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Abstrakt

Matematické modelovani komplexnich dy-
namickych procest v poréznim prostiedi
vyzaduje pokrocilé metody pro feseni pri-
slusného systému diferencialnich rovnic.
V predlozené praci jsou predstaveny me-
tody pro reseni modelu dvoufiazového fil-
tracniho proudéni v obecné dimenzi, mo-
delu dvoufazového kompozi¢niho proudéni
s prestupem hmoty mezi fizemi v po-
réznim prostredi obecné dimenze a mo-
delu elektro-chemické interakce v poréz-
nim prostredi lithiového-iontového elek-
trického ¢lanku. Pouzité matematické me-
tody jsou zalozené bud na analytickém,
nebo numerickém pristupu.

V prvnim pfipadé se jednd o trans-
formaci parcidlnich nebo obycejnych di-
ferencialnich rovnic na jednu obycejnou
diferencidlni rovnici, ktera je dédle preve-
dena na integralni rovnici. Vysledna in-
tegralni rovnice je poté feSena iteracné
pomoci numerické aproximace integralu.
Tento pristup je pouzit pro ziskani semi-
analytického feseni tlohy dvoufdzového
proudéni v poréznim prostredi obecné di-
menze a pro reSeni elektro-chemické in-
terakce v lithiovém-iontovém elektrickém
¢lanku.

Ve druhém piipadé je uvazovan sys-
tém parcidlnich diferencidlnich rovnic s
obecnymi koeficienty, pro ktery je pouzita
diskretizace pomoci smisené hybridni me-
tody konecnych prvkia. Tato diskretizace
je modifikovana tak, aby bylo mozné resit
i degenerujici tilohy dvoufazového kompo-
zi¢niho proudéni v poréznim prostredi. Vy-
sledny numericky fesi¢ NumDwarf lze vy-
hodné masivné paralelizovat pro pocitani
na grafickych akcelerdtorech (GPU) nebo
na vypocetnich klastrech CPU. V préci
je uveden prehled konkrétnich tloh, které
byly a v souc¢asné dobé jsou feseny pomoci
resice NumDwarf.
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Abstract

Mathematical modeling of complex dy-
namic processes in porous media requires
advanced methods for solving a corre-
sponding system of differential equations.
The presented work presents methods for
solving the two-phase flow model in multi-
dimensional porous media, the two-phase
compositional flow model with mass trans-
fer between phases in a porous medium of
general dimension, and the electrochemi-
cal interaction model in the porous envi-
ronment of a lithium-ion electric cell. The
mathematical methods used are based on
either an analytical or a numerical ap-
proach.

The first case involves the transforma-
tion of partial or ordinary differential
equations into a single ordinary differen-
tial equation, which is further transformed
into an integral equation. The resulting
integral equation is then solved iteratively
using a numerical approximation of the
integral. This approach is used to ob-
tain a semi-analytical solution of the two-
phase flow problem in a porous medium
of a general dimension to solve the elec-
trochemical interaction in a lithium-ion
cell.

In the second case, a system of partial
differential equations with general coeffi-
cients is considered, for which discretiza-
tion using a mixed finite element hybrid
method is used. This discretization is
modified so that it is possible to solve
degenerative problems of two-phase com-
positional flow in a porous medium. The
resulting numerical solver NumDwarf can
be advantageously massively parallelized
for computing on graphics accelerators
(GPUs) or CPU computational clusters.
The thesis provides an overview of spe-
cific tasks that have been solved using the
NumDwarf solver.
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Kapitola 1

Predmluva

Predkladand prace shrnuje hlavni vysledky autora v oblasti vyzkumu pokro-
¢ilych metod matematického modelovani dynamickych procesti v poréznim
prostiedi. Jak je zndzornéno na Obréazku 1.1, tato oblast mé interdisciplindrni
povahu. Vychozim bodem jsou fyzikalni, chemické nebo biologické poznatky
o prirodé, které jsou popsany pomoci matematickych rovnic vychazejicich ze
zékladnich zakonu a principt. Tyto rovnice jsou dale analyzovany a pro jejich
feseni je navrzena vhodna analytickd nebo numerickd metoda. V pripadé
numerického modelu je tento dale fesen pomoci vhodné pocitacové implemen-
tace, kde je kladen diraz na jeji efektivitu s ohledem na moderni paralelni
vypocetni moznosti, jako jsou rozsahlé vypocetni klastry nebo pocitani na
grafickych akceleratorech.

Tematicky zapada predlozena prace do naplné oboru Matematického inze-

nyrstvi, ktery je tradi¢nim oborem Katedry matematiky Fakulty jaderné a
fyzikalné inzenyrské Ceského vysokého uceni technického v Praze.

Fyzikalné-chemicky model H Matematicky model ‘

i [Analytické feseni | [Numerickd metoda |

Vysledky Simulace { Implementace ‘

Obrazek 1.1: Schéma ilustrujici proces matematického modelovani piirodniho
nebo prumyslového jevu se zpétnou vazbou z vysledkti matematického modelovani,
napf. pri rizeni technologickych procest v prumyslu.

Matematické modelovani komplexnich dynamickych procesti v poréznim
prostredi je dialezitym nastrojem ve vyvoji a vyzkumu v mnoha oborech
lidské ¢innosti, jako napiiklad v ekologii (v problematice ochrany zdroju
pitné podpovrchové vody), ropném prumyslu (simulace ropnych rezervoari),
v lékatstvi (perfuze cév nebo myokardu) nebo v automobilovém prumyslu
(studium stérnuti lithiovych-iontovych elektrickych élanku) [1, 2, 3, 4, 5, 6].

Tato prace se zabyva pokrocilymi analytickymi a numerickymi metodami



1. Predmluva

pro feseni systému diferencialnich rovnic, které popisuji vyse uvedené procesy
v poréznim prostiedi.

V pripadé analytickych metod je predstaven zpisob transformace parcial-
nich nebo obycejnych diferencidlnich rovnic na jednu obycejnou diferencidlni
rovnici, kterd je dale prevedena na integralni rovnici. Vysledna integralni
rovnice je poté TeSena iteracné pomoci numerické aproximace integralu. Tento
pristup je pouzit pro ziskani semi-analytického reseni tlohy dvoufazového
proudéni v poréznim prostredi obecné dimenze a pro reSeni elektrochemické
interakce v lithiovém-iontovém elektrickém ¢lanku.

Analytickda Teseni je mozné odvodit pouze pro velmi omezenou tiidu dife-
rencialnich rovnic, pro ostatni pripady nezbyva, nez navrhnout feseni pomoci
vhodné numerické metody. Jelikoz lze vétsinu fidicich parcidlnich diferencial-
nich rovnic popisujicich dvoufazové kompozicni proudéni s prestupem hmoty
v poréznim prostiedi popsat pomoci systému advekéné-difuzné-reakénich
rovnic, byl autorem této prace navrzen numericky resi¢c NumDwarf pro reseni
systému parcialnich diferencidlnich rovnic s obecnymi koeficienty v obecné
dimenzi, ktery konkrétni volbou svych koeficientii zahrnuje vSechny vyse
zminéné tidici rovnice. Numericky fesi¢ je zaloZen na diskretizaci pomoci
smisené hybridni metody konec¢nych prvki, ktera je modifikovana tak, aby
bylo mozné Tesit i degenerujici tlohy dvoufazového kompozié¢niho proudéni
v poréznim prostiedi. Implementaci fesice NumDwarf lze vyhodné masivné
paralelizovat pro pocitdni na grafickych akceleratorech (GPU) nebo na vy-
pocetnich klastrech CPU. V préci je uveden piehled konkrétnich tloh, které
byly a v soucasné dobé jsou reseny pomoci tohoto resice.



Kapitola 2

Matematické modelovani proudéni,
transportu a prestupu veliCin v poréznim
prostredi

B 2.1 Dvoufazové proudéni v poréznim prostredi

V této kapitole jsou shrnuty zaklady matematicko-fyzikalniho popisu dvoufa-
zového proudéni v poréznim prostiedi, které vychazi predevsim z [1, 3, 7, 8.
Necht porézni prostiedi vypliiuje oblast  C R?, kde d znaéi dimenzi prostoru,
d=1,23.

B Porézni prostredi

Poréznim prostredim lze chapat material slozeny z pevné faze a volného,
vzajemné propojeného prostoru (péry). V nejobecnéjsim smyslu lze témeér
kazdy materidl povazovat za porézni, pokud uvniti obsahuje prazdny prostor.
Velikost (méritko) a morfologie je klicem k pochopeni procesti v poréznim pro-
stfedi. Proto jsou na geometrii a rozméry porézniho média kladeny nasledujici
predpoklady [3]:

A. Pérovy prostor je propojen (jinak by nemohla tekutina proudit).

B. Rozmeéry prazdného prostoru musi byt dostatecné velké ve srovnani
s rozmeéry molekul tekutiny, pricemz pevna fize mize byt povazovana za
hypotetické kontinuum.

C. Rozmeéry prostoru pori musi byt dostatecné malé, aby tok tekutiny byl
fizen adhezivnimi silami na rozhrani kapaliny a pevné latky a soudrznymi
silami na rozhrani dvou kapalin ve vicefazovych systémech.

P1i modelovani toku v poréznim prostiedi je dilezité brat v tvahu rtzné
meéritka. Obrazek 2.1 zobrazuje ruznda zvétseni porézniho prostredi od makro-
skopické po mikroskopickou skalu.
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SmAciva faze

\ w
W/\ < kontaktni
w /\\ tihel

\
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nesmaciva faze

[ voda
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- pevna faze

Obrazek 2.1: Tlustrace ruznych méfitek v poréznim médiu (prvni dva obrazky
zleva) a reprezentace kontaktniho tihlu na rozhrani tekutin a pevné féze.

Rovnice dynamiky tekutin musi byt doplnény okrajovymi a poc¢atecnimi
podminkami. Ovsem kviili slozité a komplexni geometrii porézniho prostredi
nelze okrajové podminky na rozhrani pevné faze a volného prostredi v mikro-
skopickém méritku predepsat. Za tic¢elem vyvoje matematického modelu se
proto pouziva koncepce porézniho média jako kontinua v makroskopickém
méritku.

V kazdém bodé kontinua v makroskopickém popisu je uvazovana stredni
hodnota veli¢in pres reprezentativni elementarni objem (REV). Bear a Verruijt
[1] definuji REV jako objem, ktery je dostateéné velky na to, aby statisticky
odhadl vsechny relevantni parametry konfigurace prazdného prostoru, a
zaroven dostatecné maly, aby ho §lo povazovat za zanedbatelnou ¢ast celkového
objemu z makroskopického pohledu. Pokud takovy REV nelze najit, nelze
dané prostredi povazovat za kontinuum.

B Porozita

Pomoci zvoleného REV se definuje porozita ¢ [—] jako pomér objemu volného
prostoru porézniho prostredi k celému objemu REV:

o) = gy | @ (2.1)

REV

kde ¥y € REV C Q, |REV| je objem REV a v oznacCuje charakteristic-
kou funkci volného prostoru uvniti porézniho prostredi, ktera je pro kazdé
Z € REV zavedena jako

(2.2)

. 1  pokud # nélezi volnému prostoru,
V(Z) =

0 pokud ¥ nalezi pevné fazi.

Porozita je charakteristicka vlastnost porézniho prostiedi a lze ji urcit experi-
mentalné [1].



2.1. Dvoufazové proudéni v poréznim prostredi

V obecném pripadé se muze porozita ménit v ¢ase, napt. v dusledku defor-
mace porézniho prostredi. V této praci vystacime s predpokladem konstantni
porozity, coz znamena, ze porézni prostiedi je rigidni.

B Faze

Faze je chemicky homogenni ¢ast systému, kterd je od ostatnich takovych
casti oddélena urcitou fyzickou hranici a je charakterizovana dynamickou
viskozitou p [Pa s], objemovou hmotnostni hustotou ¢ [kg m—3], ptipadné
dalsimi veli¢inami. Nutnost urc¢ité fyzické hranice mezi dvéma nebo vice
fazemi znamend, ze ve vicefazovém systému nemuze byt pritomna vice nez
jedna plynna faze, protoze plyny jsou vzdy plné misitelné.

Ve vétsiné pripadt je v poréznich prostiedich predmétem zkoumani prou-
déni vody a dalsich fazi, jako je olej, chlorované uhlovodiky, COs nebo
vzduch. Obecné se pro kapaliny nemisitelné s vodou pouziva zkratka NAPL
(z angl. Non-Aqueous Phase Liquid). Tyto kapaliny jsou déle déleny na husté
(DNAPL), resp. lehké (LNAPL) s vyssi, resp. nizsi hustotou nez voda.

