests have a point source. In the latter case,
solute plumes do not sample the full variability of aquifer properties, and therefore
undergo smaller dispersion processes. This mostly highlights that, even if theories are
available to predict macroscale dispersion coefficients, they are bounded to certain
limitations which could make them unsuited to given situations.
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PART 2 MASS TRANSFER COEFFICIENTS IN PORE-WATER
ADJACENT TO NONAQUEOUS LIQUIDS AND PARTICLES

15.6 INTRODUCTION

Organic chemicals and hydrocarbons with very low aqueous solubility remain a sep-
arate phases or as nonaqueous phase liquids (NAPLs) for long periods of time in the
subsurface contributing to soil and groundwater contamination.At a very fundamental
level, the mass transfer occurs at the NAPL–water interfaces within the pores. How-
ever, when the NAPLs enter the soil, they produce complex entrapment morphologies
and architecture that makes the mass transfer process complex. The morphologies of
entrapment at the pore scale and the spatial distribution that defines the architecture
are controlled by many factors that include the spill configuration, type, and physical
and chemical properties of NAPL and the subsurface heterogeneity. Uncertainty asso-
ciated with all these controlling factors contributes to the prediction uncertainty of
how much dissolved mass flux is generated from source zones of NAPL-contaminated
sites. The focus of this section is to discuss and present modeling methods that are
used to predict mass transfer from entrapped NAPL sources taking into consideration
the various entrapment morphologies and architecture that occur at naturally hetero-
geneous field sites. To be of practical value, methods have to be developed to up-scale
this mass transfer process from smaller measurement scales (laboratory) to the field.

The outline of the presented material is as follows. The mass transfer that occurs at
the NAPL–water interfaces at the pore scale is generally approximated using a linear
model based on film theory. In extending this formulation to the representative ele-
mental volume (REV) scale in porous media, it is necessary to define an overall mass
transfer rate coefficient. The theoretical development of phenomenological models
that are used to estimate these overall mass transfer coefficients is presented. Methods
to up-scale these REV scale models to field scale are presented. A set of examples
based on intermediate-scale laboratory tests is presented to demonstrate the use of
these methods.

15.7 DISTRIBUTION AND MORPHOLOGY OF NAPLs IN
POROUS MEDIA

Nonaqueous phase liquids are classified into two groups depending on their specific
gravity. Hydrocarbons and petroleum products that are less dense than water are
referred to as light nonaqueous phase liquids (LNAPLs). Solvents, cold tar, wood
preservatives that are heavier than water are referred to as dense nonaqueous phase
liquids (DNAPLs). They are classified as nonaqueous phase liquids because of their
very low solubility. They stay as a separate fluid phase when in contact with water
for a very long period of time. When introduced on to the ground surface because of
accidental spills, improper disposal or leaking from storage systems, NAPLs migrate
through the unsaturated zone of the subsurface where the wetting water phase partially
occupies the pore space. Because of surface tension, the water pressure stays at less
than atmospheric (capillary suction). During migration, the NAPL that behaves as a
nonwetting fluid in the presence of water displaces the nonwetting air phase. After the
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NAPL front has propagated, a fraction of the NAPL remains entrapped within the soil
pores. Before reaching the water table (where the water pressure is at atmospheric), the
NAPL front will penetrate the zone that is referred to as the capillary fringe where the
pore water is close to saturation but is under less than atmospheric pressure. The NAPL
front will penetrate the capillary fringe and reaches the water table. After reaching
the water table, the behavior of NAPL depends on the relative density compared to
water. Lighter than water LNAPLs tend to float on the water table and the dense
DNAPLs will penetrate the water table and enters the saturated zone of the aquifer
where the water pressures are higher than atmospheric. Depending on the conditions as
determined by the spill volume, rate, fluid, and porous media properties, the DNAPL
behaves unstably and will migrate preferentially as fingers (Held and Illangasekare,
1995). Laboratory and theoretical studies suggest that, even in the most homogeneous
of porous media, the infiltration and dissolution of dense NAPL solvents into the
saturated zone will tend to occur as a number of scattered fingers and not along
one uniform plug or front. Once a sufficient amount of NAPL accumulates and the
NAPL solvent enters the porous medium, downward movement will continue until
all of the NAPL solvent is present as suspended fingers, ganglia, and/or as pools of
NAPL accumulated on lower-permeable layers. Because fingers tend to have small
dimensions in the saturated zone (usually occupying single pore throat), significant
fraction of NAPL mass in the saturated zone may be present as NAPL pools (Anderson
et al., 1992). However, deep penetration of downward moving fingers and subsequent
formation of new pools of NAPL flowing through the finger result in a complex spill
morphology and thus the prediction of finger penetration into the porous medium is
also important (Illangasekare et al., 1995).

The entrapped NAPL, both in the unsaturated and saturated zones produce fluid–
fluid interfaces through which mass transfer occurs. The unsaturated zone NAPLs
produce NAPL–water and NAPL–air interfaces. Water infiltrating through the unsat-
urated zone picks up the dissolved mass and transports the solute to the saturated
zone. The mass transfer that occurs through the NAPL–air interface contributes to the
vapor migration through the air phase. In the following sections, we will only focus
on the mass transfer that occurs at NAPL–water interfaces, thus focusing only on the
problem of groundwater contamination by NAPLs.

15.8 CONCEPTUAL MODELS OF MASS TRANSFER

A variety of models exist to describe mass transfer phenomena among phases in a
multiphase system. Here, an overview from simple dispersion model (Johnson and
Pankow, 1992) to solute mass flux models (Miller et al., 1990; Powers et al., 1992;
Geller and Hunt, 1993; Imhoff et al., 1993), including various models for Sherwood
transfer rate number is presented in this section.

15.8.1 ONE-DIMENSIONAL VERTICAL DISPERSION MODEL

Johnson and Pankow (1992) presented a simple analytical model for dissolution of
pools of a NAPL by treating the mass transfer to be a vertical transport process.
The general two-dimensional mass transport equation can be simplified by assuming:
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(1) the time required for total pool dissolution is exceedingly longer in comparison
with the contact time between the pool and the flowing groundwater, therefore, a
steady-state form of the advection–dispersion equation can be used, (2) sorption is
not important at steady state, and (3) groundwater flows with the velocity v in the
horizontal direction. Thus, a two-dimensional steady-state equation can be used. The
governing equation is given by

v
∂C

∂x
= DT

∂2C

∂z2 , (15.21)

where C[ML−3] is the concentration of NAPL, v [LT−1] is the groundwater velocity
in the horizontal direction, z[L] is the vertical distance above the pool and x[L] is the
horizontal distance along the length of the pool with the origin at the beginning of
the pool. The vertical dispersion coefficient DT [L2T−1] is given either by Equation
15.5b or Equation 15.5c.

Hunt et al. (1988) presented the analytical solution of Equation 15.21 with
the boundary conditions C(x, +∞) = 0 and C(x, 0) = Cs for all x ∈ (0, Lp) and
C(0, z) = 0 for all z ∈ (0, Lp), where Lp is the length of the pool. Based on this solu-
tion, the vertical concentration profile at the downgradient edge of the pool (x = Lp)
is given by

C(Lp, z) = Cserfc

(
z
√

v

2
√

DvLp

)
, (15.22)

where Cs [ML−3] is the solubility limit of the dissolving NAPL component. Based
on the above solution, the time for complete dissolution of the pool can be estimated.
If a pool consists of constant thickness with a thickness/length ratio r, then the time
to complete dissolution τp will be given by

τp = rρL3/2
p

√
π

Cs
√

4Dvv
, (15.23)

where ρ [ML−3] is the density of the NAPL. The above derivation assumes a surface
area averaged mass transfer across the pool length.

15.8.2 LINEAR DRIVING MODEL FOR INTERPHASE MASS TRANSFER

A common concept implicit in many mass transfer theories is to describe the mass
transfer across two phase boundaries through a mass transfer rate coefficient. The
driving force in this case is determined by the difference in the concentration at the
phase boundary (e.g., NAPL surface) and the bulk phase (e.g., water or air). This
linear relationship is given by

J = kl(Cs − C), (15.24)

where J[ML−2T−1] is the mass flux rate from the NAPL, kl [LT−1] is the mass transfer
rate coefficient, Cs [ML−3] is the aqueous phase concentration under conditions
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FIGURE 15.5 Dissolution of a NAPL pool.

when the NAPL is in thermodynamic equilibrium with the solute in the aqueous
phase (solubility limit of NAPL in water) and C [ML−3] is the aqueous phase solute
concentration in the bulk solution. The subscript l denotes that the driving force acts
along the longitudinal direction normal to the direction of flux. Note that this model
does not assume the presence of a porous medium.

15.8.3 STAGNANT FILM MODEL

A conceptual model that describes mass transfer across two phases is assumed to
occur through a stagnant aqueous film adjacent to the interface has been adopted
for porous media applications. A schematic illustration of the process that occurs is
shown in Figure 15.6.

As there is no mass storage within the film, the concentration gradient has to
be linear. Applying Fick’s law, an expression for steady mass flux J [ML−2T−1] is
obtained as

J = −Dl
dC

dl
= Dl

δ
(Cs − C), (15.25)

Solute 

d

l

Stagnant film

Aqueous phase

Cs

C

NAPL

FIGURE 15.6 Stagnant film model.
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where Dl [L2T−1] is the diffusion coefficient in free liquid and δ [L] is the thickness
of the assumed stagnant film. By introducing a mass transfer coefficient kl = Dl/δ

[LT−1] an equation similar to the linear driving model can be written as

J = kl(Cs − C). (15.26)

The macroscopic groundwater flow equations are written at the representative elemen-
tal volume (REV) scale. As (Δ) is defined as the pore scale (NAPL–water interface
within a pore) and cannot be measured, a lumped mass transfer coefficient defined
at the REV scale is used (Pankow and Cherry, 1995). Hence, a linear driving force
model similar to Equation 15.24 can be used to describe mass flux from entrapped
NAPL sources in porous media. This is accomplished by introducing a lumped mass
transfer rate coefficient Kc [T−1] (Miller et al., 1990). The mass rate equation for
mass rate J ′ [ML−3T−1] then takes the form

J ′ = Kc(Cs − C). (15.27)

The pore-scale mass transfer coefficient k1 and the lumped mass transfer coefficient
Kc are related by

Kc = kl
An

V
, (15.28)

where An [L2] is the total NAPL− water surface area within the REV of volume V [L3].
As An cannot be measured or estimated in practical situations in involving ground
water contamination, Kc is treated as an empirically determined parameter.