Podle kontaktniho ihlu rozhrani mezi tekutymi fazemi u pevné stény (viz w
na Obrazku 2.1) rozlisSujeme smécivou (prislusi k ostrému tihlu) a nesmacivou
(prislusi k tupému uhlu) fazi. Tato prace se mimo jiné zabyva dynamikou dvou
nemisivych tekutin voda-NAPL, pficemz voda je vzdy sméciva a oznacovana
indexem w (z angl. wetting). Druhd, nesmaciva faze je pak znacena indexem
n (z angl. non-wetting). Systémy se dvéma tekutymi fdzemi se nazyvaji
dvoufazové, tj. pevnd faze, kterd je v poréznim prostiedi vzdy pritomna, se
do oznaceni nezahrnuje.

Bl Saturace

V mikroskopickém méritku nélezi kazdy bod REV bud pevné, nebo praveé
jedné tekuté fazi a € {w,n}. Pomoci charakteristické funkce v, tekuté féze
a, definované v case t pro kazdy bod & € 2 vztahem

., 1 pokud Z nélezi fazi o v Case t,
Ya(t, T) = ) (2.3)
0 jinak,
lze zavést saturaci S, [—| faze a:

| alt, Z)dE
S (tap)="EY 2.4
o) = R z4

REV

kde Zp € REV C Q.

Z definice (2.4) plyne, ze saturace faze « je bezrozmérna veli¢ina s hod-
notami mezi 0 a 1, pricemz v pripadé uvazovaného dvoufazového systému
plati

Sw+ Sp = 1. (2.5)
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Je dobfe znamo, zZe jednotlivé faze nelze zcela mechanicky vytlacit z po-
rézniho prostiedi, napt. [9, 10]. Proto se pro kazdou fazi a € {w,n} zavadi
rezidualni (zbytkova) saturace S, vyjadiujici takové minimalni nasyceni,
které se v poréznim médiu udrzi vlivem adheze vii¢i pevné matrici.

K popisu zbylé, mechanicky vytlacitelné ¢asti dané faze a se pouziva
efektivni saturace Se o [—]:

Se N Sa - Sr,a

= — 7 2.
) 1_ZS¢,I87 ( 6)
B

kterd, stejné jako saturace S, nabyva hodnot mezi 0 a 1, a pro niz plati

Sew + Sen = 1. (2.7)

B Ridici rovnice proudéni

Dynamiku faze a 1idi zdkon zachovani hmoty ve tvaru [1, 3, 7]

0 S, S
@gata) + V- (0a Ua) = 0aFa, (2.8)
kde filtra¢ni rychlost ¥, je dana Darcyho zdkonem
U = _)\aK(vPoz — O« 5), (2'9)

kde § [m s72] je vektor gravita¢niho zrychleni, K [m?] je tenzor vnitini
propustnosti porézniho prostiedi, p, [Pa] je tlak, A, [Pa~!s™!] je mobilita a
F, [kg m~3s71] je zdrojovy ¢len faze a.

Darcyho zdkon je dusledkem zakona zachovani hybnosti, pricemz v pripadé
dvoufizového (a obecné vicefazového) proudéni se v poréznim prostiedi
zanedbavd vyména hybnosti mezi fazemi.

Mobilita fize « oznacuje
k
Ao = —=, (2.10)

«

kde k. je relativni propustnost faze «, kterd vyjadiuje snizeni hydraulické
propustnosti porézniho prostiedi v dusledku pritomnosti faze o a nabyva
hodnot mezi 0 a 1.

Kapilarni jevy na porové, mikroskopické trovni zpusobi skok mezi fazovymi
tlaky na makroskopické drovni. Tento skok se nazyva kapilarni tlak, znaci se
pe [Pal a je definovan vztahem

Pc = Pn — Pw- (211)
B Empirické modely pro kapilarni tlak

V pripadé dvoufazového proudéni se dé experimentilné zmérit zavislost
Pe = Pe(Sew) Pro Seqw € (0,1), pficemz z matematického pohledu lze o této

6
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zévislosti predpokladat, ze p. je ostie klesajici a spojité diferencovatelna na
(0,1) a S lim1 Pe(Sew) > 0, [11].
% J—

e,w
Pro empirické zjisténi zavislosti p. = pe(Sw,.) pro dané porézni prostiedi a
systém smaciva-nesmaciva faze se nejcastéji pouzivaji nasledujici dva modely.

Prvni model byl navrzen Brooksem a Coreym [12] ve tvaru

A
b
Se,w(pc) = (c> Pro Pc > DPd, (212)
Pd
kde A\ [—] odpovidd mife variability velikosti zrn v poréznim prostiedi a

pa [Pal se nazyva vstupnim tlakem a vyjadiuje minimalni kapilarni tlak, ktery
je nutny prekonat k vytlaceni smécivé faze v maximalni saturaci z nejvétsiho
péru.

Za predpokladu invertovatelnosti zavislosti Se . (pe) 1ze vyjadiit Brooksuv
a Coreyuv model pro p. ve tvaru

_1
Pe(Sw) = paSey  Pro Sew € (0,1]. (2.13)

Druhy model byl navrzen van Genuchtenem [13] ve tvaru
Seaw(pe) = [L+ (ape)"]™  pro pe =0, (2.14)

kde o [Pa~!], m a n jsou empiricky urcené parametry, piicemz m a n charak-
terizuji porovou strukturu porézniho prostredi a nékdy se mezi nimi pouziva
vztah

=1-—. 2.15
m=1-— (2.15)

Inverzi (2.14) se odvodi vztah pro p. = pe(Se,w) ve tvaru

1

1 n
Pe(Sw) = é ( e — 1) pro Seq € (0,1]. (2.16)

Parametry téchto modelu se urcuji experimentalné nejprve pfi primarnim
odvodnéni plné nasyceného vzorku porézniho prostiedi (primary drainage),
poté jsou méfeny parametry druhotného (sekundarniho) zavodnéni (secondary
imbibition). Vysledné kiivky, jejichz priklady jsou ukdzény na Obrazku 2.3,
predstavuji horni a dolni mez kapilarniho tlaku, ktery se mtze v zavislosti na
historii dynamiky systému v daném bodé pro danou saturaci nachazet. Takova
situace se oznacuje jako hystereze kapilarniho tlaku [1, 2]. Pro jednoduchost se
v této praci bude uvazovat bud proces primarniho odvodnéni, nebo druhotného
zavodnéni.
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B Empirické modely pro relativni propustnost

Na zakladé zvoleného modelu pro kapilarni tlak lze odvodit model pro relativni
propustnosti smacivé a nesmacivé faze pomoci vztahu [7]:

Se,w ¢
J [pe(§)]7Pae
Fraw(Se,w) = Séw 01— ; (2.17a)
Of[pc(ﬁ)]’Bdé
Seow c
J [pe(6)]Pde
kr,n(Se,w) =(1- Se,w)A 01— , (2.17Db)
Of[pc(f)]_BCK

kde A, B a C jsou parametry. Nejcastéji se pouzivaji dva modely.

Prvni, Burdiniv model [14, 15] voli A = B =2 a C = 1 a v propojeni
s Brooksovym a Coreyho modelem pro p. mé tvar

2
Frao(Suw) = Seun (2.18a)
2 1+%
kT,n(S’w) = (1 - Se,w) (1 — PDe,w ) (218b>
Druhy, Mualemtv model [16] voli A = %, B =1aC =2 a v propojeni
s van Genuchtenovym modelem pro p. ma tvar:
1 1 2
Fran(Su) = S2u (1 —a —Sg:zw)m> , (2.190)
1
Frn(Sw) = (1= Sew)3 (1 — Si)?™. (2.19D)

Pro jednoduchost se pouziti Burdineho, resp. Mualemova modelu nazyva
podle prislusného modelu pro kapilarni tlak, tj. Brookstv a Coreyho, resp.
van Genuchtentiv model.

V Obrézku 2.2 jsou zobrazeny kiivky relativni propustnosti ziskané experi-
mentalné pro jeden vzorek pisku.

B 22 Transport rozpusténych latek v poréznim
prostredi

V poréznim prostiedi se jednotlivé tekuté faze mohou skladat z jedné nebo
vice chemickych komponent (slozek). Matematicko-fyzikalni popis dynamiky
proudéni, transportu a prestupu hmoty vychézi z formulace zakona zachovani
hmoty kazdé takové komponenty (oznacené v této kapitole indexem x) v dané
fazi (znacené indexem «) [17, 18]. V této kapitole budou pro obecnou fazi s
indexem « a jeji komponentu s indexem k popsany Fidici transportni rovnice.
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2.2. Transport rozpusténych latek v poréznim prostred/

(a) Brooks a Corey (b) van Genuchten
1 L e B 1 — T T T T T T

& 081 s 0.8 e

0.6 - P 0.6 F s

04r % 4 Bo04f . 4 —
’e - odvodnéni
P - zavodnéni

0.2 b

= 0.2 L *

Relativn{ propustnost &, [—]
Relativn{ propustnost k, [—]

<

T S B ‘ B e
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Efektivni saturace S, [—] Efektivni saturace Se ., [—]

Obrazek 2.2: Ilustrace typického prubéhu kiivek relativnich propustnosti pro
jeden vzorek pisku s pouzitim Brooksova a Coreyho, resp. van Genuchtenova
modelu. Data byla poskytnuta spolupracujicim pracovistém CESEP, Colorado
School of Mines.

(b) van Genuchten (a) Brooks a Corey
7x10° T ‘ 7x10° T T T T w
. primarni 1 3 primarni 1
6x10 <, = 6x10° - < . s
—— odvodnéni ] <= odvodnéni |
& 5x10° & 5105
< <t
| 4x10° % 4x10° -
‘2 3x10° 2 3x10°
& 5 I
2 2x10° B 2x10° -
1x10° - druhotné 1x10° - druhotné i
0 L | 1 Zafvodné\nl, 1 | ] 0 L | 1 Zafvodnénl’ 1 | ]
0 02 04 06 08 1 0 0.2 04 06 08 1
Efektivni saturace Se . [—] Efektivn{ saturace Se [—]

Obrazek 2.3: Tlustrace typické zavislosti kapilarntho tlaku na efektivni smacivé
saturaci pro model podle (a) Brookse a Coreyho a (b) van Genuchtena, zméfené
experimentalné pro primarni zavodnéni a nasledné odvodnéni. Data byla poskyt-
nuta spolupracujicim pracovistém CESEP, Colorado School of Mines.

B Ridici transportni rovnice

Rovnice kontinuity pro komponentu x ve fazi a lze zapsat ve tvaru

W + V- (paXk.ala + Jra) = Fra (2.20)

kde X o [—] je hmotnostni zlomek komponenty & ve fazi o, F o [kg m™3 s71]
je zdrojovy ¢len a j,. o oznacuje difuzni tok, pro ktery se pouziva prvni Fickiv
zakon ve tvaru

-

jH,Ot - _Dm,av(gaxﬁ,a)a (221)
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2. Matematické modelovani proudéni, transportu a prestupu velicin v poréznim prostredr

kde Dy o [m2s71] je difuzni koeficient, g, [mol m™3] je molarn{ hustota faze
a a Ty [—] je molarni zlomek komponenty « ve fazi a definovany vztahem

nﬁ] (0%

= —_—" 2.22
.T,Lg,a Z nw’aa ( )
w

kde ng, o [mol] je pocet molt slozky w ve fazi a.

Mezi hmotnostni a molarni hustotou slozky x ve fazi o plati vztah

,OaXn,a = MgQaZk,a; (2'23)

kde M, [kg mol™!] je molarni hmotnost slozky .

B Piestup hmoty mezi fazemi

Prestup slozky mezi dvéma fazemi probiha skrz jejich fazové rozhrani a pro
jeho modelovani se pouzivaji dva zdkladni pfistupy: rovnovazny a kineticky.

V pripadé rovnovazného pristupu se predpoklddé, ze proudéni tekutin je
mnohem pomalejsi nez prestup hmoty, a systém je tak v kazdém okamziku
ve stavu termodynamické rovnovahy. Ze stavovych veli¢in (tlaku, objemu
nebo teploty) lze pak urcit zastoupeni komponent v jednotlivych fazich. Pro
obecny viceslozkovy a vicefazovy systém se k vypoctu pouzivaji vysledky
teorie fazové stability smési, viz napt. [19, 20, 21]. Pro dvoufdzové systémy
kapalina-plyn lze pro vypocet zastoupeni molérni koncentrace (hustoty) plynu
v kapaliné pouzit Henryho zakon. Napriklad pro systém voda-COs je mozné
urcit rovnovaznou hmotnostni, resp. molérni koncentraci pco,.w = Xc0s,wPw,
resp. 0COs,w = TCOs,w0w komponenty CO2 ve vodé na fdzovém rozhrani ze

vztahu

p
PCO2w = 0C05,wMco, = F;MCOQ, (2.24)

kde p, [Pa] oznacuje tlak plynu a Kz [Pa mol 'm?] je Henryho koeficient,
ktery obecné zavisi na teploté [17, 22, 23]. Koncentrace dand vztahem (2.24)
se nazyva limit rozpustnosti, zkracené rozpustnost daného plynu v kapaliné a
v dal§fm ji budeme znaéit symbolem Cs co, [kg m™2], resp. s co, [mol m=3].

Kineticky piistup se zabyva studiem toku Q o—p [kg m~3s~!] komponenty
K z faze « do faze (3, pricemz se tento tok nejéastéji uvazuje ve tvaru linedrni
zavislosti

Qra—8 = kra—p(Cs g — XipPp) (2.25)

kde Ky q—p [s71] je efektivn{ koeficient pfestupu. MnoZstvi prestupujici latky je
primo imérné rychlosti prestupu a povrchu fazového rozhrani, jehoz velikost
je vSak v praxi velmi obtiZzné stanovit. Proto se v (2.25) zavadi efektivni
koeficient prestupu, ktery kromé rychlosti prestupu skrz rozhrani zahrnuje i
plochu rozhrani v daném REV. Hodnota koeficientu kj o se v praxi urcuje
experimentdlné nebo pomoci matematického modelovani [18, 23, 24] (Ptilohy
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2.3. Transport ionti a elektrického naboje v Li-ion ¢lanku

P.7 [str. 168], P.4 [str. 117], P.3 [str. 102]). Tok mezi fazemi je poté zahrnut
do zdrojovych ¢lent F, o a F, g [25], pficemz plati bilan¢ni rovnice

QK,a—)B + Qm,ﬂ—)a =0. (226)

B 23 Transport iontd a elektrického naboje v Li-ion
¢lanku

V pripadé matematického popisu a modelovani zivotnosti elektrickych bate-
riovych ¢lankt je jednim ze zédkladnich procest elektrochemicka interakce a
transport ionti a elektrického ndboje v poréznim prostiedi obou elektrod a
separatoru. V této kapitole je pfedmétem zkoumani lithiovy-iontovy elektricky
¢ldnek (zkrécené Li-ion ¢lanek), pro ktery je stru¢né shrnut matematicky
model téchto procest v jednorozmérné geometrii vychazejici z [5, 6, 26, 27,
28] a [29] (Priloha P.6 [str. 155]).

Cilem matematického modelovani je urc¢it vnéjsi i vnitini napéti ¢lanku
pii dodavani nebo odebirani proudu o dané intenzité, a to vSe v zavislosti na
chemickém stavu ¢lanku, ktery je popsan rozlozenim koncentrace lithiovych
iontt v pevné fazi elektrod a gelovitém elektrolytu. Predepsany proud je
uddvdn v podobé proudové hustoty na jednotku plochy Inpp [A m™2] a je
pfiveden na jednu z elektrod, pficemz I,,, > 0 odpovidé rezimu nabijeni a
Lpp < 0 rezimu vybijeni. Pomoci soustavy transportnich rovnic v poréznim
prostiedi pro lithiové ionty a elektricky nadboj (nize popsané rovnicemi (2.27a),
(2.28), (2.30) a (2.31)), ve kterych I,p;, je predepsan jako tokova (Neumannova)
okrajova podminka, vznikne odezva ¢lanku v podobé vysledného napéti mezi
obéma elektrodami.

V 1D je Li-ion ¢lanek reprezentovan intervalem Q = [z4, 4], viz Obré-
zek 2.4, ktery je rozdélen na tii ¢asti Q = Q3 UQy U Q3, kde Q1 = [z4, 23],
Oy = [z, xc] & Q3 = [z, 4] jsou po Tadé kladna elektroda, separdtor a

zapornd elektroda. Elektrody i separdtor se sklddaji z pevného, porézniho
materidlu a v dalsim jsou veli¢iny prislusné k této pevné fazi znaceny indexem
s (z angl. solid phase). Uvnitf porézniho prostiedi se v celé oblasti {2 nachézi
elektrolyt, jehoz prislusné veli¢iny jsou v dalsim znaceny indexem e. Veli¢iny
prislusné k jednotlivym podintervalim §2; jsou dale indexovany prislusnym
¢islem 7 =1, 2, 3.

Hodnoty vsech veli¢in jsou obecné zavislé na prostorové souradnici x €  a
na case t € J = (0,t5), kde t; oznacuje pfedem zvoleny konecny cas.

V Li-ion ¢lanku jsou lithiové ionty Lit v rdmci elektrochemickych procesii
uvolnovany z porézniho materidlu jedné elektrody (deinterkalace), transporto-
vany difuzi elektrolytem pres separator, az jsou nakonec slouceny s poréznim
materidlem druhé elektrody (interkalace).

11



2. Matematické modelovani proudéni, transportu a prestupu velicin v poréznim prostredr

kladné elektroda separator zapornd elektroda
91 Qs Q3

Tq Ty T IJ

Obrazek 2.4: Jednorozmérna aproximace lithiového-iontového elektrického ¢lanku.

B Ridici transportni rovnice lithiovych iontii v elektrolytu
Podle [6] Ize ¥idici difuzni rovnice pro lithiové ionty Li* v elektrolytu zapsat
pro kazdé i = 1,2,3 ve tvaru

88671‘ _8( laceﬂ‘
ot ox \" T oz

i ) + (1 — tg_) aiji Vv O, xJ, (2.27&)

kde ce; [mol m~3] je moldrn{ koncentrace Li* v elektrolytu, ¢; [—] je porozita,
D, [m?s71] je difuzni koeficient lithiovych iontii v elektrolytu, 7 [—] je tortuo-
zita porézniho prostiedi (charakterizujici zvlnénost ¢i zakroucenost porézniho
prostoru), t} [1] je transferen¢ni ¢islo LiT, a; [m™!] je povrch porézni elek-
trody na jednotku objemu a j; [mol m~2s7!] je tok iontii z vnitiniho povrchu
elektrody do elektrolytu vztazeny k jednotce plochy. V piipadé separatoru je
tok nulovy, proto jo = 0.

Rovnice (2.27a) v jednotlivych ¢astech ¢lanku jsou mezi sebou propojeny
okrajovymi podminkami popisujicimi jednak spojitost koncentrace, resp.
difuznich tokt mezi elektrodami a separatorem:

Ce,le:(pb = c€7l‘x:zb a 0673‘CE=IC = 0672‘$:zcy (227b)
resp.
0 0
Dory 222 — Doy 22 , (2.27¢)
0T |p=gy+ 0T |pegy—
866 3 606 2
D : =D : , 2.27d
eT3 o s eT2 O e ( )

a nulovy tok Li™ skrz vnéjsi hranici ¢lanku:

Jc Oc
el _ YCed =0. (2278)
8x T=Tq+ ax T=Tq—
V case t = 0 je potom predepsana pocatecni podminka pro koncentraci ve
tvaru
Ceiilimo = Cis v i, Vi€ {1,2,3}. (2.27f)

V pevné fazi poréznich elektrod dochézi k uklddani (interkalaci) a uvolno-
vani (deinterkalaci) Li*, pficemz jejich mnozstvi na povrchu elektrod popisuji
koncentrace ¢, ; [mol m™3], i = 1,3. Zaroveti se symbolem ¢s mazi, i = 1,3,
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2.3. Transport ionti a elektrického naboje v Li-ion ¢lanku

oznacuje maximalni mozna (saturovand) koncentrace, kterou mohou lithiové
ionty na povrchu elektrody nabyvat.

Dynamiku difuznich procest lithiovych ionti uvnitt pevné faze poréznich
elektrod lze dale modelovat napriklad tak, ze se pevna fiaze aproximuje
souborem kulic¢ek, pficemz na kazdou z nich se aplikuje druhy Ficktv zdkon
ve sférickych soufadnicich, viz [6, 29, 30].

B Butlerova-Volmerova reakéni kinetika

V kazdém bodé a céasovém okamziku popsané rovnice udavaji chemicky stav
¢ldnku pomoci hodnot koncentraci c.; v elektrolytu a cy; v elektrodach,
i =1, 3. Toky 71 a js jsou zodpovédné nejen za prestup aktivni hmoty (ionti)
mezi elektrodami a elektrolytem, ale zaroven popisuji klicové elektroche-
mické interakce, které pak udavaji vysledné napéti ¢lanku. Podle Butlerovy-
Volmerovy reakéni kinetiky [6, 31, 32, 33] lze tyto toky pro i = 1,3 vyjadrit

ve tvaru . P
Qg q Qe g
)i = 0; — i) — —— i 2.2
ji=10 [exp(RTn> exp( RTn)] (2.28a)
S
0 = Ki\/(cs,max,i - Cs,i)cs,ice,ia (228b)

kde F [C mol™!] je Faradayova konstanta, R [J mol 'K~!] je univerzalni
plynova konstanta, T' [K] je teplota, K; [mol_%mgs_l] je reakéni koeficient,
Qg [1], resp. ac; [1] jsou koeficienty prestupu elektrochemické reakce na
anodé, resp. katodé a n; [V] je interkala¢ni potencial definovany vztahem

M = Qsi — Pei — Ui (2.29)

kde @i [V], resp. @e;i [V] jsou elektrické potencidly v elektrodéach, resp.
v elektrolytu a U; [V] je napéti otevieného obvodu (bez zatizeni).

B Rovnice pro vypoiet elektrického potencialu

Podle Ohmova zakona [6] 1ze rovnice zdkona zachovani elektrického naboje
v poréznich elektrodach, resp. elektrolytu v ; x J zapsat ve tvaru

0% ;i
of" 65? =a;F'j; proi=1,3, (2.30)
resp.
0 0P i . 2RT 0 Olne,; .
% (I{fﬂ g;ﬂ) = _aiF]i + T(l - t(—]l—)% <K(ieff 81‘671) pro 1 = 172737
(2.31)

kde ¢ [S m™1] je efektivni elektronické vodivost v poréznim prostiedi a
x¢T [S m™1] je efektivni iontova vodivost elektrolytu.
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2. Matematické modelovani proudéni, transportu a prestupu velicin v poréznim prostredr

V kazdém ¢asovém okamziku lze rovnice (2.31), resp. (2.30) interpretovat
jako systém obycejnych diferencidlnich rovnic druhého radu, které je nutné

doplnit o nasledujici okrajové

podminky pro ¢, ;:

_eff 8(10371 =T
01 9 = tapp»
T le=za+
eff 890571 =0
_Ul a - Y
T |g—gy—
_eff 890573 =0
0'3 a = U,
T o=+
_ eff 68033 I
03 9 = lapp,
T |pmay—
905,3’129% = 07
resp. pro Qe ;:
eff 8g0671 — 0
—hKi 67 =Y,
T p=xq+
eff 8(706,1 eff 8(10832
_K/l a - _K/Z a 9
x T=Tp— x r=xp+
eff 8(,03,2 eff 8906,3
R T - TR Ty )
T o=z~ T e=zx.+
eff 8906»3 —0
_KJS 8 — ,
T |p—zy—
Lpe»l =Ty = ()06’2|x:1;b ?

(‘0612|m:xc - ()0673|m:x‘: .

B Vypocet napéti Elanku

(2.32a)
(2.32b)
(2.32¢)

(2.32d)

(2.32¢)

(2.33a)
(2.33b)
(2.33¢)

(2.33d)

(2.33e)
(2.33f)

V daném casovém okamziku je pii znalosti I, a chemického stavu ¢lanku (tj.
prostorového rozlozeni koncentrace lithiovych iontl ¢ ; pro ¢ =1,3 a ce; pro
i =1,2,3) mozné vytesit soustavu obycejnych diferencidlnich rovnic (2.30) a
(2.31), jak je ukdzano v [29] a v Kapitole 5. Vystupem FeSeni téchto rovnic
jsou nejen toky ji a j3, které vystupuji ve zdrojovych ¢lenech transportnich
rovnic pro lithiové ionty (2.27a), ale téZ hodnoty potencidltu n; a 73, z nichz
se ur¢i hodnota ¢, 1], », Jako vysledné napéti ¢lanku. Detaily vypoctu jsou

uvedeny v Kapitole 5.
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Kapitola 3

Presna reSeni ulohy dvoufazového proudéni
s kapilaritou v obecné dimenazi

Za predpokladu nestlacitelného dvoufazového proudéni v rigidnim, homogen-
nim a izotropnim poréznim prostiedi bez zdroju a gravitace 1ze v obecném
prostoru R%, d € N, formulovat tlohu tak, Ze pro ni existuje pfesné, semi-
analytické feseni. Tato uloha se nazyvd McWhorterova a Sunadova tloha [34,
35, 36, 37, 38].