15.9 EMPIRICAL MASS TRANSFER RATE COEFFICIENTS

As was explained in the previous section, the lumped mass transfer rate coefficient
needs to be empirically determined because the basic parameters that describe the
mass transfer process cannot be measured for porous media systems. However, an
insight to the processes that contribute to mass transfer can be obtained by studying
simple settings, where the governing equations can be solved to obtain closed form
analytical solutions. Chemical engineering literature provides number of examples of
such closed form solutions (e.g., Bird et al., 1961). By identifying the driving forces
and mechanisms that contribute to mass transfer, the terms that appear in these closed
from solutions can be arranged into dimensionless groups. One example has relevance
to understanding dissolution from a pool and entrapped NAPLs, it is the case of the
dissolution of the wall when the water flows through a tube of length L and internal
radius R (Figure 15.7). The flow through the tube is assumed to be laminar.

The closed-form solution for the advection–dispersion equation expressed in
dimensionless group that is referred to as the Graetz–Nusselt problem solution is
given as

Sh =
(

2

3Γ(4/3)

)
Re1/3Sc1/3

(
L

R

)
(15.29)
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FIGURE 15.7 Dissolution of wall during laminar flow.

where Γ is the gamma function, Re [−] is the Reynolds number, and Sc [−] is the
Schmidt number. The dimensionless Sherwood number Sh [−] is related to the mass
transfer coefficient kl as Sh = kldp/Dl, where dp [L] is the geometric mean particle
diameter. The relationships such as the one given by Equation 15.29 are referred to
as Gilland–Sherwood models.

Saba and Illangasekare (2000) proposed a model for two-dimensional flow con-
ditions. This model introduced a dissolution length along the flow path. Also, the
appearance of a tube radius allows for the introduction of the volumetric NAPL con-
tent into the phenomenological model. Conceptually, as the NAPL gets depleted, the
effective radius of the flow tube changes. The Gilland–Sherwood model that was
proposed by Saba and Illangasekare (2000) is of the form

Sh′ = a Reβ Scα

(
θnd50

τL

)η

, (15.30)

where Sh′ [−] is a modified form of Sherwood number used for porous media
applications defined as

Sh′ = Kd2
p

Dl
. (15.31)

The terms a, β, α, and n are empirical coefficients [−], τ [−] is the tortuosity factor
of the flow path, L [L] is the dissolution length, d50 [L] is the mean grain size, and
θn [−] is the volumetric NAPL content. The mass transfer coefficient K [T−1] that
appears in Equation 15.31 is the lumped mass transfer coefficient and it contains the
NAPL/water interface area as introduced in Equation 15.28.

The correlation based on Equation 15.30 that was fitted to NAPL dissolution data
obtained in a two-dimensional dissolution cell by Saba and Illangasekare (2000) is

Sh′ = 11.34 Re0.28 Sc0.33
(

θnd50

τL

)1.037

. (15.32)

Gilland–Sherwood correlations were developed for a number of test systems and
configurations by a number of investigators. These correlations are listed in Table 15.3.
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TABLE 15.3
Gilland–Sherwood Correlations Reported by Different Investigators

Reference Correlation Valid Range

Estimated from
Geller and Hunt
(1993) in Imhoff
et al. (1993)

Sh′ = 70.5 Re1/3θ
4/9
n S1/9

ni ϕ−2/3
(

dp

dni

)5/3
θn ∈ (0, 0.056)

Re ∈ (0,0.014)

Miller et al. (1990) Sh′ = 12(ϕ − θn)Re0.75θ0.60
n Sc0.5 θn ∈ (0.016,0.07)

Re ∈ (0.00015,0.1)

Est. from Parker
et al. (1991) in
Imhoff et al. (1993)

Sh′ = 1240(ϕ − θn)Re0.75θ0.60
n θn ∈ (0.02,0.03)

Re ∈ (0.1,0.2)

Powers et al. (1992) Sh′ = 57.7(ϕ − θn)0.61Re0.61d0.64
50 U0.41

i Re ∈ (0.012, 0.21)

Imhoff et al. (1993) Sh′ = 340 Re0.71θ0.87
n

(
x

dp

)−0.31
θn ∈ (0, 0.04)

(ϕ − θn)Re ∈ (0.0012, 0.021)

x/d50 ∈ (1.4, 180)

Powers et al. (1994) Sh′ =
4.13 Re0.598

(
d50

dp

)0.673
U0.369

i

(
θn

θni

)β
Re ∈ (0.015, 0.023)

β = 0.518 + 0.114

(
d50

dp

)
+ 0.1Ui

Note: θn [−] is the NAPL content, ϕ [−] is the porosity, Sni [−] is the initial NAPL saturation, dp [L]
is the diameter of the porous media mean particle, dni [L] is the mean value of the initial NAPL
ganglia, d50 [L] is the particle diameter such that 50% of the porous media are finer by weight
(median particle size), Ui [−] is the uniformity index, and x/dp [−] is the dimensionless distance
into the region of residual NAPL.

The correlation by Geller and Hunt (1993) was developed for variable volumetric
content, that is, Sn or n are not constant. The phenomenological model for mass
transfer was based on the correlation developed by Wilson and Geankoplis reported
by Imhoff et al. (1993) with an assumed spherical shape of NAPL ganglia. In that case,
it was necessary to choose the initial NAPL saturation Sni and the initial NAPL ganglia
diameter dni, which are not needed in other models, since a shrinking NAPL ganglia
was examined in this study. In the development of the correlation by Miller et al.
(1990) the residual NAPL within the porous medium was established by mechanical
stirring glass beads, water, and NAPL. The laboratory created NAPL ganglia were
more spherical and smaller in size than that obtained by the displacement mechanism
as in the correlation by Powers et al. (1992), who explain that dissolution is fast in the
work of Miller et al. (1990) because these relatively small spherical NAPL ganglia
have larger interfacial contact area for an equivalent NAPL volumetric content. A
constant volumetric NAPL content and a steady state dissolution experimental data
were correlated. In a study by Parker et al. (1991) the residual NAPL distribution was
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created by mechanical mixing of sand and NAPL. This technique results in a similar
residual NAPL morphology as in the previous case, that is, likely small spherical
NAPL ganglia with different structure than in the case of natural NAPL displacement
mechanism. As in the case of (Miller et al., 1990), a constant volumetric NAPL
content and steady-state dissolution were considered. To develop the correlation by
Powers et al. (1992), the residual NAPL distribution was achieved by an immiscible
displacement process: NAPL first flooded a water saturated medium and then it was
followed by water flush to displace the mobile NAPL. This process creates NAPL
ganglia in a similar way they are created under natural conditions, that is, the ganglia
are nonuniformly displaced and variously shaped. Imhoff et al. (1993) used a different
regression techniques based on the Gauss–Newton nonlinear least-squares algorithm
and linear least-squares regression. The authors conclude that the simplest model
which adequately described TCE dissolution for the porous medium is that obtained
by nonlinear regression of power law, where the exponential variation of Sh with x/dp

was suggested. The major difference between this and other models (see Table 15.3)
lies in the inclusion of the x/dp coefficient in the correlation of the mass transfer rate.
The correlation by Powers et al. (1994) included the uniformity index Ui. Since the
shrinking of the NAPL blobs is considered in this model, the modified Sherwood
number correlation includes the initial volumetric NAPL content θni.

Saba and Illangasekare (2000) compared some of the models listed in Table 15.3
based on one-dimensional testing systems and demonstrated that the correlation based
on two-dimensional data result in significant errors. This finding suggested that the
flow dimensionality has to be taken into consideration when upscaling the models
based on one-dimensional systems to multidimensional flow systems in the field.

Saenton and Illangasekare (2007) proposed a method to upscale the mass transfer
rate coefficient for numerical simulation of mass transfer in heterogeneous source
zones where NAPLs are entrapped. The basic approach involves the use of geo-
statistical parameters of the heterogeneity and the statistics that describes how the
NAPL saturation is distributed in the source zone. Through numerical experiments the
authors demonstrated that the mass transfer is most sensitive to the vertical smearing
of the NAPL that is represented by the second moment of the saturation distribution.
The upscaled mass transfer correlation is given by

Sh = Sh0(1 + σ2
Y )ϕ1

(
1 + Δz

λz

)ϕ3
(

M̂II ,z

M̂∗
II ,z

)ϕ5

, (15.33)

where Sh is the up-scaled Sherwood number containing the effective mass transfer
rate coefficient, σ2

Y is the variance of the ln K field, Δz is the vertical dimensions of
the simulation grid, λz is the vertical correlation length and the last set of terms is the
dimensionless second moment of the vertical saturation distribution. This method of
upscaling was validated using data from an intermediate scale tank experiment.

15.10 EXAMPLE PROBLEMS

A cleanup of a contaminated porous medium by complete dissolution is one of the
many applications of the presented models. Based on different geometrical entrapment
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FIGURE 15.8 Illustration of two-dimensional complete dissolution problem.

of the NAPL, the Graetz–Nusselt model given by Equation 15.29 or the Powers et al.
(1994) model (see Table 15.3) for the Sherwood number Sh is used.

The contaminated sand is initially assumed to contain NAPL at its residual satu-
ration, that is, Sni = Snr , and thus it cannot be cleaned otherwise than by dissolution.
Hence, the contaminated sand is put into a horizontally placed tube that contains clean
sand of the same properties as it is shown in Figure 15.8. Constant flux of water vx is
introduced to the inlet and only laminar Darcian flow is considered.

The dissolution of the entrapped NAPL system is modeled by the following two-
dimensional transport equation:

∂θwC

∂t
+ ∇(D∇C) − v∇C + J = 0, (15.34)

where C [ML−3] is the solute concentration in water, θw [−] is the volumetric water
content given as θwϕSw, φ is the porosity, and Sw [−] is the water saturation related
to the NAPL saturation as Sw + Sn = 1. D [L2T−1] is the hydrodynamic dispersion
tensor given as

D =
[

Dm + vxαL 0
0 Dm

]
, (15.35)

where v[LT−1] is the velocity of the horizontal flow of water, that is, v = (vx, 0), Dm
[L2T−1] is the mechanical dispersion introduced in Equation 15.1, α[L] the longitu-
dinal dispersivity introduced in Equation 15.5, and J [ML−2T−1] is the dispersive
solute mass flux given by Equation 15.24.

Since the saturation of NAPL changes during the dissolution process, the mass
conservation equation is added in the form

ρn
∂Sw

∂t
= SwJ , (15.36)

where ρn[ML−3] is the NAPL density.
Equations 15.34 and 15.36 are supplemented by initial and boundary conditions.