Uloha predstavuje situaci, kdy je jedna z fazi vtld¢ena v pocétku souradné
soustavy do oblasti vyplnéné druhou fazi (s jistou saturaci), pficemz se pied-
poklada, ze vysledny profil saturace bude symetricky okolo bodu vtlaceni
umisténého v pocatku soustavy souradnic. V této praci budeme pro jedno-
duchost uvazovat pouze pripad vtlaceni smécivé faze (se saturaci Sy, = Sp)
do oblasti naplnéné fdzi nesmécivou (se saturaci S, = S; < Sp). Odvozeni
presného FeSeni pro opa¢nou situaci je analogické [34, 36].

Principem odvozeni presného feseni je transformace parcidlni diferencidlni
rovnice dvoufdzového proudéni na obycejnou diferencidlni rovnici (ODR),
kterd je nasledné prevedena na rovnici integralni. Pro feSeni integralni rovnice
je pak pouzita numericka itera¢ni metoda, proto se vysledné reSeni nazyva
semi-analytické.

B 3.1 Formulace ulohy

Za vyse uvedenych predpokladi se rovnice kontinuity (2.8) pro fazi o € {w, n}
zjednodusi na

¢% +V - T, =0, (3.1a)

kde Darcyho rychlost faze a je ddna vztahem
Ug = —AaK VDa, (3.1b)

kde K [m?] oznacuje izotropni (skaldrni) vnitini propustnost porézniho pro-
stiedi.
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3. Presna reseni dlohy dvoufazového proudéni's kapilaritou v obecné dimenzi

B Formulace v kartézskych soufadnicich

Zavedenim celkové rychlosti v = ¥, + ¥, a pouzitim definice kapilarniho
tlaku (2.11) lze rovnice (3.1b) pro @ = w a « = n zkombinovat a vyjadrit tak
Darcyho rychlost smacivé faze ve tvaru

Uy = f(Sw)0r — D(Sy)VSy, (3.2)
kde f [—] je frakéni funkce smacivé féze

)\w(Sw)
Aw(Sw) + An(Sw)

f(Sw) - (3.3)

a D [m?s7!] je funkce zahrnujici jevy kapilarni difuze

_ )\w(Sw)An(Sw) dpc
A WS I WIS P IR (3:4)

Rovnice kontinuity (3.1a) pro obé faze lze s vyuzitim zavedeného znaceni
preformulovat na soustavu rovnic

V- ip =0, (3.5a)

60 L (F(Su)0r — D(SW)VSw) =0, (3.5b)

pro neznamé funkce S, = Sy (¢, T) a vy = vr(t, ©), ¥Vt > 0, VZ € RY.

B Formulace ve sférickych soutadnicich

Predpoklad symetrie hledaného presného feseni vzhledem k poc¢atku umoznuje
prevést soustavu rovnic (3.5) z kartézskych souradnic do sférickych souradnic
v R?, tj. predpokladaji se funkéni zévislosti o7 = O7(t,r) a Sy = Sy (t, 1),
kde r [m] oznacuje (nezdpornou) radialni souradnici.

Rovnici (3.5a) spliuje

ﬁT<t7 T) = ,ycjﬁc(lt_)l E; (36)

kde Qo [m?s~!] je obecné ¢asové zavisly objemovy tok a 7’je jednotkovy vektor
v kladné sméru radidlni soufadnice. V rovnici (3.6) jesté vystupuje v4 [m?1]
coz je povrch jednotkové koule v R? dany vztahem

)

d

dm2
i (3.)

r(4+1)
kde I' oznacuje gama funkci.
Zavedenim bezrozmérné funkce F' = F'(t,r) vztahem
d—1 o8

F=F,— 4 w (3.8)

- (5@ or
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3.2. Transformace na ODR

kde Fy, [—] oznacuje normalizovanou frakéni funkei smacivé faze
f(Sw) = f(Si)
Fy(Sy) = —F—F5—, 3.9
(Su) 1— f(S:) (39)
lze rovnici (3.5b) pro vSechna r > 0 a t > 0 prevést do tvaru
_1,08S,(t,r OF(t,r
T pson 2 o aag)

B Pocateéni a okrajové podminky

Rovnice (3.10) je doplnéna nasledujicimi poc¢étecnimi a okrajovymi podmin-
kami pro funkci S, = Sy (t,7)

Sw(0,7) = S;, Vr >0, (3.11a)
Sw(t,0) = So, vt >0, (3.11b)
lim Sy(t,7) =5, vt >0, (3.11c¢)

které pro Sy > S; vyjadiuji bodové vtlaceni smacivé faze v pocatku sourad-
ného systému.

V [38] je podrobné popséno, ze funkce F' = F(t,r) spliuje okrajové pod-
minky

F(t,0) =1, vt >0, (3.12a)
lim F(t,r) =0, vt > 0. (3.12b)

Prvni podminka (3.12a) souvisi s rovnosti celkového toku a toku smécivé

faze v pocétku souradného systému. Podminka (3.12b) plati pfi splnéni
dodatecného predpokladu

lim rd—laasw(t,r) =0, Vt>O0. (3.13)

r—+00 r

. 3.2 Transformace na ODR

B Substituce
Pokud vstupni tok Qg spliuje ¢asovou zavislost
d—2
Qolt) = AT, (3.14)

kde A [mds_g] je konstanta, lze ukazat, ze F je funkci pouze saturace, tj.
F = F(Sy), [38] a pomoci podobnostni substituce

Sw(t,r) = Sw(A), (3.15)
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3. Presna reseni dlohy dvoufazového proudéni's kapilaritou v obecné dimenzi

kde
1
A=rt"2, (3.16)

1ze redukovat parcidlni diferencialni rovnici (3.10) na ODR druhého fadu pro
neznamou funkci F' = F(S,,). Tato rovnice je ve tvaru

CyD(Sy)
F(Sw) = Fu(Sw)’

i) (3)

pricemz vysledné feseni S,, = Sy (t,7) se pro vSechna t > 0 a r > 0 ziskd z
implicitni rovnice

F/(Sy) [F/(Sw)] 7% = —A74

VSy € [Sl, So], (3.17)

kde

[SUIN

240 1) g oy
= S SR (Su(t 7)) (3.19)

[SlIoH

rit—

B Okrajové podminky

V dusledku transformacéniho vztahu (3.16) plynou z poc¢atecni a okrajovych
podminek (3.11) a (3.12) nasledujici okrajové podminky pro F'

lim F(S,) =0, (3.20a)
F(Sp) =1. (3.20b)

Navic plati nasledujici okrajové podminky i pro F”:

! T / _\d YdP
F (Sj) = Sjl—rgj'F (Sw) = )‘*m, (3.21a)

F'(Sp) =0, (3.21Db)
kde A, oznacuje limitu inverzniho vztahu A = A\(Sy)

lim A(Sy) = A (3.22)

Sw—S;

o které lze dokazat, ze je konecnd, viz [38].

Prestoze by se mohlo zdat, ze tloha (3.17) m4a o dvé okrajové podminky
vice, nez je pro ODR druhého fadu ptipustné z hlediska existence reseni, neni
tomu tak. Vztah (3.21a) nelze povazovat za okrajovou podminku, protoze
pouze pfifazuje viznam nezndmé hodnoty A, k limitni hodnoté F’(S;"). Druh4
podminka (3.21b) ma piimy dopad na moznost volby bud parametru A, nebo
vstupni saturace Sy v zavislosti na d, jak bude ukazano v dalsi kapitole.
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3.3. Integralni feseni ODR

B 3.3 Integralni feseni ODR

V pivodnich ¢ldncich McWhortera a Sunady [34, 35] byl prod =1a d =2
navrzen zpusob Feseni rovnice (3.17) pomoci jejiho pfevodu na integralni
rovnici, kterd je posléze fesena iteracné a pomoci numerické aproximace
integralu. V ¢lanku [38] (Pfiloha P.1 [str.51]) byl autorem této prace navrzen
zpusob ziskani feseni (3.17) i pro d > 3. VSechny vysledné integralni rovnice
a itera¢ni schémata k jejich feSeni jsou shrnuty v nasledujicich sekcich. Inte-
gralni rovnice, ekvivalentni rovnici (3.17), se odvodi z (3.17) dvojndsobnou
postupnou integraci a pouzitim okrajovych podminek (3.20) a (3.21b).

B Reseniprod=1

Véta 3.1. Pro d =1 je fesSeni ulohy (3.17) s okrajovymi podminkami (3.20)
a pri splnéni podminky (3.21b) ekvivalentni feSeni integralni rovnice

So
(8—5u)D(8)
f - rots 18

F(Sy)=1- : (3.23)

B8—=S:)D(B
f £ 848

pokud plati vztah mezi A a Sy ve tvaru

65— s)D(B)
F(ﬁ) - Fw(ﬂ)

i

A% = dg. (3.24)

Diikaz. Integraci (3.17) od Sy, do Sy a pouzitim podminky (3.21b) vznikne
vztah pro F’ ve tvaru

F'(Sy) = A2y / F(B)D_(%dﬁ, VSw € (S;, So). (3.25a)

Dalsi integraci (3.25) od S,, do Sy a pouzitim podminky (3.20b) vznikne

So So
1 — F(S, 201//F P00 S € (SuS0). (325b)

Integral na pravé strané (3.25b) se pomoci integrace per partes prevede na
[34]

So

1—F(S,)=A"%C, / Wdﬁ, VS, € (S, So). (3.25¢)

w
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3. Presna reseni dlohy dvoufazového proudéni's kapilaritou v obecné dimenzi

Limitnim piechodem S, — S;” v (3.25¢) a pouZitim podminky (3.20a) do-
staneme pozadovany vztah mezi A a Sy dany rovnici (3.24).

Poslednim krokem je dosazen{ vztahu (3.24) pro A% do (3.25¢), &imz vznikne
(3.23). 0

Derivace rovnice (3.23) podle S, umozni explicitné vyjadiit F”:

f eE el
F,(Sw) = R VSy € (SZ,S()) (3.26)

(5*51) (B)
I rmds

Integralni rovnici (3.23) lze vyftesit iteraéné pomoci numerické integrace ve
tvaru navrzeném v [34]:

f ey RL

Fip1(Sw) =1 (3.27)

S Si—Sw)D 7
J RErra( 18

kde F}, znaéi k-tou iteraci F', pticemz Fjy = 1 je doporucend poc¢atecéni hodnota.
Itera¢ni schéma (3.27) je konvergentni, pouze pokud je vstupni saturace Sy
dostate¢né daleko od maximalni smacivé saturace Sp® :=1— S, . [36, 38,
34, 35]. Pokud Sy — S;'%*, pak dochézi v puvodné navrzeném iterac¢nim
schématu k vyznamnému narustu iteraci, az k divergenci.

V ¢lanku [36] byly autorem této price navrzeny dvé ruzné modifikace
itera¢niho schématu (varianty A a B), které umoznuji ziskat feseni pro
podstatné vyssi hodnoty Sp. Obé varianty modifikované iteraéni metody jsou
zalozené na substituci

G(Sw) = F(Sw)(_ l(Sw)’ (3.28)

pricemz varianty A, resp. B jsou ve tvaru

Gr+1(Sw) = D(Sw) + Gi(Sw) | Fu(Sw) + 5 (3.29)
J(8=5) Gu(8) a8
resp.
-1
J (8= Sw) Gk(8) 4B
Gri1(Sw) = [D(Sw) + Gr(Sw) Ful(Sw)] [ 1- 2% :
(85 Gi(p) 49
Z (3.30)
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3.3. Integralni feseni ODR

s doporu¢enou pocatecni hodnotou Gy = 0 [36].

Iterac¢ni schémata jsou zastavena, pokud je velikost rozdilu po sobé jdoucich
iteraci mensi nez predem stanovena mez.

Analyzu této problematiky lze nalézt i v pozdéjsim ¢lanku [39], kde je
rovnice (3.17) feSena pomoci spektralnich metod.