Initially, the saturation of water and the concentration of NAPL are given as

Sw =
{

1 in Ω1

1 − Sni in Ω2
, C = 0 in Ω. (15.37ic)
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The boundary conditions are given as

Sw = 1 on ∂Ω (15.37.bc1)

∇nC = 0 on ∂Ω/ΓD, (15.37.bc2)

C = 0 on ΓD, (15.37.bc3)

where ∇nC denotes the derivative of C in the direction of the outer normal of the
boundary.

15.10.1 DISSOLUTION USING SPHERICAL BLOBS MODEL

Powers et al. (1994) considered a spherical TCE entrapment in a porous medium and
the respective model for the modified Sherwood number is shown in Table 15.3. In
order to correctly illustrate the dissolution process, dissolution of TCE in the Ottawa
sand used by Powers et al. (1994) is discussed in this section (refer to Table 15.4 for
fluid and sand properties).

15.10.2 DISSOLUTION USING TUBULAR MODEL

As introduced in Equation 15.29, the Graetz–Nusselt closed-form solution for the
Sherwood number models dissolving walls of a single tubular TCE entrapment. In

TABLE 15.4
Ottawa Sand and TCE Fluid Properties

Symbol Units (SI) Value
Property of Ottawa Sand
Porosity φ – 0.37
Median particle size D50 m 7.1 × 10−4

Medium particle size dp m 2 × 10−4

Darcian velocity V m s−1 9.796 × 10−5

Initial NAPL saturation Sni − 0.01
Uniformity index Ui − 1.21

Property of TCE
Density ρn kg m−3 1470
Solubility limit in water Cs kg m−3 1.27
Molecular diffusivity Dm m2 s−1 8.8 × 10−10

Longitudinal dispersion αL m 1
Dynamic viscosity μn kg m−1 s−1 5.9 × 10−4

Property of Water
Density ρw kg m−3 1000
Dynamic viscosity μw kg m−1 s−1 0.001

Source: Based on Powers, S.E., Abriola, L.M. and W.J. Weber Jr. 1994. Water Resources Research 30:
321–332.
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order to extend the use of such a model to the macroscopic scale, mean tube length
L[L], outer radius Rout [L], and initial radius Rini[L] have to be chosen such that NAPL
can assumed to be uniformly redistributed in these tubes. If the number of the tubes,
mean length L and mean outer radius Rout remain constant during the dissolution, the
following upscaled formula for the Graetz–Nusselt model can be used:

Sh =
(

2

3Γ(4/3)

)
Re1/3Sc1/3L1/3

(
R2

out − Sn

Sn,ini
(R2

out − R2
ini)

)− 1
6

. (15.38)
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FIGURE 15.9 Concentration distribution in the domain after 1, 5, 9, and 13 h obtained by
tubular (left side) and spherical (right side) models for the Sherwood number Sh.
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FIGURE 15.10 Time evolution of the total integrated mass flux J (a) and total integrated
TCE saturation Sn (b).

Trivial algebraic manipulations in Equation 15.38 reveal that only values of L/Rout
and Rini/Rout have to be known and, consequently, there are only two degrees of
freedom to determine. In the numerical simulations, the mean length of a tube is
given as L = dp/100 and the last parameter Rout is chosen such that the Sherwood
number has the same value as in the case of the spherical blobs model by Powers et al.
(1994) in the previous section.

15.10.3 NUMERICAL EXPERIMENTS

The problem defined by Equations 15.34 and 15.36 together with the initial and
boundary conditions (15.37) is solved by the finite element method.

The concentration distribution for the spherical and tubular model are shown in
Figure 15.9. The evolution of the total saturation Sn,tot and the total mass flux Jtot of
the TCE is shown in Figure 15.10. The total saturation or the total mass flux is given
by the integration of Sn or J over the domain Ω, respectively.
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As a consequence of the calibration of the Graetz–Nusselt problem to give exactly
the same value of the initial Sherwood number, both models behave in A similar
way. There is a slight difference in the dynamics of the dissolution as the spherical
blobs model by Powers et al. (1994) gives stronger TCE flux than the Graetz–Nusselt
model. However, the complete dissolution time of the residual TCE content is the
same for both models as it is shown in Figure 15.10.
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Numerical simulation of hydrogeologic systems requires parameters char-
acterizing fundamental physical, chemical and biological processes as
model inputs. These processes at a very fundamental level occur within
the inter-granular pore spaces of the porous medium. In the traditional
applications in hydrogeology, the smallest scale where continuum for-
mulations are developed is the scale of representative elemental volume
(REV). The fundamental pore–scale processes that occur in a discontin-
uous space consisting of grains and pores do not get captured accurately
at the imposed REV scale. Some of the emerging problems related to
climate change and energy development require us to understand and
characterize basic processes and their interactions taking into account
physical and chemical heterogeneities and dynamics of mass transfer
at fluid interfaces within pores. Up–scaling research involves investiga-
tion, development and validation of methods to relate the parameters
that characterize these processes at the pore and macro-scale to the
grid–scale in field scale simulators. Emerging problems involving multi-
phase flow where up–scaling issues are of central importance is presented.
An example of how mass transfer that occurs at two fluid interfaces at
the pore-scale is characterized and up-scaled to field systems and how
multi–scale physical modeling approaches can be used for validation is
presented. Results demonstrate how pore–scale physics combined with
geologic parameters of field systems can be used to obtain effective field
scale.
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10.1. Introduction

One of the major challenges in hydrogeological sciences and reservoir en-

gineering is upscaling when field scale behavior, for example, needs to be

simulated using parameters obtained from laboratory scale cores or a lim-

ited number of in-situ field measurements. These parameters are often

included in numerical models with significantly larger grid sizes. However,

the nonlinearity of the hydrological processes and/or the variability across

measurement scales in the soil properties themselves lead to model predic-

tion error when parameters determined at much smaller scales are used in

larger models grid blocks. Knowledge gaps exist in the basic theoretical ap-

proaches needed for upscaling as well as selecting the best approach suited

for the type of application.

Hydraulic, geo–bio–chemical and thermal parameters of soils are usually

measured at the small scale and it has been long recognized (e.g., [1]) that

the natural variability of those parameters at the field scale is vast. The

question remains how information obtained from small scale measurements

can be used to predict large scale flow and transport behavior. The issue

of scale–transfer or moving across scales in the subsurface is very relevant

to many conventional hydrogeologic and geo–environmental problems as

well as emerging problems related to climate change and unconventional

energy development. These include the behavior of subsurface chemical

plumes, evapotranspiration, subsurface storage of CO2 and potential leak-

age, methane gas emissions from subsurface sources and loading to the

atmosphere, to name a few. All these problems, parameters characterizing

liquid and gas flow at the pore–scale must be transferred through upscal-

ing for field–scale modeling to be used in design, prediction and decision–

making. Even though many advances have been made in both the hydrolog-

ical sciences and energy/reservoir engineering, many challenges still remain

in developing and implementation of such upscaling methods. Specifically,

knowledge gaps exist in upscaling of multiphase fluid flow and processes

that couple the subsurface to the atmosphere.

A primary challenge of upscaling comes from factoring in the complexi-

ties of naturally present heterogeneity that is manifested at all length scales

from the pore to the field. This chapter discusses conceptual issues involved

in upscaling associated with the above mentioned problems and presents

an example of how mass transfer that occurs at water and non–aqueous

phase liquid interfaces at the pore–scale is characterized and upscaled to

field systems. Results demonstrate how pore–scale physics combined with
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geologic parameters of field systems can be used to obtain effective field

scale parameterizations.

A second example on soil water evaporation and gas flow is used to

highlight and discuss some challenges in upscaling processes controlled by

land/atmospheric interaction.

This section includes four other companion chapters focusing on a num-

ber of aspects of hydrogeological processes that are of central importance

in geosciences and engineering. A summary of these chapters is provided

here.

Chapter 11. Pore-Scale Chemical Reactions in Diffusion-Limited En-

vironments at the Pore Scale (D. Benson). This chapter addresses an issue

related to mixing at the pore scale and its contribution to chemical reac-

tions. This is of importance in many problems in the subsurface that involve

fluid flow and chemical reactions. Two examples that are of current interest

are groundwater contamination and mineralization of dissolved CO2 in ge-

ologic formations. The classical differential equations of chemical reactions

assume perfect mixing among reactants. This chapter presents a method

to rectify the problem associated with the well mixed assumption in both

theoretical and applied settings.

Chapter 12. Porosity in reactive geochemical systems (A. Navarre-

Sitchler, G. Rother, & J. Kaszuba). This chapter addresses the fundamental

issue of reactive fluids in pore spaces; reactive fluids can create a dynamic

system that affects the network of pores and hence the flow through the

system. The author makes the argument that many fundamental geologic

processes, the physical characteristics of pore networks in rocks in geologic

materials are not well understood due to their dynamic nature and features

at different length scales. Rock weathering and saprolite formation and

geochemical reactions within CO2 geologic sequestration are used as two

examples to demonstrate how geochemical reactions affect porosity. Both

of these examples have important implications for Earth Science.

Chapter 13. Quantifying the heterogeneity of hydrologic properties of

rocks in core floods (R. Pini & S. Benson). This chapter discusses the effect

of sub-core scale heterogeneities on multiphase flow by considering both

experimental and modeling studies. Novel experimental methods that allow

non-destructive measurements of core- and sub–core–scale hydrogeological

properties during conventional core–flooding tests are presented. These

methods allow for the measurement of porosity, permeability and capillary

pressure vs saturation relationships needed in multiphase flow modeling.

This approach represents a significant improvement from conventional core
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analysis to investigate complex hydrogeological flows in the subsurface.

Chapter 14. Monte Carlo Simulation of Distribution of Multiphase

Capillarity in a Porous Medium (B. Zeidman, N. Lu, & D. Wu). This

chapter presents an approach to determine the spatial distribution of var-

ious fluid components such as air, water, oil, or gas hydrate in multiphase

porous media systems. This method based on Coarse–Grained Monte Carlo

simulation is well–suited to handle complicated pore space geometries, ex-

ploiting the advances in imaging technologies such as X-ray micro CT for

obtaining high–resolution maps of pore space.

Chapter 15. Coupled Thermo–hydrogeologic Processes in Enhanced

Geothermal Systems (Y.-S. Wu, Y. Xiong, & H. Kazemi). Heat extraction

from fractured geothermal systems is subjected to complex interactions of

high temperature, multiphase flow, rock deformation and chemical reac-

tions. This chapter presents the formulation of a conceptual model of these

thermal–hydrological–mechanical–chemical interaction. A numerical model

based on this conceptualization is used to conduct an example simulation

of a prototype enhanced geothermal reservoir.

10.2. Issues of Upscaling in Emerging Problems

Climate change and unconventional energy development have highlighted

the importance of a number of porous media science and technology issues

with upscaling implications. In this section, climate and unconventional

energy development related problems are briefly introduced to identify the

fundamental issues related to pore–scale processes and upscaling for field

applications.

10.2.1. Carbon Capture and Storage

To address the technical challenge of reducing greenhouse gas loading to the

atmosphere from fossil fuel combustion, carbon capture and storage have a

large potential. The storage process involves the injection of captured CO2

into deep subsurface formations such as depleted hydrocarbon reservoirs

and deep saline aquifers. The goal is to trap the CO2 gas in supercritical

liquid form (ScrCO2) in the pores of the formation that eventually dissolves

into the formation water and mineralizes, resulting in stable and long–term

sequestration.

During injection, the ScrCO2 that is lighter than the formation water

migrates laterally below low permeability cap rock. Based on our under-
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standing of the behavior of non–aqueous phase liquid (NAPL) in subsurface

formations, it can be conceptualized that in heterogeneous systems, the

ScrCO2 will preferentially migrate into higher permeability zones and pool

under the interface of the confining low permeability layers due to capillary

barrier effects (very high entry pressure needed for the non-wetting fluid

to displace the wetting fluid) [2–4]. The formation brine with dissolved

CO2 is heavier and will tend to migrate downwards resulting in unstable

finger development contributing to convective mixing [5]. This dissolution

process in the long–term is expected to contribute to permanent trapping

as a fraction of the dissolved CO2 mineralizes.

A related problem associated with geologic CO2 sequestration where

gas dissolution is of interest is when the CO2 leaks from the deep formation

either through caprock fractures, faults or defective casings in abandoned

wells. If the liquid ScrCO2 leaks, it will be carried upwards in the over-

laying formation until it encounters another confining layer. Again, the

possibility exists for the liquid to encounter other leakage points and flow

to shallow formations where the ScrCO2 passes its critical point and be-

comes a gas or dissolves into the formation water due to its high solubility.

It has been shown in laboratory studies that when the water with dissolved

CO2 encounters texture transitions in the overlaying formations, the gas

exsolves and accumulates below low permeability layers in the shallow sub-

surface [6]. Gas bubbles tend to form due to accumulation of gas molecules

in the pores of the rock or rough surfaces of the solid grains where nucleation

of the bubbles mostly occurs [7]. Nucleation rate is a function of solubility

and cavity size distribution that controls the sizes of forming bubbles. Once

the gas phase is formed, it migrates upward due to buoyancy and expands

due to decreasing pressure until it encounters an impermeable layer. Accu-

mulated gas can then migrate laterally until it finds a preferential pathway

and continues to migrate upward reaching the shallow subsurface, thus po-

tentially affecting large areas of the aquifer and eventually the land surface.

When fresh water passes through these gas-entrapped zones, mass transfer

occurs across the gas/water interfaces contributing to CO2 gas dissolution.

The combined effects of gas trapping and dissolution help to attenuate the

leaking CO2 thus potentially reducing atmospheric loading. All processes

that are relevant to trapping, dissolution and gas migration occur at the

pore–scale and assessment of trapping efficiency and leakage risks in the

field require upscaling.
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10.2.2. Methane Gas Leakage

In unconventional energy development, methane gas and light oils stored in

the pores in shale are extracted through hydraulic fracturing. Gas extrac-

tion has the potential to create a secondary problem of leakage, resulting

in gas migration through the overlaying geologic media. Leakage can occur

through gas production sites, distribution pipelines, or natural fractures

in the geologic formation above the shale layer. The primary motivation

for understanding fugitive emissions is increased CH4 gas loading that con-

tributes to global warming with significant climate change implications.

The global warming potential of CH4 is 72 times greater than CO2 for a

20–year time period and 25 times greater than CO2 over a 100–year pe-

riod [8]. Multiple field studies are assessing the local impacts of methane

leakage associated with hydraulic fracturing technology used for gas pro-

duction through air and water quality monitoring. Methane emission from

natural gas systems was estimated to be 221.2 million metric tons of CO2

equivalent in 2009 [9]. Understanding the coupled process of gas migra-

tion in the shallow unsaturated zone of the subsurface and the atmospheric

boundary layer becomes critical in developing models for the assessment

of risk of atmospheric loading and development of effective leak detection

technologies. The pathways that carry the gas through the unsaturated

zone close to the land surface from the source (both point and distributed)

are developed through the air spaces of partially water saturated soil. The

spatial distribution of relative permeability of the gas/air phase that de-

pends on the soil–water saturation determines these connected pathways.

In natural media, the spatial distribution of soil properties has a direct

correlation to the distribution of the soil water saturations. One of the

driving forces that controls the gaseous flow rate in the shallow subsurface

is the pressure at the land–atmospheric interface. Hence, any pressure fluc-

tuations in the atmosphere can potentially affect the gas movement and

correspondingly the leakage signal that is detected near the land surface.

The effect of the wind speed and pressure fluctuations at the soil surface

and how air is transmitted through the soil pores is not well understood.

Many atmospheric and land surface conditions (e.g. micro topography,

surface roughness, vegetation etc.) contribute to this process. For exam-

ple, in the liquid phase, the primary mechanisms of advection, molecular

diffusion, and hydrodynamic dispersion contribute by different degrees to

mass transport in the gas phase. In some settings, small gradients in gas

pressure resulting from fluctuations in the pressure at the land-atmospheric
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interface can result in advective flux much larger than diffusive flux (e.g.

atmospheric pumping).

Poulsen and Møldrup [10] evaluated the effects of wind–induced pressure

fluctuations on CO2 migration and emissions at a landfill site. They ana-

lyzed the impact of wind induced gas emission as a function of the standard

deviation in pressure variations. They found that the soil–air permeability

and the pressure fluctuation amplitude significantly affected gas emission

and that 40% of the total gas emissions flux came from wind turbulence–

induced gas transport. Maier et al. [11] also found that turbulence induced

pressure pumping reached up to 60% of the diffusive flux rates.

The upscaling related challenges of this problem come from first deter-

mining what pore–scale processes are important in coupling multi-phase

flow in the subsufrace with the free flow in the atmosphere. Second, how

these processes are properly upscaled when the soil conditions change both

laterally and vertically. The effects of topography of the land surface and

vegetation also have to be factored in.

10.2.3. Vapor Intrusion

Chlorinated solvents that are in the form of NAPLs when introduced to

the subsurface through accidental spills or improper disposal are prevalent

at industrial waste sites. These chemicals that are suspected or known car-

cinogens if ingested through contaminated water or inhaled as vapor results

in major health risks. After a spill, NAPL can persist as a separate phase in

the vadose zone and in the saturated zone below the water table entrapped

within the soil pores. The gas phase NAPL in the vadose zone can readily

disperse into air, into the air spaces within soil or underneath a structure,

leading to vapor intrusion, or the entry of a volatile chemical to indoor air

from underlying contamination in soil and groundwater [12]. It has been

reported that the average American spends more than 21 hours per day in-

doors and roughly 18 hours indoors for every hour spent outdoors [13]. Al-

though it is not conclusively known whether vapor intrusion is a widespread

problem with respect to long–term exposure at the very low levels expected

in enclosed spaces such as in buildings and basements, several cases have

received national attention. In a U.S. Environmental Protection Agency

(EPA) review article [14] state, due to difficulty in conclusively identifying

the soil–to–indoor pathway via indoor sampling, researchers have suggested

moving the focus of vapor intrusion investigations outside the home. The

processes that govern the vapor transport in the heterogeneous subsurface
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outside the home are complex, and the sampling to assess potential path-

ways is subjected to spatial and temporal variability. Spatial variability is

a result of a number of factors that include changing soil and soil mois-

ture conditions and temporal variability controlled by the transient heat,

wind, atmospheric pressure and a water flux boundary conditions at the

land–atmospheric interface. In addition, a number of physical and geo–

bio–chemical processes may attenuate the vapor in the subsurface along

the pathways from the sources to the building. The uncertainty resulting

from the lack of fundamental scientific understanding of these processes

and the inability to fully characterize the pathways through effective sam-

pling impact the prediction of exposure risks and design of effective mitiga-

tion strategies. Without an understanding of the partitioning between the

NAPL/water and NAPL/air interfaces in the vadose zone under realistic

conditions, site managers, for example, cannot generate accurate estimates

on remediation efficiency and/or source longevity. Understanding vapor

transport and attenuation in the unsaturated zone is paramount to our

understanding of the remediation alternatives of the subsurface and to our

ability to characterize risk to human health through exposure pathways.

The same issues of moving across scales from pore to field are of relevance

as the basic processes involved are related to flow of fluids in multiphase

systems with the added complexity of effects of heat and mass transfer

processes at the land surface that contribute to preferential vapor pathway

development in the subsurface.

10.2.4. Land Mine Detection

Countermine technology has become the subject of global interest for both

military and humanitarian mine–clearing operations. The United Nations

(UN) and the US Department of State declared landmines to be one of the

most widespread, lethal, and long lasting forms of pollution [15], costing

over $33 billion to clear the approximately 100 million landmines strewn

throughout 64 countries [16]. Although there is a wide range of sensors

available for the detection of buried landmines and many of the sensors

perform well, there is general agreement that none of the sensors can re-

liably detect landmines while also maintaining a low false-alarm rate [17].

One main reason for the high false alarm rate is the variety of landmines

that are used as well as the extreme variability of the environment in which

the mines are placed. Detecting small mines in large areas is especially

difficult when the area is highly heterogeneous with features that can mask
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the presence of the mine. Because landmine sensors (e.g. ground penetrat-

ing radar and thermal imagery) exploit soil and environmental conditions

to discern between mines and other objects, all current mine detection

technologies require that the spatial and temporal variability of key envi-

ronmental conditions such as climate, vegetation, soil type, depth of ground

water table, and topography be understood. If these factors and the ability

to model them in a variety of domains become well defined, then sensor

and algorithm simulations can more realistically be tailored to particular

operational scenarios and technologies [18]. However, research efforts on

mine detection are generally geared toward sensor development and sensor

fusion while very little effort has been made to evaluate the environmental

conditions that affect sensor performance [19–21]. Although many numeri-

cal and experimental investigations have been performed, they focus on the

response/effectiveness of the technology or neglect important parameters

like soil heterogeneity, and the temporal and spatial variability of the soil

moisture and/or thermal properties. Thus, there is a knowledge gap be-

tween the signal processing technique and fundamental processes that occur

in shallow subsurface zones as affected by near surface boundary conditions.