B Reseni pro d =2

Véta 3.2. Pro d = 2 je feSeni ulohy (3.17) s okrajovymi podminkami (3.20)
a pri splnéni podminky (3.21b) ekvivalentni reseni integralni rovnice

Sw B
D
J exp (‘212 ! F(n)(%(n)dn> dp

F(Sy) = = . . VS, € (Si80),  (3.31)
0
Jew (‘OAZ ) F(nf)(%dn) dp

pokud Sp = S},
Dikaz. Integraci (3.17) od S; do Sy, vznikne

Sw
Cy D(n)
F'(Sy,) = F'(S;") exp ——/—dn , ¥Su € (Si, o),
( IU) ( (3 ) A J F(n) _Fw(n) w ( 0)
(3.32a)
kde F'(S;") := limg _ ¢+ F'(Sw) je zatim nezndmd, ale konecnd hodnota

odpovidajici Ay z podminky (3.21a). Podminka (3.21b) je splnéna jen tehdy,
pokud je integral na pravé strané rovnice (3.32a) nekonecny pii S, — Sj .
Vzhledem k omezenosti funkce D = D(S,,) to znamend, Ze musi platit

0= lim F(Sy)— Fy(So) =1— F,(So), (3.32b)
Sw—Sg
tj. Fiu(So) = 1, coz je podle definice F, v rovnici (3.9) a frakéni funkce f v
rovnici (3.3) splnéno pravé tehdy, kdyz Sp = S;/%".
Dalsi integraci rovnice (3.32a) od S; do S,, a p¥i pouziti okrajové podminky
(3.20a) vznikne

Sw B
F(Sw) :F'(sj)/exp —%/F(U)D_(%dn dB, VS € (Si, 50).
Si Si

(3.32¢)
Z rovnice (3.32¢) je zfejmé, Ze k splnéni posledni okrajové podminky (3.20b)
musi F'(S;") spliiovat

-1

So B
F(SF) = S/exp —%!Mdn as| | (3.324)
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3. Presna reseni dlohy dvoufazového proudéni's kapilaritou v obecné dimenzi

odkud jiz v kombinaci s (3.32¢) plyne tvrzeni (3.31).

O
Derivace rovnice (3.31) podle S, umozni explicitné vyjadrit F”:
(4 )
F'(S,) = &l (3.33)

So ’
C D(n)
J exp (‘AQ | Fo-Futm d”) dp
Si S
Reseni integralni rovnice (3.31), navrzené v [34], je opét zaloZené na iterac-
nim schématu a numerické aproximaci integrala ve tvaru

Sw
[ro{ g}

Sfexp( f L) )dﬁ

Si

Fip1(Sw) = (3.34)

pricemz Iy = 1 je doporucend pocatecéni hodnota. Itera¢ni schéma je zastaveno,
pokud je velikost rozdilu po sobé jdoucich iteraci mensi nez predem stanovend
mez.

B Reseni prod >3
Véta 3.3. Pokud Sy = S)'**, je resSeni tulohy (3.17) pro d > 3 s okrajo-

vymi podminkami (3.20) a pri splnéni podminky (3.21b) ekvivalentni reSeni
integralni rovnice

Su b 24
Fsw) = [ |(Fis) T + 20 / F@F)w(md” as,
” (3.35)

kde F'(S;") sphiuje

So B 2—d

1 :/ (F’(Sj))¥ + dfch—i/F(mD_(”)dn dg. (3.36)
Si Si

Diikaz. Integraci (3.17) od S; do Sy, vznikne

2—d d

F/(Sw): (F'(Sf)) a D(n)

20,45 / i LU NNCED

VS € (Si, So), kde F'(S;") je zatim neznamd, ale koneénd hodnota z pod-
minky (3.21a). Déle se postupuje analogicky jako v dukazu Véty 3.2, tj.
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3.4. Viysledky a aplikace

podminka (3.21b) je splnéna jen tehdy, pokud je integrél na pravé strané
rovnice (3.37) nekone¢ny pti S, — S, odkud plyne nutnost Sy = S;'*".

Dalsi integraci (3.37) od S; do Sy, pfi pouziti okrajové podminky (3.20a)
rovnou vznikne rovnice (3.35), pficemz je ziejmé, ze posledni okrajova pod-
minka (3.20b) je splnéna pravé tehdy, kdyz F’(S;") splituje rovnici (3.36). [

Autorem této prace bylo v [38] navrzeno nejen odvozeni obecné ODR (3.17)
a ekvivalentni integralni rovnice ve Vété 3.3, ale téz iteracni zpiisob reseni
této integralni rovnice (3.35) pri splnéni pozadované vazby (3.36) ve tvaru

_d
Sw IB 2-d

FP)(8,) = min / B4 . d;QCdA_g/ (B)D(U)dn aga b
S; S; Fy (n) — Fu(n)

(3.38)
kde parametr B € R zastupuje nezndmou hodnotu F’ (SZ+ ) a F,gB) je k-ta
iterace aproximace funkce F' pti dané hodnoté B. Jako pocatec¢ni hodnotu je
doporuceno zvolit FéB) =1 pro kazdé B € R.

Samotny algoritmus vypoctu je navrzen tak, ze pro dané B je iteracni
schéma (3.38) zastaveno po kB) krocich, pokud je velikost rozdilu po sobé
jdoucich iteraci mensi nez predem stanovend mez.

Déle je zaveden funkciondl

_d_
So 2—d

Hp(§) =1 —/ B + C'olA_/f dn dg, (3.39)

S;

jehoz nulové hodnota pro néjaké B a &€ = FB) odpovid4 splnéni podminky
(3.36). Vysledna hodnota funkciondlu Hp je pro dané B a F ]55% oznacena
H(B):=Hp (Fli( B))) Numerické simulace v ¢lanku [38] naznacuji, ze funkce
H = H(B) je monotonni a mé pravé jeden koten B*, ktery odpovida hledané
hodnoté F'(S;"), tj. B* splituje rovnici

B = (F®)) (57). (3.40)

B 34 Vysledky a aplikace

Pro d = 1 jsou numerické fesice pro puvodni schéma a obé varianty modifiko-
vaného itera¢niho schématu volné k dispozici v podobé webové aplikace na
webové strance autora http://mmg.fjfi.cvut.cz/~fucik/mcwhorter.

V ¢lanku [37] bylo navic autorem ukazano, ze dvé jednorozmérna presn4 fe-
seni se daji pouzit k odvozeni presného Teseni pro tlohu dvoufazového proudéni
v poréznim prostredi s materidlovou nespojitosti. Numericky fesi¢ pro tuto
ulohu autor taktéz implementoval v podobé volné dostupné webové aplikace
na webové strance http://mmg.fjfi.cvut.cz/~fucik/exacthetero.
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3. Presna reseni dlohy dvoufazového proudéni's kapilaritou v obecné dimenzi

Nakonec i numericka feSeni itera¢nich schémat (3.34) pro d = 2 a (3.38)
pro d > 3 jsou ve formé webové aplikace volné k dispozici na webové strance
autora http://mmg.fjfi.cvut.cz/~fucik/exact .

Ukéazky presnych feseni jsou uvedeny v [38] (Pfiloha P.1 [str. 51]). Presnd
reSeni byla pouzita k testovani implementace numerickych metod napiiklad
v [40] (Priloha P.2 [str. 58]) nebo téz v publikaci [41] odeslané k recenzi do
Computer Physics Communications v tinoru 2021.

B 35 Shrnuti autorova pFinosu

Autoruv pfinos v této kapitole 1ze shrnout v téchto bodech:

® Formulace tlohy (3.1) ve zobecnénych sférickych soufadnicich
v R4, d € N ve tvaru (3.10).

® Vyjasnéni konecnosti limity (3.22).
® Odvozeni pfesného feseni pro d > 3 jako Tfeseni integralni rovnice.
® Navrh itera¢nich numerickych metod pro feseni integralnich rovnic

pro d=1v [36, 37],
pro d > 3 v [38].

® QOdvozeni presného feseni pro tlohu dvoufazového proudéni v po-
réznim prostfedi s materidlovou nespojitosti v [37].

® Implementace iteracnich resi¢i integralnich rovnic ve formé webo-
vych aplikaci volné dostupnych védecké komunité na webovych
strankach autora:

pro d = 1 na adrese
http://mmg.fjfi.cvut.cz/~fucik/mcwhorter,

pro d > 2 na adrese
http://mmg.fjfi.cvut.cz/~fucik/exact,

pro jednorozmeérnou tlohu v poréznim prostiedi s materidlo-
vou nespojitosti na adrese
http://mmg.fjfi.cvut.cz/~fucik/exacthetero.
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Kapitola 4

Numerické reSeni metodou smiSenych
hybridnich konecnych prvki

Reseni tloh dvoufizového proudéni v poréznim prostiedi s transportem
rozpusténych latek vyzaduje netrividlnich matematickych postupi, protoze se
jednd o tlohy s obecné nelinedrnimi koeficienty a nékdy i s degenerujici difuzi
napriklad v pripadech, kdy se z dvoufazového systému stane lokalné systém
jednofazovy. Ve vzacnych pripadech formulaci Gloh 1ze nalézt analytické nebo
semi-analytické feseni takovych tdloh, viz napriklad semi-analyticka reseni
popsand v Kapitole 3.

V obecném pripadé vzniké potfeba nalézt robustni a efektivni numerickou
metodu, kterd by se dala aplikovat na kompletni systém dvoufazovych rovnic
s transportem rozpusténych latek, piipadné s prestupem hmoty mezi fazemi.
V soucasné dobé je k dispozici nesc¢etné mnozstvi softwarovych balikd pro
numerickou simulaci téchto tloh zalozenych na metodach konecénych diferenci,
koneénych objemt nebo koneénych prvki, jako napiiklad DUNE [42], TOUGH2
[43] nebo COMSOL Multiphysics, které vsak maji sv4 omezeni pouzitelnosti.

V této kapitole bude popsan autorem navrzeny numericky fesi¢ NumDwarf,
ktery je zaloZen na numerické smisené hybridni metodé konecnych prvku
(MHFEM, z angl. Mixed-Hybrid Finite Element Method) a je navrzen pro fe-
seni obecného systému ¢asové proménného systému parcidlnich diferencialnich
rovnic (PDR) s obecnymi koeficienty v 1D, 2D a 3D. Konkrétni ulohy dvou-
fazového nebo dvoufizového kompozi¢niho proudéni v poréznim prostredi
se potom formuluji jen pomoci volby koeficientii a okrajovych podminek.
Nazev NumDwarf je slozen z jednotlivych symboli, které oznacuji volitelné
koeficienty v obecném systému parcidlnich diferencidlnich rovnic, viz rovnice
(4.1) nize.

Mezi hlavni prednosti navrzeného reSice NumDwarf patii schopnost simu-
lovat jiz zminéné degenerované dvoufazové tlohy, nizka numerickd difuze
v MHFEM [44, 45, 46] v aproximaci advekce a moznost efektivni paralelizace
na vypocetnich klastrech CPU nebo GPU.

StéZzejni publikace [40] popisujici numericky fesi¢ NumDwarf je uvedena
véetné doplnujicich materiali v Ptiloze P.2 [str. 58]. V soucasné dobé existuji
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4. Numerické reseni metodou smiSenych hybridnich konecnych prvkii

celkem t1i implementace numerického resice NumDwarf:

® Prvni byla implementovana autorem této prace v C++ pro pocitani na
jednom vypoéetnim uzlu nebo vicejadrovém PC (pomoci OpenMP). Pro
reSeni soustavy linearnich rovnic s fidkou matici byly pouzity knihovny
UMFPACK [47] (primy Tesi¢) a PETSc [48] nebo TNL [49] (itera¢ni fesice).
Udelem této varianty bylo piedeviim ovéfeni konceptu numerického
schématu pro simulaci tloh s degenerujicim dvoufazovym proudénim
v poréznim prostredi a tloh s transportem rozpusténych latek. Poprvé
byla tato metoda pouzita v ¢lanku [24], viz Ptiloha P.3 [str. 102].

® Druhd implementace je urcena pro paralelni pocitani na vypocetnich
klastrech CPU a vyuziva metod rozkladu oblasti (domain decomposition)
a MPI. Byla implementovdna pod autorovym vedenim diplomantem (a
pozdéji doktorandem) J. Solovskym v C++ [50, 51, 41]. Tato implementace
byla pouzita v ¢lancich [23, 52], prvni z nich viz Ptiloha P.4 [str. 117].

B Tret{ implementace je masivné paralelni pro pocitani na GPU, pficemz
kompletni vypocetni kod bézi na GPU, tj. neprovadi se fadové pomalejsi
kopirovani dat mezi paméti GPU a paméti pocitace. Byla implemen-
tovana pod autorovym vedenim diplomantem (a pozdéji doktorandem)
J. Klinkovskym v C++ a CUDA v rdmci numerické knihovny Template
numerical library (TNL), kterd vznikd na KM FJFI CVUT v Praze
pod vedenim T. Oberhubera, http://www.tnl-project.org [53, 49].
V soucasné dobé je v pripravé publikace popisujici propojeni MHFEM
a mrizkové Boltzmannovy metody a jejich kompletni implementaci na
GPU.