Increasing our knowledge of the effects of geohydrologic/thermal properties

and behaviors on the landmine signature is needed to fill the knowledge gap

in order to better understand, model/simulate, and predict the environmen-

tal conditions that are most dynamic to mine detection performance. The

shallow subsurface soil moisture processes as controlled by the mass and

heat flux boundary conditions at the land–atmospheric interface are cen-

tral to the problem of detection of land mines using sensing technologies.

Hence, in developing models for signal interpretation in the field, the issues

of multiphase flow parameter up–scaling in the shallow subsurface becomes

centrally relevant.

10.3. Multiphase Flow

Fundamental to the behavior of water, supercritical CO2, NAPLs and gases

in the systems that are of relevance to the problems introduced in the

previous section is the processes that govern multiphase flow in porous

media. In this section, the role of heterogeneity, continuum representation

and the governing equations of multiphase flow are first presented. This is

followed by the introduction of a commonly used constituative model and

a brief review of upscaling theories as applied to constitutive models.
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10.3.1. Heterogeneity

Much of the uncertainty in our understanding and parametrization of liquid

and gas flow through soils can be attributed to soil heterogeneity. Both field

and laboratory experiments have shown that the soil heterogeneity controls

the flow and transport, including preferential flow. As seen in Fig. 10.1,

most subsurface formations are heterogeneous with different spatial corre-

lations in all directions.

Figure 10.1(a) shows an example from a diesel contaminated site to

demonstrate how texture variability associated with mixtures of sands,

silts and clays results in subsurface heterogeneity. Figure 10.1(b) (from

a road cut) shows an alluvial formation where sands of different grain sizes

are deposited in layers creating heterogeneities and well-defined lithological

variations. When core samples are taken and the soil physical parameters

determined, the parameter values depend on the size of the sample. Using

porosity as a characterization parameter, how this variability is factored in

defining the representative elementary volume (REV) for continuum rep-

resentation of porous media flow is presented in Fig. 10.2. The porosity is

defined as

φ(x0) =
1

Vr

∫

Vr

χ(x)dx, (10.1)

Fig. 10.1. Heterogeneity manifested at field scale defined by lithological variations.
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where χ(x) [−] is the void space indicator function and the volume Vr [L3]

is a sphere of radius r [L] centered around the spatial point x0 [L]3. The

REV is such volume Vr for which exist radii rmicro and rmacro such that

the porosity given by Eq. (10.1) is independent of the radius r within

the range as shown in Fig. 10.2. The microscale description (r < rmicro)

focuses on the behavior of a large number of molecules of the present phases

(e.g., liquid and gas phases through the soil solid matrix). The equations

describing their flow are those of the continuum mechanics within the pores

(e.g. direct numerical simulations). The continuum (Fig. 10.2) or REV

scale is defined as the scale in which the mean is a constant deterministic

quantity and the variance approaches zero [22]. At this scale, individual

pores or phase interfaces are no longer noticeable. It is at this scale that

is referred to as macroscopic scale the Darcy equation is applicable. At

this macroscopic scale, the description of the flow of phases introduces new

equations which are the transposition of the mass balance, momentum and

energy microscale balances. For example, the equation of Darcy is the

momentum balance at the macroscopic scale which can be deduced from

Navier–Stokes equations. In these macroscopic equations appear effective

properties, as the permeability in Darcy’s law, the relative permeability and

capillary pressure in the multiphase case, etc. These effective properties

can be theoretically obtained from microscopic properties using upscaling

techniques.

The field scale (Figs. 10.1 and 10.2) is defined as the spatial dimension

where the soil properties become nonstationary [23]. Natural field scale

media are in fact generally heterogeneous and contributes to both spatially

and temporally non-linear multiphase flow behavior. At this scale, the soil

properties are rarely the same at every point of the medium. When solving

the governing equations of flow or transport using numerical schemes, where

the domain is discretized into computational blocks or grids, it is possible

to take into account the effect of these heterogeneities using block sizes

smaller than the characteristic size of the heterogeneities. As this may

not be feasible due to high computational demands, a second upscaling

stage is needed to describe the field scale properties from the macroscale

description.

10.3.2. Processes and Constitutive Models

Multi–phase porous media systems consist of fluids that exist in sepa-

rate phases in the inter–granular pore spaces. Figure (10.3) schematically
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Fig. 10.2. Porosity as a function of the volume mean radius r. Heterogeneity and scale.
Here the averaging of porosity over the different length scales from pore, homogeneous
continuum scale to heterogeneous field scale is shown.

shows such systems encountered in hydrogeological applications. Two–

phase problems of water flow in the unsaturated zone above the water

table associated with rainfall infiltration, aquifer recharge and irrigation

involve water and air as the wetting and non–wetting fluids, respectively.

Below the water table, the soil pores are fully saturated with water, thus

describing the flow as a single-phase problem. In industry, related problems

involving accidental releases of partially immiscible fluids (NAPLs) such as

industrial solvents, wood treating agents and petroleum products, the fluid

displaces some of the non–wetting air phase resulting in a three–phase sys-

tem. When NAPLs that are heavier than water penetrate the water table,

the non–wetting phase displaces some of the pore–water resulting in a two–

phase system. Interfacial tension at wetting/non–wetting fluid interfaces

within pores introduces additional force of capillarity that is not present in

saturated single–phase flow systems.

Each fluid in a multiphase system is characterized by its own pres-

sure state. The differences in pressure arise from imbalances of molecular

forces at fluid interfaces [24]. In a two–phase system, the capillary pres-

sure pc [ML−1T−2] that depends on the wetting phase saturation Sw [−] is

defined as the pressure difference between wetting and non-wetting phases

pc(Sw) = pnw − pw, (10.2)
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Fig. 10.3. Multi-phase porous media systems in hydrogeology.

where pnw [ML−1T−2] is the non–wetting phase pressure and

pw [ML−1T−2] is the wetting phase pressure. The relationship of cap-

illary pressure and fluid content is referred to as the capillary pressure

function (that is referred to as the retention function in unsaturated flow

systems). As given in Eq. (10.2), capillary pressure is usually expressed as

a function of the saturation of the wetting fluid. This relationship is an in-

trinsic property of a given porous medium and the two–fluid system. Data

on capillary pressure as a function of saturation are obtained experimen-

tally and fitted with mathematical functions to obtain constitutive models

for multiphase flow. Two commonly used constitutive models for capillary

pressure in soil physics and geohydrologic applications are presented by

Brooks and Corey [25] and van Genuchten [26]. The Brooks–Corey model

for the retention function is,

pc(Sw) = pdS
1
λ
e , for pc ≥ pd, (10.3)

where λ [−] is a fitting parameter, and pd [ML−1T−2] is the pressure at

which the non–wetting fluid first enters the pores when the non–wetting

place builds up and is called displacement or entry pressure. The effective
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saturation Se is defined as,

Se =
Sw − Sr,w

1 − Sr,w − Sr,nw
, (10.4)

where Sr,w [−] and Sr,nw [−] are the residual or minimum saturation wet-

ting and non–wetting fluid, respectively.

When multiple fluid phases are present within the pore space, the ability

of the medium to conduct a given fluid within a pore will not depend on the

geometry of the pore space only, but also on fluid properties, geometry of the

fluid–filled part of the pore space and phases volume fraction. Darcy’s law

that was originally developed and applied for single phase flow is adopted for

multiphase flow through the use of the concept of relative permeability [27]

as,

qα = −kr,α(Sα)

μα
Ki (∇pα − ραg) , for α = w, nw, (10.5)

where qα [LT−1]3 is the apparent macroscopic velocity of the phase α,

μα [ML−1T−1] is the dynamic viscosity of the phase α, Ki [L
2]3×3 is the

intrinsic permeability tensor, kr,α [−] is the α–phase relative permeability

function, ρα [ML−3] is the density of the phase α, and g [LT−2]3 is the

gravitational acceleration vector. The relative permeability kr,α of fluid

phase α ranges between zero and one and depends on the fluid saturation

Sα.

By extension, the hydraulic conductivity tensor K [LT−1]3×3 also be-

comes a function of saturation of the phase α,

K = K(Sα) =
kr,α(Sα)ραg

μα
Ki, (10.6)

where g [LT−2] is the scalar gravitational acceleration constant.

The Brooks–Corey constitutive model for the relative permeabilities of

the wetting and the non–wetting phases are

kr,w = S
− 2+3λ

λ
e , (10.7a)

kr,nw = (1 − Se)
2
(
1 − S

− 2+λ
λ

e

)
. (10.7b)

Darcy’s law for multiphase flow (Eq. (10.5)) and the mass balance for each

phase are combined to derive the governing equations for multiphase flow

in two-phase system as,

φ
∂(ραSα)

∂t
− ∇·

(
ραkr,α

μα
Ki (∇pα − ραg)

)
= Fα, (10.8)

Kapitola v Pore Scale Phenomena: Frontiers in Energy and Environment ...................

222



March 3, 2015 11:8 Pore Scale Phenomena – Frontiers in Energy and Environment - 9” x 6” pore˙scale˙book page 177

From Pore to the Field 177

where Fα [ML−3T−1] is the source/sink term and fluid phase

α = w, nw. Equation (10.8) written for each phase in the multiphase flow

system, in combination with the constitutive models for capillary pressures

(Eq. (10.3)) and relative permeabilities (Eq. (10.7)) provide the full for-

mulation of the mathematical model to solve for the phase pressures and

saturations for given initial and boundary conditions and source terms.

These governing equations are derived for the continuum macro–scale (or

Darcy scale). The parameters that appear in these equations have to be

upscaled to computational grid scale when used in simulations. The upscal-

ing of constitutive models of capillary pressure and relative permeability are

discussed in the next section.

10.3.3. Upscaling Constitutive Parameters

It is well supported in literature that the highly non–linear distribution

of hydrologic processes often limits the ability to track interactions from

scale–to–scale and across space and time. The primary question driving

the upscaling problem is: can laboratory scale measurements successfully

be applied to properly describe larger scale flow and transport behavior?

We know that one can directly apply laboratory measured soil hydraulic

properties as inputs for lab scale studies and simulation models. However,

in developing upscaling methods, it is necessary to recognize that it is not

practical to take measurements at all points in the subsurface system to

determine the needed parameters. Hence, the development of theoretical

foundations for any upscaling method leads to a practical question: how can

soil hydraulic parameters determined for homogeneous samples collected at

a limited number of locations or the laboratory scale be used to determine

the parameters of the discretized grid blocks of models (grid–block scale)

that simulate the field scale behavior? One option is to spatially distribute

laboratory scale soil hydraulic properties across larger scales. Alternatively,

the lab or discrete in–situ scale properties can be used as initial estimates

and improved upon by using inverse modeling or during model calibration.

Inverse modeling attempts to minimize differences between observation and

simulation using analytical or numerical solutions that include constitutive

relationships that contain estimated parameters [28].

The texture variability that contributes to changes in porosity with

scale also affects the parameters that depend on the pore sizes and pore

size distribution. These include permeability and hydraulic conductivity in

saturated groundwater flow, soil–water retention and relative permeability
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in unsaturated flow and constitutive model parameters of multiphase flow

(Eqs. (10.3) and (10.7)). These parameters are obtained using homoge-

neous test samples and defined at the REV scale to be used in continuum

modeling.

What we know as a single phase porous medium hydraulic conductivity

K [LT−1] is an effective property which can be induced from upscaling of

pore to the macroscale flow. In the simple case of the two–layered het-

erogeneity, the upscaled hydraulic conductivity is an average determined

using the two values of K of the two layers by simple application of Darcy’s

law. Any analytical solution method applicable for layered systems require

the knowledge of the K for each layer and their thicknesses, thus limit-

ing their practical utility in upscaling applications. More rigorous methods

have been suggested to determine upscaled hydraulic conductivity. An up-

scaled parameter of K referred to as the effective hydraulic conductivity

is estimated by considering the small–scale variation of K as a random

space function (RSF). The effective conductivity is estimated independent

of the boundary conditions from the spatial correlations and variances of

the RSF [29, 30]. These formulations assume statistical homogeneity of the

system that is modeled. Considerable knowledge exists on upscaling single

phase flow in porous media using effective parameters. Another approach

referred to as equivalent hydraulic conductivity assumes that the domain

to which the variations of K are upscaled to have an equivalent value of

K that preserves the mean flux of the heterogeneous formation for a given

head gradient [31]. As the equivalent K depends on the boundary condi-

tions that control flow, any uncertainty in the boundary conditions results

in non–unique estimates of the upscaled parameter. However, the equiva-

lent K value approaches the effective K value when the aquifer size is larger

than the correlation range of K [32].

Figure 10.4 shows the laboratory–simulated migration of a light NAPL

in a heterogeneous porous medium. The test tank was packed using five

highly characterized soils to represent a spatially correlated random field

with known geostatistical parameters (mean of logK, variance of K and

correlation lengths in the x and z directions) [35]. The migration of the non–

wetting fluid that occurs through the pores by displacing the wetting fluid

is controlled by the pore–scale soil parameters as well as the properties of

the wetting and the non–wetting fluids. The upscaling problem that needs

to be addressed is how the parameters of the multiphase systems affected

by the soil and fluid properties are properly represented in an example

grid–scale model shown and compared to a numerical model that uses such
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(a) Laboratory experiment (b) Numerical simulation

Fig. 10.4. Laboratory simulation of multiphase flow in a heterogeneous porous medium

(a) and numerical simulation using the upscaled parameters (b). The numerical solution

was obtained using the mixed hybrid finite element method described in Refs. [33, 34].

estimated upscaled parameters in Fig. 10.4.

At the REV scale, the multiphase system is characterized by the con-

stitutive relationships that include capillary pressure and relative perme-

ability as functions of saturation (Eqs. (10.3) and (10.7)). The issue of

upscaling these constitutive models is common to the types of problems

in multiphase flow that were presented in Section 10.2. Parameter up–

scaling has been extensively studied by petroleum engineering as applied

to hydrocarbon reservoirs, soil physicists in irrigation water management

and geo–hydrologist for applications in subsurface remediation involving

solvents and petroleum wastes. Constitutive models are developed from

measurements made in the laboratory using small samples whose sizes cor-

respond to size of cores extracted during field investigations. The basic way

these parameters are upscaled in multiphase systems is very different from

single-phase flow, because in addition to the subsurface heterogeneity, the

non–linearities of the basic processes play a critical role [36]. These non–

linarites also contribute to different fluid retention behavior at different

length scales.

Early work on upscaling in unsaturated flow systems (water as wetting

and air as non–wetting fluids) based on small perturbations (e.g. [37]) is

not generally applicable when the size of the field domain is small compared

to the length scales of the heterogeneity. In the development of upscaling

for two–phase flow, some researchers adopted percolation network models

used in pore–scale investigations to upscale constitutive relationships at

the macro-scale [38–40]. In small samples that are used to get the reten-

tion function in the laboratory, the water content that corresponds to a
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given capillary pressure is fully determined by the capillary forces. The

basis for constitutive models such as by [25, 26] for retention and relative

permeability functions is capillary equilibrium. Desbarats [41] focused on

the upscaling of moisture retention curves in heterogeneous media under

conditions of capillary–gravity equilibrium. After assessment of many de-

velopments based on percolation approaches and subsequent work on the

topic, Desbarats [42] observed that to properly upscale constitutive rela-

tionships at the macroscopic scale, in addition to gravity and capillary

forces, the viscous forces that define the shear resistance to flow have to

be considered. This raises the question on whether the equilibrium based

constitutive models are valid at large scales where the water (wetting fluid)

distribution is not only controlled by the pore size distribution but also by

heterogeneity. To address these limitations, Desbarats [42] used a three–

dimensional numerical model to simulate viscous forces in addition to grav-

ity and capillary forces to identify averaging processes that produced the

upscaled retention functions from local functions. The author concluded

that the model used to determine upscaled constitutive relationships could

not be represented by the same parametric model representing the small–

scale constitutive relationships. The slope of the relative conductivity curve

in the small water content range was interpreted as an upscaled pore–size

distribution parameter (inverse is an upscaled capillary length). The main

finding of this study where viscous forces were included in the analysis was

that the upscaled pore–size distribution parameter can be approximated by

a spatial power average of the corresponding small scale values distributed

in the flow domain. Using the same assumption of steady flow, Liu et

al. [43] used a practical formulation to determine the large–scale (upscaled)

retention curve using the small–scale curves assuming spatially uniform

capillary pressure exists in the larger upscaled domain. The expression for

the upscaled capillary pressure–saturation relationship was given as

S(pc) =

∫
V

s(pc)dV

∫
V

φdV
, (10.9)

where S [−] and s [−] are the water saturations at large and local (mea-

surement) scales, respectively, V [L3] is the total medium volume, pc is

the capillary pressure, and φ — is the spatially variable porosity defined in

Eq. (10.1). These authors pointed out that Eq. (10.9) imply that in both

small and large scales, the relationships are determined by the pore–size dis-

tribution and are independent of correlation length scales of heterogeneity.
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The upscaled hydraulic conductivity was given as

K(pc) =
1

V

∫

V

k(pc)
ωdV, (10.10)

where, K [LT−1] and k [LT−1] are the upscaled and sample scale hydraulic

conductivities, respectively, and ω [−] is a constant scalar parameter. This

expression assumes that even though the sample scale relative permeability

primarily depends on the pore–size distribution, the upscaled conductivity

does not. This approach, even though practical, is limited to steady–state

unsaturated flow in porous media with large air entry values. In petroleum

engineering, the problem of upscaling constitutive models was posed in the

context of managing the computing efficiency by using large grid blocks.

The upscaling methods used pseudo–functions [44] that accounts for the

heterogeneity within the large grid–block to replace the multiphase effec-

tive permeabilities and capillary pressures [45]. The goal was to use large

grid dimensions to utilize available computing power manageable levels and

with minimum loss of accuracy due to simplified representation of the het-

erogeneity. Use of this method still requires fine–grid simulations of a rep-

resentative reservoir section to determine the appropriate pseudo–functions

for the selected parameters. Even though some computing efficiencies have

been achieved, these methods were considered to be without strong theo-

retical foundation [42].

Other techniques have been proposed and used for upscaling two–phase

flow. In homogenization [46, 47], stochastic representation of conservation

laws in porous medium are used to get non–linear effective equations that

are considered to govern the flow behavior of the homogenized equivalent

of the randomly heterogeneous porous medium. Another method referred

to as the large–scale volume averaging (e.g. [48]), the flow equations and

the properties at a larger scale are calculated by averaging from a lower

scale. This method has been demonstrated to be more efficient than meth-

ods based on pseudo–functions that require full simulations using fine-grid

model [45]. The volume averaging technique has been extensively used to

predict the macro–scale transport properties for many processes including

transport in heterogeneous porous media [49], two-phase flow [50], two–

phase inertial flow [51], reactive media [45, 52], solute transport with ad-

sorption [53] multi–component mixtures [54], and coupled heat and mass

transfer with Soret effect [55, 56].

The question of using a one– or two–equation model is raised when

modeling two phase (or region when working at the Darcy’s scale) flow in
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porous media. The one–equation equilibrium model consists of a single

transport equation for both phases (or regions). When the two fields in

the two regions are close enough, the transport equations that represent

the two-equation model can be added to produce this model. In other

words, the principle of local–scale equilibrium is valid. If the local equi-

librium assumption does not hold, two separate upscaled equations should

be solved. However, for many initial boundary–value problems, the two-

equation model shows a time–asymptotic behavior that can be modeled

with a non–equilibrium one–equation model [57, 58]. The domains of va-

lidity of these three different models, which depend mainly on the Péclet

number and a characteristic time, have been already explored [50, 59].

Davarzani et al. [55] showed that for moderate property contrast be-

tween phases, the local–equilibrium can predict the flow very well, and the

model is not very sensitive to boundary conditions or initial conditions.

For higher contrasts, the local–equilibrium model fails during the transient

period. While, at steady–state, the local–equilibrium model offers again a

very good prediction [55].

10.4. Dissolution in Multiphase Systems

10.4.1. Mass Transfer and Rate Coefficients

The mass transfer that occurs at fluid-fluid interfaces at the pore level is

generally approximated using a linear model based on stagnant film theory

as shown in Fig. 10.5. As there is no mass storage within the film, the

concentration gradient between the source and the solvent can be assumed

to be linear. The mass transfer across the interface between two fluid

phases is (based on the linear film theory) generally described through a

mass transfer rate coefficient. The rate of mass flux is defined through a

linear relationship given by

J = k
(Cs − C), (10.11)

where J [ML−2T−1] is the mass flux rate from the dissolving phase (can be

considered to be the non–wetting phase), k
 [LT−1] is the mass transfer rate

coefficient, Cs [ML−3] is the aqueous phase concentration under conditions

when the dissolving phase is at solubility limit in water and C [ML−3] is

the aqueous phase solute concentration in the bulk solution. The subscript

� denotes that the driving force acts along the longitudinal direction of flux.