B 4.1 Formulace obecné ulohy

Systém PDR je uvazovan ve tvaru rovnic s obecnymi koeficienty Nj ;, 0, m;,

Di,ja ’LEZ‘, Eim’, Tij @& fi, ’i,j S ﬁ, 7= {1,2, ... ,n}:
n n
07, .
Nij 7875] +Y iy - VZi+
7j=1 7j=1
(4.1)
n n n
Voim; | — ZDi,jVZj +w; | + Z ZjC_L'iJ + ZT‘Z'J‘Z]' = fi,
j=1 j=1 j=1
pro neznamé funkce Z1, Zs, ..., Z,, které zavisi na case t € [0,T] a prostorové

soufadnici Z € Q C R%, kde T oznac¢uje koneény ¢as simulace, § je polygonalni
oblast a d je dimenze prostoru. Pfedpokladem je, ze funkce Z;(t, &) jsou
alespon spojité diferencovatelné vzhledem k casu a slabé diferencovatelné
vzhledem k prostorové soutadnici Z v Q. Vyznam koeficient v (4.1) je detailné
popsan v [40].
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4.2. Diskretizace

Podle potteb Fesené tlohy jsou rovnice (4.1) doplnény poc¢ate¢nimi, resp.
okrajovymi podminkami, viz [40, 23], které 1ze obecné zapsat

Z;j(0,%) = Z7"(%), VZ¥eQ, jen, (4.2a)

resp.
Zj =177, VZ €Tz, C 09, jen, (4.2b)
G-i=q, VZE € Ty, C O, i€n, (4.2¢)

vt € (0,T), kde symbol ¢ oznacuje konzervativni tok

G =m; | — Z D;;VZ;+w; | . (4.3)
j=1

Matematicky tvar toku zavedeny rovnici (4.3) je autorem navrzen tak, aby
umoznil simulaci tloh (nejen) dvoufizového proudéni s degenerujici difuzi,
kdy difuzni koeficient se blizi k nule pfi lokadlnim prechodu z dvoufazového
do jednofdzového proudéni (pripad mizejici faze), viz napiiklad difuzni koefi-
cient dany rovnici (3.4). V téchto ptipadech lze difuzni koeficient zapsat ve
tvaru mD; ;, kde m je koeficient zahrnujici mobilitu dané faze (ktery nabyva
kladnych i nulovych hodnot) a na ¢ast nenulovou (odrazenou od nuly néjakou
kladnou konstantou), ktera odpovida radu velikosti difuze.

. 4.2 Diskretizace

Oblast Q C R? je diskretizovana pomoci kone¢né prvkové sité K, € R?, kterd
se skladé z tsecek v R, trojtihelnik nebo obdélnikii v R? a étyistént nebo
kvadri v R?. Symbol h > 0 oznacuje velikost dané sité a jedné se o pramér
nejvetsi z kouli opsanych prvkiam z KCp,. Predpoklada se, ze sit Ky, je konformni
(tj. pranikem dvou prvki je bud spolecnd sténa, spoleéna hrana, spolecny
vrchol, nebo prazdnd mnozina). Symboly Vy, resp. &, oznacuji mnozinu vSech
vrcholl, resp. hran sité Kp, pricemz Eﬁnt, resp. Eﬁmt jsou podmnoziny &
obsahujici vnitini, resp. vnéjsi (hraniéni) hrany. Mnozina vSech hran prvku
K € Ky je oznacena symbolem €. Index ¢ bude v dalsim vzdy odpovidat
i-té rovnici nebo proménné Z; pro i € 7.

Z hlediska casové diskretizace je ¢asovy interval [0, 7] rozdélen diskrét-
nimi body 0 =ty < t; < --- < tp =T, pricemz diskrétni ¢asovy interval je
Aty = tgy1 — tg. V dalsim je exponent k pouzit k oznaceni hodnoty na casové
hladiné ¢, napt. Z f k Jje diskrétni hodnota funkce Z; na elementu K v case
te.
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4. Numerické reseni metodou smiSenych hybridnich konecnych prvkii

B Diskretizace vektorovych veli¢in

V rovnici (4.1) je ddle mozné oznacit tok bez mobility (nebo tézZ rychlost)
symbolem ¥; jako

n
U; = — Z Di,jVZj + W, (4.4)
j=1

Pri diskretizaci vektoru v; a ¢; se vychéazi z predpokladu, Ze oba patii do
funkéniho prostoru H(div, Q). Potom na kazdém prvku K € Kj je uvazovéna

diskretizace v; v Raviartové—Thomasové-Nédélecové prostoru nejnizsiho radu
RTN(K) C H(div, K) [40, 54, 55] ve tvaru

Wrp= Y, |bijkeZix— Y. bijkerZip|+wikm (4.5)

j€0'i7K Felk

Vk € N, VE € &k, VK € Kp, kde U§K7E, resp. wf’K’E oznacuji koeficienty
projekce v, resp. w; do RTNo(K) v Case ty, b; j ik B F & b; j i, E jsou koeficienty
vztazené ke geometrii daného prvku a difuznimu koeficientu (viz jejich definice
v [40]) a 0; ¥ C 7 je mnozina vSech indext j, pro které je D; ; nenulovy na
K e Ky,

B Diskretizace skalarnich veli¢in

Hodnota skaldrni nezndmé funkce Z; je na kazdém prvku K € K, aproxi-
movana konstantni hodnotou Zj i, kterou lze interpretovat bud jako stfedni
hodnotu funkce Z; na prvku K z metody konecnych objemt, nebo jako
vysledek projekce funkce Z; do prostoru po ¢astech konstantnich funkei z ne-
spojité Galerkinovy metody konecénych prvkh. Druhy pristup je blizsi oznaceni
MHFEM, tj. jedna se miseni dvou riznych konec¢né-prvkovych aproximaci
vektorovych a skalarnich velic¢in.

Casova derivace funkce Z; v (4.1) je na elementu K € Kj v case t
nahrazena diferenci

k+1 k
AZ;x %k —ZiK

dt Aty ’ (4.6)

28



4.3. Diskretizace PDR

. 4.3 Diskretizace PDR

Pomoci zavedenych diskretizaci 1ze i-tou PDR (4.1) zapsat v ¢ase tj na prvku
K € K}, ve tvaru

Klg &
|At| > Nij(Z5i = 25k )+ Y Zi3" i + i g)
koj=1 j=1 BeEx

n
k
+ > mig o e D ikl Kla— D wigke | 255 = 1Klafik,
Eelk 7j=1 Eefk
(@7)

kde dolni indexy K, resp. E oznacuji stiedni hodnotu prislusné veli¢iny pres
prvek K, resp. hranu F € £k. Hodnoty ij,El predstavuji stopy Z; piislusné
hrané £ € £k, pricemz diky piedpokladu spojitosti Z; v €2 se vynechavd
index K, protoze je tato hodnota spole¢nd sousedicim prvkim. Symboly
u; j.K.E @ a;j k,E oznacuji koeficienty projekce vektorovych koeficientl u; ;
a d;; do baze prostoru RTNy(K'). Hodnoty mk P, Zk]“g“” jsou urceny
pomoci upwindové stabilizace na zakladé hodnot toku z predchozi Casové
vrstvy, detaily viz [40] (Ptiloha P.2 [str. 58]).

B Lokalni soustava rovnic pro Zf;l

, , k41
Dosazenim vyrazu pro Vi KEZ (

pro Z Jk‘}}l, kterou lze maticové reprezentovat ve tvaru

4.5) do (4.7) vznikne linearni soustava rovnic

Zk:+1 Z QKIRKFZk+1 4 QKIRKy (48)
Fe&k
k41 - v o k+1 - .
kde Z; -7 je vektor tvofeny nezndmymi Zig,i=1...,n Prvky matic Qg

a Rk, r jsou dany vztahy

|K|d

{Qxk}; Nij. i Ui j K, E + mkwwb KB+ Klari g,
7‘7
Bty Bty
4.9a)
Rxr,; = D my by j kB, (4.9b)
Eeclk
a slozky vektoru Ry jsou
D |K’d k,upw
(R}, =IKlafir + 5 ZNJK =S e
£
e (4.9¢)
- Z > Zi % (i + uig K p) -

j=1FEe€k
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4. Numerické reseni metodou smiSenych hybridnich konecnych prvkii

Z rovnice (4.8) plyne, Ze koeficienty v obecném systému PDR (4.1) musi
byt predepsany tak, aby matice Qg byla nesingularni [40].

. 4.4 Bilance toku na hranach

Bilance normalové slozky toku ¢ na vnitinich hraniach E € Sﬁnt lze za pred-

pokladu nulovych zdrojt na hrané E zapsat v diskrétni podobé

2
k okt y ket A _
Yomie| Y |biikeZil — Y, bijk.erZip | +wik.e| =0.
/=1 jEUi,Ké Feng

(4.10)

Pokud je ovSem alespon jedna z hodnot m; , g nulovd, systém linearnich
rovnic (4.10) se stane singuldrnim. Jelikoz se jedna o bilanci numerického toku
pres hranu F, byla autorem této prace navrzena regularizace rovnic (4.10)
zavedenim upwindové stabilizace tak, ze obé hodnoty m; k, r jsou nahrazeny

. k ) y
jednou hodnotou m;’z"" na dané hrané E.

V piipadé mf’gp * > 0 lze tuto hodnotu z (4.10) vydélit, ¢imZ vznikne

2

k+1 k+1 —
Z Z bi:szZ’EZj7K[ - Z bi’j1K£7E)FZj,F + wizKZ’E - 0' (4'11)
(=1 |j€oi.K, Feék,

Pokud mi’gp “ = 0, je bilanéni podminka (4.10) trividlné splnéna pro
libovolné hodnoty vZ’f i,,- Odtud plyne, Ze vysledek neni poskozen predepsa-
nim dodatecné podminky (4.11), ktera slouzi ¢isté pro regularizaci vysledné
linearni soustavy.

Poznamenejme, ze uvedeny postup regularizace je vyhodny i pro pripady
mizejici faze, kdy hodnoty koeficientu mf”gp “ jsou sice kladn4, ale velmi mal

¢éisla.
. TV, - k+1
Globalni soustava rovnic pro Z;;

Rovnice (4.8) umoznuje eliminovat Z Jk K % (4.5), ¢imz z (4.11) vznikne soustava
linearnich rovnic pouze pro stopy ij’zﬂl, VE € ™. Pro hrany E € %! lezic
na hranici oblasti €2 se hodnoty Z; g predepisuji podle piislusnych okrajovych
podminek (4.2b), detaily viz [40] (Pfiloha P.2 [str. 58]).

Vyslednou (globalni) soustavu linedrnich rovnic pro Zﬁgl lze zapsat v ma-
ticovém tvaru
MZ*+ = p, (4.12)

kde Zk+1 = {Zk+1} = { ZktIn } je vektor n X mg neznidmych
F Jree, {Z5r Him Feg, € yet

kde ng oznacuje pocet hran v &,. Matice M € R"*"&.mXn¢ je fidkd, nesingu-
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4.5. Vlypocetni algoritmus

larn{ a je pozitivné definitni, pokud i matice tenzord {D;;}7;_; je pozitivné
definitni [40].

V kazdém casovém kroku tj je soustava (4.12) jedinou soustavou, kterou

je nutné vyfesit. Na zdkladé vypoéitanych hodnot ZF! = M~1b se z (4.8)

spocitaji hodnoty na prvcich Z]’?}r{l, VK € K, ¢imz se uzavie jedna casova

iterace g — tp+1-

B 45 Vypocetni algoritmus

Vypocetni algoritmus Ize shrnout v nasledujicich krocich:
1. Poloz k = 0 a pouzij (4.2a) k inicializaci ZgK, VK € K, aVj € n.
2. Opakuj nasledujici kroky, dokud neni dosazeno kone¢ného ¢asu 7"
a. Spocitej N; j i, Ui j KB, Mi K, Wi K,Es Qi j,K,Es Tij, K> fii, V1,5 €1,

VK € K, aVE € Ek.

b. Spocitej koeficienty dané upwindovou stabilizaci mz%w a Z;f f}g,
VE € & a¥i,j € f.