When upscaling the stagnant film model to the representative elemen-

tal volume (REV) scale in porous media, it is necessary to define an over-

Kapitola v Pore Scale Phenomena: Frontiers in Energy and Environment ...................

228



March 3, 2015 11:8 Pore Scale Phenomena – Frontiers in Energy and Environment - 9” x 6” pore˙scale˙book page 183

From Pore to the Field 183

d

   
Le

ng
th

 [L
]

Aqueous/gaseous
phase

C [ML-3]
Cs

C

NAPL source

Stagnant lm

Fig. 10.5. Stagnant layer model with linear concentration profile between the NAPL

source concentration Cs and the concentration C the in the bulk phase.

all mass transfer rate coefficient. By extending the single film theory, a

linear driving force model similar to Eq. (10.11) can be used to describe

mass flux from entrapped non-wetting phase (NAPL, ScrCO2 or CO2 gas

plume) sources in porous media. This is accomplished by introducing a

lumped mass transfer rate coefficient Kc [T−1] [60]. The interface mass

rate J ′ [ML−3T−1] in porous medium takes the form

J ′ = Kc(Cs − C). (10.12)

The pore–scale mass transfer coefficient k
 and the lumped mass transfer

coefficient Kc are related by

Kc = k

Anw

V
(10.13)

where Anw [L2] is the total NAPL–water surface area within the REV of

volume V [L3]. As Anw cannot be directly measured, in practical applica-

tions in porous media, Kc is treated as an empirically determined parameter

for a specific multiphase system.

10.4.2. Gilliland–Sherwood models

Phenomenological models that are used to predict the mass transfer rate

coefficient k
 or the lumped mass transfer coefficient Kc are referred to as

Gilliland–Sherwood models and are represented by dimensionless Sherwood

number Sh and modified Sherwood number Sh′. The Sherwood number Sh

is related to the mass transfer rate coefficient k
 as

Sh = k

dp
D


, (10.14)
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where dp [L] is the geometric mean of particle diameter and D
 [L
2T−1] is

the diffusion coefficient in the free liquid. The modified Sherwood number

Sh′ that involves the lumped mass transfer rate Kc and is suitable for use

in porous media applications is defined as

Sh′ = Kc

d2p
D


. (10.15)

Therefore instead of Kc, the dimensionless Sherwood number Sh′ is de-

termined empirically in order to describe the mass transfer process under

various physical and chemical conditions in the porous media.

Building on the concept of upscalable Gilliland-Sherwood model for

porous media, an empirical model for REV scale mass transfer was pro-

posed by Ref. [61] in a general form

Sh′ = αReβScγ
(

θnd50
τL

)δ

, (10.16)

that involves four dimensionless fitting parameters α, β, γ, and δ, dimen-

sionless Reynolds and Schmidt numbers Re [−] and Sc [−], respectively,

dissolving NAPL content θn [−], d50 [L] is the particle diameter such that

50% of the porous media are finer by weight (median particle size), τ [−] is

the tortuosity factor of the flow path, and L [L] is the dissolution length.

The corresponding model that was fitted by Saba and Illangasekare [61]

to dissolution data obtained in a two–dimensional flow configuration in a

small scale test tank is α = 11.34, β = 0.28, γ = 0.33, δ = 1.037. Saba and

Illangasekare [61] compared other Gilliland–Sherwood models that have

appeared in literature and showed that the dimensionality of water flow

has to be taken into consideration when upscaling the models based on

one–dimensional systems to multi–dimensional flow systems in the field.

An overview of other Gilliland-Sherwood models for the modified Sher-

wood number Sh′ applicable for various dissolution configurations within

the porous medium is given in [62]. Liu et al. [63] developed a Gilliland–

Sherwood model for a synthetic porous medium consisting of random–size

spheres and solving the groundwater flow and mass transfer at the pore–

scale using a multi–physics simulator COMSOL Multiphysics�. This model

is given as

Sh = 3.81Re0.57Sc0.33. (10.17)

As the flow is laminar and the kinematic viscosity is constant and the mass

transfer is dependent on advection and diffusion, [63] was able to represent
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(a) (b)

Fig. 10.6. TCE concentration (a) and cumulative TCE content depletion (b) temporal

profiles compared to laboratory measured data (dotted lines), [64].

the Sh number as only a function of the Péclet number Pe as

Sh = 0.094Pe0.56. (10.18)

Petri et al. [64] investigated a complete volatilization of a volatile organic

compound (VOC) pool in the context of generation of contaminant vapor

plumes in heterogeneous porous medium. In the experiment, an immo-

bile NAPL pool of trichlorethylene (TCE) was created in the source zone

placed inside a small tank. In one of the scenarios, the pool was exposed

to the flowing 100% humidified air under four different velocities studied.

A numerical model was developed and used to determine the Gilliland–

Sherwood model hypothesized in the general form proposed by [61] in the

form

Sh′ = 0.0011Pe0.05
(

θn
θinin

)0.2

d1.680 , (10.19)

where θinin [−] is the initial NAPL content in the source zone. The small

exponent of the Péclet number suggests that the velocity of the flowing

air has a negligible effect on the rate of volatilization. In Fig. 10.6, the

experimentally measured effluent concentration and the cumulative TCE

content depletion are compared to the results of the mathematical model.

10.4.3. Upscaling of Mass Transfer Rate Coefficients

The upscaling of dissolution of trapped non–aqueous phase (NAPLs) has

been studied for applications in remediation of sites contaminated with

solvents and petroleum waste [62, 65].
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The goal of upscaling dissolution is to determine what parameters of

the field systems have to be included to determine the effective mass trans-

fer rate coefficient. Saenton and Illangasekare [66] hypothesized that as

the mass loading to the flowing water occurs at the pores where NAPL

is entrapped, the total mass loading at the grid–scale will depend on the

saturation distribution of the NAPL. They quantified the distribution (or

spread) through a dimensionless second moment MII,z [−]. The mass that

gets loaded is transported within the grid block by the flowing water and

the net mass generation is a result of mixing within the block. This velocity

driven mixing was captured through the use of geostatistical parameters of

the heterogeneity field and the size of the grid block. Using synthetic data

from numerical simulations where various NAPL entrapment architecture

were created in correlated random fields, Saenton and Illangasekare [66]

obtained an expression for the upscaled mass transfer correlation as

Sh = Sh0(1 + σ2
Y )

ϕ1

(
1 +

Δz

λz

)ϕ2
(

M̂II,z

M̂∗
II,z

)ϕ3

(10.20)

where Sh [−] is the upscaled Sherwood number containing the effective

mass transfer rate coefficient, σ2
Y is the variance of the logK field, Δz [L]

is the vertical dimensions of the simulation grid, λz [L] is the vertical corre-

lation length and the last set of terms is the dimensionless second moment

of the vertical saturation distribution. This method of upscaling was vali-

dated using data from an intermediate scale tank experiment [62] shown in

Fig. 10.7.

The example of upscaling of a mass transfer that occurs at the pore–

scale to grid scale provides the framework for developing upscaling methods

for problems in carbon sequestration. The method was developed for a

two-dimensional flow case and validated in a two-dimensional test system.

As was discussed earlier, heterogeneity and flow dimensionality will play

a critical role in the upscaling process. Hence, further study is needed

to evaluate the effects of the third spatial dimensions and use of other

parameters of the geologic formations when the assumption of stationarity

that is built into the geostatistical parametrization is not valid. Also, the

issue of how the dissolved mass diffuses into low permeability formations

and how the process gets upscaled needs further study and development

[67].
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Fig. 10.7. Upscaling of NAPL dissolution: (a) Comparison of observed mass flux and

mass flux estimated using the small-scale dissolution model, (b) comparison of observed
mass flux and mass flux estimated using the upscaled dissolution model (system 2–5
refer to different grid sizes used in the simulations) [62].

10.5. Land/atmospheric Interactions

A variety of coupled processes and feedbacks between thermal, hydrolog-

ical, geochemical and biological processes occur at the land-atmospheric

interface. These coupled processes and feedbacks significantly influence

the energy and mass balances and hence environmental conditions. Under-

standing heat, mass and momentum fluxes at the land surface at all relevant

scales remains a major scientific challenge. Understanding mass and heat

fluxes across the land surface at all relevant scales from laboratory to field

remains a major scientific challenge. One such exchange process is evap-

oration, an important process that affects the water and energy balance

in the soil and atmosphere, and consequently changes the local and global

climatic behavior. In this section a review of the efforts to understand and

upscale the processes associate with evaporation are presented.

10.5.1. Processes and Modeling

As conceptually shown in Fig. 10.8, the rate of soil evaporation is affected

by atmospheric conditions (e.g. humidity, temperature, thermal radiation,

wind velocity and turbulent flow regime), and thermal, and hydraulic prop-

erties of soil (thermal and hydraulic conductivity, porosity), all of which are

strongly coupled. This strong coupling between processes leads to highly
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dynamic interactions between the atmosphere and soil resulting in dynamic

evaporative behaviors [68]. It is recognized that the most important pro-

cess that determines the coupling between the soil water and heat is the

transport of latent heat (the result of phase change) by vapor flux in the

unsaturated soil pores and at the interface between the soil and the atmo-

sphere [69]. Models that incorporate these processes have been developed,

e.g., [70]; however, as Bittelli et al. [69] note, a detailed experimental verifi-

cation of vapor movement above the soil surface (i.e., atmospheric boundary

layer) has not been conducted. Bittelli et al. [69] suggest that the errors in-

troduced in the vapor flow calculations are due to a number of factors that

include lack of proper coupling of the thermal and mass flux processes,

deficiencies in the constitutive relationships (e.g. thermal and hydraulic

conductivities and soil water content) and difficulty in determining the re-

sistance parameters at the land (soil)–atmospheric interface. For example,

a prevalent modeling approach is to derive the aerodynamic and soil sur-

face resistance terms based on semi-empirical or empirical approaches and

to adjust the predicted evaporation based on true conditions that depend

on ambient conditions such as soil moisture, roughness, and wind speed.

Fig. 10.8. Schematic of the land/atmospheric interaction configuration.
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Traditionally, the influences of atmospheric conditions are applied at the

soil surface and aerodynamic resistance is applied on the border between the

air flow and permeable media (e.g. [69, 71–73]). In these cases, evaporation

rate E [ML−2T−1] can be given as

E =
1

rs + rv
((ρv)pm − (ρv)ff ) , (10.21)

where rs [L−1T ] is the soil surface resistance for water vapor transport,

rv [L−1T ] is the aerodynamic resistance for water vapor, (ρv)pm [ML−3] is

the vapor density immediately below the soil surface (in porous medium)

and (ρv)ff [ML−3] is the vapor density immediately above the soil sur-

face (in free medium). The vapor density above the soil surface is calcu-

lated from measurement of relative humidity on the boundary of the porous

medium domain in the free flow medium.

In Eq. (10.21), the aerodynamic resistance for vapor transport depends

on surface roughness properties and wind speed [69, 74]. The soil surface

resistance depends on soil surface water content. The relationship between

aerodynamic resistance to vapor transport and soil water content is typi-

cally expressed in an exponential form; there are many exponential empir-

ical functions used to describe this relationship [71, 73]. Although this ap-

proach is widely used, modeling comparison studies have shown significant

variation between model parameterizations and evaporative fluxes [75–78].

Recently, with the goal of addressing the issue of coupling the land to

the atmosphere, [77] evaluated three different modeling approaches of bare

soil evaporation formulated with different land surface boundary conditions

and compared modeling results to laboratory generated experimental data.

Results demonstrated that no one approach could be deemed most ap-

propriate for every situation, demonstrating that further work focusing on

the land/atmospheric interface, properly incorporating the complex inter-

actions between the land and the atmospheric boundary layer is needed to

increase the understanding of the processes that control shallow subsurface

soil moisture flow that controls bare soil evaporation.

The modeling of non–isothermal single–phase (two–component) trans-

fer in the atmosphere and two-phase (two–component) transfer in porous

media have been separately investigated by many authors (e.g. [79–81]).

Recently, numerical advances have been made in the coupling of free

flow (Navier–Stokes) with porous media flow (Darcy flow) [82–87], how-

ever, these models were not adequately validated with experimental data.

Mosthaf et al. [85] extended the classical single-phase coupling to two-phase
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flow in porous media and one phase in the free flow. Their model is based

on the continuity of fluxes at the porous medium-free medium interface

and use of the Beavers–Joseph boundary condition [85]. Baber et al. [83]

focused on the numerical concept and its implementation into a local mod-

eling toolbox. The numerical parametric study showed that the proposed

model can predict the evaporation phenomenology correctly. They con-

cluded that the variation of permeability influences the duration of the

capillary–driven evaporation regime whereas the variation of temperature

affects the magnitude of the evaporation rate. They also showed that the

choice of the Beavers–Joseph coefficient has a negligible influence on the

evaporation rate across the interface [83].

It is well known that a no–slip condition at the free flow and porous

domains surface is not a satisfactory assumption requiring the need to con-

sider a slip boundary condition. The slip boundary condition was first

obtained experimentally by Ref. [88]. They proposed that the tangential

component of the normal stress of the flow at the free flow and porous

medium interface is proportional to the jump of the tangential velocity

across the interface [88]. The coupling condition was further studied by

Saffman [89] who concluded that the filtration velocity in porous media

was much smaller than the free–flow velocity and can be neglected. There

exist several other formulations for a slip boundary condition to include

(a) using a shear stress jump condition by means of the non–local form

of the volume averaging technique with an experimentally determined fit-

ting parameter [Ochoa-Tapia and Whitaker, 1997], or (b) using the inertia

and boundary effects [90]. Alzami and Vafai [91] compared five different

interface conditions between the porous medium and adjacent fluid layer.

They concluded that the velocity field is more sensitive to variation in the

boundary condition than the temperature field [91]. They showed similar

results for all five interface conditions.

10.5.2. Knowledge of Gaps and Challenges

Water and energy fluxes in the vadose zone are coupled at the soil sur-

face, which serves as the interface between the land and the atmosphere.

Currently, most available upscaling procedures ignore the effects of the

land–atmospheric interface [92] resulting in a need to develop upscaling

approaches that account for climatic excitations under natural field con-

ditions. Accurate prediction of water distribution and fluxes within the

vadose zone is critical for quantifying vapor and energy exchanges between
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the land and atmosphere during the process of evapotranspiration, as-

sessing groundwater recharge rates, and optimizing water management for

agricultural purposes. Despite the importance of these predictions, stan-

dard models have limited capabilities to predict water or gas fluxes, flow

pathways and water distribution. Even common practices such as under-

standing evaporation dynamics from homogeneous soils or water distribu-

tion after a heavy rainfall has proven to be difficult with standard models

(e.g. [77, 93–96]). This can be partially attributed to models not capturing

the physical behavior through proper system description/parameterization.

As our computational capabilities continue to improve, our ability to de-

scribe the added complexity of physical systems should also improve rather

than continuing to rely on the standard methods. By understanding the

relative contribution of processes at various scales and how the processes

can best be implemented at different scales to more accurately predict en-

vironmental behaviors remains a challenge. The challenges associated with

upscaling mass transport through soil pores close to the land surface comes

from the need to parametrize processes that couple Darcian flow in the

soil to Stokes flow in the atmosphere. Practical and theoretical limitations

of modeling efforts are often magnified at the land–atmosphere interface,

where water and energy fluxes are highly dynamic and dramatically in-

fluenced by changes in thermal and moisture gradients and direction of

flows [97]. However, for most conventional models and practical applica-

tions involving vadose zone, the strong coupling between the land and the

atmosphere is rarely considered. This is due to the complexity of the prob-

lem in field scenarios and the scarcity of field or laboratory data capable

of testing and refining energy and mass transfer theories. For most subsur-

face models, the soil surface serves as the upper boundary to the porous

medium domain and is characterized using prescribed flux terms that serve

as sources or sinks. Similarly, in most atmospheric models, the vadose zone

serves as a lower boundary with prescribed fluxes. Such an approach is a

simplification of the interaction processes above and below the soil surface.

Although widely used due to its simplicity and ease of use, such an ap-

proach has been shown by both atmospheric and hydrogeological scientists

to misrepresent flux conditions, resulting in model prediction errors [98].

When considering heterogeneous soils, this is particularly relevant. Het-

erogeneous soils result in complex flux conditions due to water fluxes from

coarse to fine textured soils [94, 99]. This is not captured when prescribing

a constant flux over the entire soil surface boundary. In addition, vari-

ations in soil surface conditions (e.g. soil type, texture, vegetation) can
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result in highly dynamic infiltration and evaporation conditions. Surface

heterogeneities can affect the air velocity conditions [100], ultimately af-

fecting infiltration rates during rainfall and evaporation, resulting in scale

and rate dependence of hydraulic and thermal effective parameters [97].

Remote sensing (i.e. non–contact observational methods) is often used

in hydrologic sciences to capture some of the spatial and temporal distribu-

tions of hydrologic processes which in turn can be used to model the inter-

actions between the land and the atmosphere. Many past remote sensing

studies focus on regression analysis between remotely sensed and observed

data and/or comparing aircraft/satellite observations and in-situ observa-

tions [101, 102]. However remote sensing alone cannot fully solve the issue

of cross-scale interaction as there is a requirement to understand the un-

certainties associated with measurements and model predictions from scale

to scale [103]. How can we use remotely sensed data at 10–20 km resolu-

tions to make predictions about processes occurring at a local scale? We

need to understand the effect of heterogeneity at a large scale as well as

a small pore scale to correctly develop methods to synthesize pore scale

physics with coarse–scale (e.g remote sensing) measurements. Researchers

have observed breaks or transitions in scaling of soil hydraulic properties

with spatial scales (e.g. [104, 105]). Nykanen and Foufoula–Georgiou [104]

found, for example, transitions between small scale soil moisture samples

and aircraft radiometer data, resulting in different relationships between

scales. However, uncertainty exists in explaining the reason for these tran-

sitions; are they a result of different data sets or are physical processes

involved that are not being accounted for at various scales [103]? In ad-

dition, how can models properly account for these transitions? Research

suggests that if we can properly account for hydrologic variables, like soil

moisture in hydrologic models, we can improve our ability to perform hy-

drologic forecasting (e.g., [106–108]).

10.6. Conclusions

Process up–scaling from pore to field systems still remains a challenge in

hydrogeological sciences and reservoirs engineering. In this chapter we iden-

tified some of these challenges specifically for emerging problems. The fol-

lowing conclusions are made to help develop future research plans to over

come some of these challenges.

Flow of multiple fluids in porous media is basic to the problems that

were presented in this chapter. The primary parameters that need up–
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scaling in multiphase flow are the relationships between capillary pressure

vs saturation and relative permeability vs saturation. The parameter up-

scaling methods for these are fundamentally different from that of single

phase flow because of the non-linearity of these multiphase parameters.

Techniques based on percolation network models, stochastic homogeniza-

tion, large–scale volume averaging and methods based on pseudo–functions

had limited success and the need exist for the development of more general-

ized approaches that can be applicable to both two–phase and three-phase

systems.

The problem of dissolution of trapped non-aqueous liquids (NAPLs)

has received recent attention in relation to dissolution trapping of stored

supercritical CO2 in deep geologic formations. Methods have been devel-

oped to up–scale the mass transfer rate coefficients to simulate field scale

behavior by treating the effective dissolution as a mixing process controlled

by the architecture of the NAPL entrapment and geostatistical parameters

of the permeability field. This method provides a possible framework to

develop dissolution upscaling for supercritical CO2. However, whether rate

limited conditions exist in field settings requires additional evaluation prior

to developing such methods. The net mass loading from supercritical CO2

trapped zones will not only be controlled by dissolution, but also back diffu-

sion from low permeability zones in the heterogeneous formation. Methods

are needed to obtain effective parameters that capture both these processes

to predict long–term effectiveness of dissolution trapping.

Parameterization of processes that control land–atmospheric interac-

tions is at its early stages of development. The knowledge gaps in the un-

derstanding of these processes from pore scale to larger scales, have resulted

in models that rarely consider the strong coupling between the land and

the atmosphere. Until these knowledge gaps are filled through experimen-

tal studies conducted at multiple scales, any validation of such up–scaling

theories and methods are not possible.

Field data for validation of upscaling methods are often incomplete and

costly to obtain. In field settings, the degree of control that is needed to

obtain such data is not adequate. The intermediate laboratory scale offers

the ability to study, under controlled conditions, complicated processes in

the heterogeneous subsurface in multiple dimensions at different scales.

A conclusion can be made that scaling issues can only be resolved

through the integration of theory with experiments, requiring innovative,

multidisciplinary research efforts aimed at overcoming our current limited

understanding of the influence of small scale processes on larger scale flow

behavior.
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