Spocitej koeficienty b; ; , VK € K, a Vi, j € n.
d. Na zékladé hodnot Z ]k 5 z predchozi ¢asové vrstvy t; pouzij (4.9)

k vypoctu Qk, Rk, F, EK, Q;RK’F a Q;R}, které jsou potieba
v (4.8), VK € K}, a VF € Ek.
e. Sestav M a b v (4.12) pomoci (4.11) a okrajovych podminek (4.2b).
f. Vyftes fidky systém linedrnich rovnic (4.12) k vypoctu Z Jlf"bll, VE € &,
a Vj € n.
Spocitej Zﬁ}l pomoci (4.8), VK € Kj, a Vj € n.
Poloz ty+1 =ty + At ak:=k+1.

B 16 Vysledky a aplikace

Numericky resi¢ NumDwarf byl pouzit k feSeni rfady tuloh jednofazového a
dvoufazového kompozi¢niho proudéni v poréznim prostiedi.

B Publikované vysledky

® Prvni publikace [44, 45] vyuzivaly v té dobé teprve vyvijeny vypocetni
kéd zalozeny na MHFEM a zabyvaly se predevsim otdzkou spravné
simulace podminek na materidlovych rozhranich v poréznim prostiedi.
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4. Numerické reseni metodou smiSenych hybridnich konecnych prvkii

® V ¢lanku [24] (Ptiloha P.3 [str. 102]) byl numericky fesi¢ MHFEM pouzit
k simulaci rozpousténi DNAPLu do proudici vody ve spolupréci s CESEP,
Colorado School of Mines, Golden, CO (T. H. Illangasekare, B. Petri, K.
Smits).

® V ¢lancich [23] (Ptiloha P.4 [str. 117]) a [56] byl fesi¢ NumDwarf pouzit
ke zkouméani vyvinu a zpétného rozpousténi CO4 ve vodé v dvoufazovém
proudéni v poréznim prostredi, pricemz byly uvazovany mezni pripady,
kdy plynna faze vznikala nebo zanikala, tj. situace, pro které byla auto-
rem této prace primarné navrzena vysSe popsanda regularizace soustavy
linedrnich rovnic. Prace vznikla ve spolupraci s CESEP, Colorado School
of Mines, Golden, CO (T. H. Illangasekare) a U.S. Geological Survey,
Eastern Energy Resources Science Center, Reston, VA (M. R. Plampin).

® V ¢lanku [57] (Ptiloha P.5 [str. 141]) byl fesi¢ NumDwarf pouzit pro
simulaci adsorbce a desorbce vodni pary v zeolitu 13X.

B Publikace v p¥ipravé

V soucasné dobé probihaji prace na dalsich aplikacich vyuzivajicich resi¢
NumDwarf.

® Prvni z nich jiz byla zminéna na zacatku této kapitoly a jednd se o propo-
jeni modelu dvoufazového kompozi¢niho proudéni (vyuzivajici NumDwarf
implementovany na GPU) a modelu proudéni a transportu ve volném
prostiedi (vyuzivajici miizkovou Boltzmannovu metodu pro simulaci
Navierovych-Stokesovych rovnic a NumDwarf pro simulaci transportu,
oboje implementované na GPU). Cilem je simulovat odparovani vody
z rostlin (aproximovanych piskovcovym blokem) ve vétrném tunelu (v 3D
geometrii). Model vyviji J. Klinkovsky pod autorovym vedenim ve spo-
lupraci s CESEP, Colorado School of Mines, Golden, CO (T. H. Illan-
gasekare) a U.S. Army Engineer Research and Development Center,
Geotechnical and Structures Laboratory, Vicksburg, MS (A. Trautz).
V pripravé je publikace planovana k podani do impaktovaného casopisu
v prubéhu roku 2021.

® Dalsim pouzitim NumDwarf je simulace unikajictho CO9 z komplexniho
heterogenniho podlozi v jednofazovém systému. Model vyviji J. Solov-
sky jakozto doktorand pod autorovym vedenim ve spolupraci s CESEP,
Colorado School of Mines, Golden, CO (T. H. Illangasekare, A. Askar).
Vystupem této spoluprace je ¢lanek [58] podany k recenzi do impaktova-
ného casopisu Water Resources Research v lednu 2021.

® Diléi oblasti vyzkumu numerického modelu J. Solovského, ktery princi-
pialné vychazi z fesice NumDwarf, je paralelni implementace vyuzivajici
pokrocilou variantu metody rozdéleni vypocetni oblasti. Dosazené vy-
sledky jsou shrnuty v ¢lanku [41], ktery byl odeslén k recenzi do Computer
Physics Communications v tinoru 2021.
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4.6. Vysledky a aplikace

#® Poslednim matematickym modelem vyuzivajicim NumDwarf je model
perfuze myokardu, ktery je vyvijen studentem J. Kovafem pod autorovym
vedenim ve spolupréci s IKEM Praha (J. Tintéra) a R. Chabiniokem
(INRIA Paris-Saclay, King’s College London, UTSW Medical Center
Dallas a FJFI CVUT v Praze). Prvni vysledky jsou shrnuty v ¢lanku
[59] podaném k recenzi do impaktovaného c¢asopisu Japan Journal of
Industrial and Applied Mathematics v bieznu 2021.
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4. Numerické reseni metodou smiSenych hybridnich konecnych prvkii

. 4.7 Shrnuti autorova prinosu

Autoruv prinos v této kapitole by se dal shrnout v téchto bodech:

Navrh koncepce numerického fesice systému parcidlnich diferen-
cidlnich rovnic s obecnymi nelinedrnimi koeficienty (4.1), které
by byly vhodné priméarné pro popis vicefazového kompozi¢niho
proudéni v poréznim prostredi.

Pouziti smisené hybridni metody konec¢nych prvka k diskretizaci
(4.1) a ndvrh zpusobu regularizace vysledné soustavy zejména pro
pripady mizejici faze, tj. pfechod od bilanéni podminky (4.10)
k podmince (4.11).

Sériova implementace numerického schématu pomoci vlastniho
kédu v C++.

Navrh zptisobu paralelni implementace numerického schématu
na GPU. Samotny algoritmus a jeho implementace na GPU byl
zpracovan studentem J. Klinkovskym pod autorovym vedenim
v diplomové préaci obhajené v roce 2017.

Aplikace Tesice NumDwarf v riznych oblastech vyzkumu v ramci
feseni vyzkumnych projekti a ve spolupraci s domacimi i mezina-
rodnimi pracovisti:

simulace dvoufazového kompozi¢niho proudéni v poréznim
prostfedi [24] (Priloha P.3 [str. 102]), [23] (Priloha P.4
[str. 117]), [56],

simulaci adsorbce a desorbce vodni péary v zeolitu 13X [57]
(Priloha P.5 [str. 141]),

propojeni modelu dvoufazového kompozi¢niho proudéni a
modelu proudéni a transportu ve volném prostiedi (publikace
je v pripravé),

simulace unikajictho COs z komplexniho heterogenniho pod-
lozi v jednofdzovém systému [58],

matematické modelovani perfuze myokardu [59],

vyzkum paralelizace numerického fesi¢e pomoci metody roz-
kladu oblasti [41].
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Kapitola 5

Integralni reseni elektrochemickych
interakci v Li-lon ¢lanku

B 51 Formulace ulohy

Pri modelovani elektrochemickych procest v Lithiovém-iontovém elektrickém
clanku je zakladem tesSeni elektrochemickych interakeci reprezentovanych toky
J1 a j3. V kazdém case t jsou tyto toky fesenim soustavy dvou diferencidlnich
rovnic (2.30) a (2.31), spolu s nelinearni algebraickou vazbou (2.28a) pro
neznamé veli¢iny ée i, ¢si, Mi, a ji, ¢ € {1,3} a pfi respektovani okrajovych
podminek uvedenych v Kapitole 2.3.

Autorovi této prace se podatilo ukazat, ze systém téchto rovnic lze prevést
na soustavu dvou obycejnych diferencidlnich rovnic (ODR) pro n; a J;, kde
J; je definovana jako

Ji(a:):/ji(f)df, Vo € [z 2nd, i€ {13}, (5.1)

Xyg

kde ¢ ;, resp. x,.; oznacuji levou, resp. pravou soufadnici hranice €2;. Odvozeni
téchto rovnic je detailné popsano v [29] (Pfiloha P.6 [str. 155]).

Vysledné ODR lze zapsat ve tvaru ODR s obecnymi koeficienty

n'(x) = a(z)J(z) + B(z), (5.2a)
J () = B(n(x),z), (5.2b)

kde
B(n(z), z) = é(z) (exp(aay(z)n(z)) — exp(—acy(z)n(z))), (5.2¢)

Va € (z7,x,) s nasledujicimi okrajovymi podminkami:

J (1)
J ()

0, (5.2d)
£
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5. Integralni feseni elektrochemickych interakci v Li-lon clanku

pricemz se na kazdé podoblasti 2; s indexem 7 = 1 nebo ¢ = 3 pouziva:
T = Ti4, Ty = Tpj, O = O i, Qe = Qi i, 0 = 0; ze vztahu (2.28b) a koeficienty
a=q;, f=p0; aec=c¢; jsoudany vztahy:

eff eff
o] = alFial +fﬁl 5 a3 = a3F703 +5f? y
Lipp 2RT 0 Cel , Lipp  2RT 01 Ce3 ,
=—————-——(1-t —~ — Uy, = —— (1 -t = — U,
b1 or fa ( +)ce71 1, B3 e fa ( +)Ce,3 3
F F
M= RT’ 73 = RT’
Iapp Iapp
€1 = €3 = ———.
! alF’ 3 agF

B 52 Odvozeni integralni rovnice

Autorem této prace bylo dale zjisténo, ze soustavu dvou ODR s obecnymi
koeficienty je mozné prevést na integrani rovnici, kterou lze posléze vyresit
iteraéné pomoci numerické aproximace integralti (podobné jako v Kapitole 3)
[29] (viz Priloha P.6 [str. 155]).

Integraci rovnic (5.2) od x; do = € [z}, z,] vznikne
1) = A+ [ alQIQ) + B0, (5.3

T = [ (). Odc. (5.3)

pti¢emz okrajovd podminka (5.2d) je zahrnutd v (5.3b) a A = n(z;) oznacuje
neznamou integracni konstantu v (5.3a).

Kombinaci rovnic (5.3a) a (5.3b) lze ziskat dveé rtzné integralni rovnice

z ¢

n@) =2+ [aQ) [ BE©).Ode + 5O, (5.4)
resp. )
Ta@) = [B |2+ [a©1©) + e | dc, )

pricemz kazda z nich obsahuje pouze jednu neznamou funkci n, resp. J.

Jak je ukdzano v [29] (Ptiloha P.6 [str. 155]), lze hodnotu konstanty A uréit
pomoci (5.5) a okrajové podminky (5.2e) jako Feseni nelinedrni rovnice

e = exp(YagA) [y — exp(—yaA) I, (5.6)
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5.3. Iteracni schéma pro reseni integralni rovnice

kde I, a I. oznacuji

Ty ¢

Io= [3C)exp | auy [ a(©)7(6) + B | dc. (5.7)
Ty ¢

L= [ 5@ exp | ~acy [al€)7(6) + Be)d¢ | dc. (5.7h)

Pokud a, = a, 1ze rovnici (5.6) vytesit analyticky jako

(s+\/52+411>

A= —1
21,

v

(5.8)

B 5.3 Iteraéni schéma pro reSeni integralni rovnice

Integralni rovnici (5.5) lze Fesit itera¢né pomoci rovnice

Jus1 (x /% A+/ +B(6)de, ¢ | de, (5.9)

Jni1(z) = (1 — w)Jp(z) + wlpy1(z), (5.10)

kde A, je Teseni rovnice (5.6), které je nutné v kazdé iteraci vypocitat na za-
kladé znamé aproximace J,, n =0,1,2,..., aw € (0,1] je relaxa¢ni parametr
itera¢niho schématu slouzici k zajisténi konvergence [29)].

Jako pocétecni iterace v (5.5) je voleno Jy = 0. Iteracni proces je zastaven,
pokud norma J,11 je mensi nez predem zvolend mezni hodnota 9.

B 54 Vysledky a aplikace

Iteracni schéma slouzi k vypoc¢tu proudt a napéti uvniti elektrického ¢lanku
na zakladé jeho elektrochemického stavu (hodnoty koncentraci lithiovych
iontt a pfedepsaného proudu Igpy,). V ramci komplexniho, ¢asové proménného
modelu starnuti Li-ion ¢lanku se pak toto schéma pouzije v kazdém casovém
kroku, viz [29] (Ptiloha P.6 [str. 155]).

V ramci vjzkumného projektu TACR ¢ TA04021244 (Dynamické fizeni
lithium—iontovych baterii v systémech hybridnich elektrickych pohont) bylo

vvvvvv

kého modelu, ktery simuloval dynamiku starnuti Li-Ion ¢lanku, viz technické
zpravy [60, 61, 62].
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5. Integralni feseni elektrochemickych interakci v Li-lon clanku

B 55 Shrnuti autorova prinosu

Autoruv prinos v této kapitole by se dal shrnout v téchto bodech:

Transformace systému rovnic popisujicich dynamiku elektroche-
mickych procesi na soustavu dvou obycejnych diferencialnich
rovuic (5.2).

Odvozeni integralni rovnice (5.5) ze soustavy dvou obycejnych
diferencialnich rovnic popsané v kapitole 5.2.

Néavrh numerického iteraéniho schématu pro feseni integralni rov-
nice (5.5).

Implementace v C++ a testovani numerického iteracniho resice.
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Kapitola 6

Shrnuti védecko-pedagogického prinosu
autora k dané problematice

B 6.1 Shrnuti prispévki autora k dané problematice

Z vyse uvedeného prehledu uloh a prilozenych publikaci plyne, Ze autor ve
svém dosavadnim védecko-pedagogickém puisobeni dosdhl fady ptvodnich
vysledki, mezi které patri:

B nalezeni presného, semi-analytického reseni pro specidlni formulaci dvou-
fazového proudéni v poréznim prostredi pro dimenzi d > 3, véetné
implementace algoritmu pro jeho nalezeni a volné zpristupnéni tohoto
algoritmu védecké komunité prostrednictvim autorovych webovych stra-
nek,

® navrh, odvozeni, implementace a testovani numerického resice NumDwarf
pro reseni systému parcidlnich diferencidlnich rovnic s obecnymi koefi-
cienty a zapojeni studentii bakalarského, magisterského a doktorského
studia KM FJFI CVUT v Praze pod autorovym vedenim pfi jeho vy-
voji pro masivné paralelni implementaci na grafickych akceleratorech a
paralelni implementaci pro vypocetni klastry,

® rada aplikaci numerického resice NumDwarf pro reseni konkrétnich tloh
z ekologickych, primyslovych nebo medicinskych oblasti a zapojeni
studenti bakalarského, magisterského a doktorského studia KM FJFI
CVUT v Praze pod autorovym vedenim do feSeni téchto tloh,

B analyza tlohy modelu elektrochemické interakce v lithiovém-iontovém
elektrickém clanku a navrh, odvozeni a implementace semi-analytického
feseni tohoto modelu.
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B 6.2 Strucny prehled prilozenych ¢lanki

Prilohou prace je nésledujicich Sest impaktovanych ¢lankt a dvé kapitoly v
knihach.

B Publikace P.1 na str. 51:
¢lanek v Advances in Water Rescources, 2016

Radek Fucik, Tissa H. Illangasekare a Michal Benes: Multidimensional
self-similar analytical solutions of two-phase flow in porous media,
Advances in Water Resources, 90:51-56, 2016.

V clanku je predstaveno presné feseni specialni tlohy dvoufazového prou-
déni v poréznim prostredi v obecné dimenzi a zpiisob jeho ziskdni pomoci
numerického reseni integralni rovnice.

Pro d = 1 jsou numerické resice pro puvodni schéma a obé varianty modifi-
kovaného itera¢niho schématu volné k dispozici v podobé webové aplikace na
webové strance autora http://mmg.fjfi.cvut.cz/~fucik/mcwhorter .

Numerické feseni itera¢nich schémat (3.34) pro d =2 a (3.38) pro d > 3
jsou ve formé webové aplikace volné k dispozici na webové strance autora
http://mmg.fjfi.cvut.cz/~fucik/exact .

Obsah ¢lanku a autoriv prinos je shrnut v Kapitole 3.

B Publikace P.2 na str. 58:
¢lanek v Computer Physics Communications, 2019

Radek Fucik, Jakub Klinkovsky, Jakub Solovsky, Tomas Oberhuber a
Jiri Mikyska: Multidimensional mized—hybrid finite element method
for compositional two-phase flow in heterogeneous porous media and its
parallel implementation on GPU, Computer Physics Communications,
238:165-180, 2019.

Jedna se o stézejni ¢lanek popisujici fesi¢ NumDwarf a jeho masivné paralelni
implementaci na GPU. V ¢lanku je mimo jiné pouzito presného reseni z Pub-
likace P.1 [str. 51] k ovéFfeni konvergence numerické metody. Clanek a autortv
pfinos v ném je shrnut v Kapitole 4. Soucasti Publikace P.2 je i dopliujici
ptiloha (Supplementary material), kde jsou ukézky feseni testovacich tloh a
tabulky s experimentdlnim fadem konvergence.
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B Publikace P.3 na str. 102:
¢lanek v Groundwater, 2015

Benjamin G. Petri, Radek Fucik, Tissa H. Illangasekare, Kathleen M.
Smits, John A. Christ, Toshihiro Sakaki a Carolyn C. Sauck: Effect
of NAPL source morphology on mass transfer in the vadose zone,
Groundwater, 53(5):685-698, 2015.

Clanek se zabyva rozpousténim tézkého NAPL do proudici vody, pficemz je
zkoumana dynamika tohoto rozpousténi. Experimentalni ¢ast ¢lanku, kterd se
opird o laboratorni experimenty v CESEP, Colorado School of Mines, Golden,
Colorado, USA, je doplnéna o vysledky numerické simulace ziskané metodou
smiSenych hybridnich prvki.

B Publikace P.4 na str. 117:
¢lanek v Journal of Computational Physics, 2020

Jakub Solovsky, Radek Fucik, Michael R. Plampin, Tissa H Illangase-
kare a Jiri Mikyska: Dimensional effects of inter-phase mass transfer
on attenuation of structurally trapped gaseous carbon diozide in shallow
aquifers, Journal of Computational Physics, 405:109178, 2020.

V clanku je zkouman vyvin a zpétné rozpousténi COo ve vodni fazi v poréz-
nim prostfedi. Na zdkladé experimentalnich dat (CESEP, Colorado School of
Mines, Colorado, USA) je diskutovdno pouziti kinetického (nerovnovazného)
pristupu pro modelovani prestupu hmoty mezi fizemi, pricemsz je zohlednéno,
zda se jednd typové o jednorozmérné, nebo dvourozmeérné proudéni. Nume-
rické simulace byly provedeny pomoci fesi¢e NumDwarf (viz Publikace P.2
[str. 58]).

B Publikace P.5 na str. 141:
¢lanek v International Journal of Heat and Mass Transfer, 2020

Tomas Smejkal, Jiti Mikyska a Radek Fucik: Numerical modelling of
adsorption and desorption of water vapor in zeolite 13X using a two-
temperature model and mixed-hybrid finite element method numerical
solver. International Journal of Heat and Mass Transfer, 148:119050,
2020.

\. J

V clanku je zkouméan termo-chemicky model uklddani energie skrz ad-
sorbce a desorbce vodnich par v zeolitu 13X. Diskuze v ¢lanku se opird o
vysledky matematického modelu, ktery je fesen pomoci fesice NumDwarf (viz
Publikace P.2 [str. 58]).
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B Publikace P.6 na str. 155:
¢lanek v Mathematical Problems in Engineering, 2018

Michal Benes, Radek Fucik, Vladimir Havlena, Vladimir Klement,
Miroslav Kolaf, Ondfej Polivka, Jakub Solovsky a Pavel Strachota: An
Efficient and Robust Numerical Solution of the Full-Order Multiscale
Model of Lithium-Ion Battery, Mathematical Problems in Engineering,
1D3530975, 2018.

V ¢lanku je predstaven jednorozmérny matematicky model lithiového-
iontového elektrického élanku a pomoci numerickych simulaci zkouman proces
jeho starnuti. Zakladni soucasti numerického reseni je semi-analytické reseni
elektrochemické interakce, které je shrnuto v Kapitole 5.

B Publikace P.7 na str. 168:
kapitola v Handbook of Chemical Mass Transport in the
Environment, 2010

Tissa H. Illangasekare, Christophe C. Frippiat a Radek Fucik: Disper-
sion and mass transfer coefficients in groundwater of near-surface
geologic formations, kapitola v: Handbook of Chemical Mass Transport
in the Environment, strany 418-456. CRC Press, 2010.

Jedna se o kapitolu v knize, ve které je rozebirdna problematika prestupu
hmoty v poréznim prostiedi a prehled kinetickych modela rozpousténi NAPL
do vodni faze.

B Publikace P.8 na str. 208:
kapitola v Pore Scale Phenomena: Frontiers in Energy and
Environment, 2015

Tissa H. Illangasekare, Kathleen M. Smits, Radek Fuc¢ik a Hossein Da-
varzani: From pore to the field: Upscaling challenges and opportunities
in hydrogeological and land—atmospheric systems, kapitola v: Pore Scale
Phenomena: Frontiers in Energy and Environment, strany 163-202.
World Scientific, 2015.

Jedna se o kapitolu v knize, ve které je diskutovana problematika zvétSovani
métitka (upscaling) pfi popisu proudéni, transportu rozpusténych latek a
prestupu hmoty v poréznim prostiedi.

42



6.3. Vedeni a spoluprace se studenty

. 6.3 Vedeni a spoluprace se studenty

Autorova védecka ¢innost je tzce spjata predevsim s jeho pedagogickou
¢innosti v oboru Matematického inzenyrstvi na Katedre matematiky FJFI
CVUT v Praze v tom smyslu, Ze kazda oblast, kterou se zabyva, je zdroveii
prirozenym predmétem sirstho vzdélavani a vychovy mladych védeckych
pracovniku v ramci bakalarského, magisterského a doktorského studia. Proto
vétsina uvedenych impaktovanych publikaci vznikla ve spoluautorstvi se
studenty, vétsinou na zakladé vysledka dosazenych v jejich bakaldrské ¢i
diplomové praci nebo v ramci jejich doktorského studia.

Prehled konkrétnich v minulosti a v soucasnosti studovanych témat ve
spolupréci se studenty je uveden v Kapitole 4.6.

B 64 Soucasny vyzkum a mezinarodni spoluprace

V soucasné dobé neustéle sili potfeba vysledki matematického modelovani
v oblastech uvedenych v této praci ve spojeni s vyraznym vyvojem masivné
paralelnich vypocetnich prostiedki (zejména klastri grafickych akceleratoru).
To umoznuje uvazovat o vyvoji komplexnéjsich modeli, které rozsiti stava-
jici matematické modely o dalsi procesy (napf. zavislost veli¢in na teploté,
presnéjsi termodynamicky popis roztoki a plynnych smési apod.).

Vysledky prezentované v této praci ¢aste¢né vznikly diky tzké spolupraci
Katedry matematiky FJFI CVUT v Praze se zahrani¢nim pracovistém Center
for Experimental Study of Subsurface Environmental Processes (CESEP),
Colorado School of Mines, Golden, CO, USA (prof. T. H. Illangasekare) a
relativné nové navazané spolupraci s U.S. Geological Survey, Eastern Energy
Resources Science Center, Reston, VA, USA (M. R. Plampin) a U. S. Army
Engineer Research and Development Center, Geotechnical and Structures
Laboratory, Vicksburg, MS, USA (A. Trautz).

V pripadé teprve vznikajicich vysledkil v obasti medicinskych aplikaci je
navazana tuzka spoluprace s Institutem klinické a experimentalni mediciny
v Praze (J. Tintéra) a R. Chabiniokem (UTSW Medical Center Dallas, TX,
USA a FJFI CVUT v Praze).

Z tady domécich a mezinarodnich projektt, na kterych se autor podilel
bud jako ¢len resitelského tymu nebo hlavni fesitel, jsou relevantni z hlediska
predlozené prace tyto:

8 Development and Validation of Porous Media Flow and Transport Mo-
dels for Subsurface Environmental Application, projekt MSMT Kontakt
MESTS, 2006-2009, hlavni resitel M. Benes.

#® Numerical Methods for Multiphase Flow and Transport in Subsurface
Environmental Applications, projekt MSMT Kontakt ME10009, 2010-
2012, hlavni resitel M. Benes.
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® Development of Computational Models for Simulation of CO2 Sequestration,
projekt GACR & P105/11/1507, 2011-2013, hlavni fesitel J. Mikyska.

® Development and Validation of Porous Media Fluid Dynamics and Phase
Transitions Models for Subsurface Environmental Application, projekt
MSMT Kontakt IT LH14003, 2014-2016, hlavni fesitel M. Benes.

® Dynamic Lithium-ion battery management for hybrid electric vehicles,
projekt TACR ¢. TA04021244, 2014-2017, hlavni Fesitel V. Havlena.

® Quantitative Mapping of Myocard and of Flow Dynamics by Means of MR,
Imaging for Patients with Nonischemic Cardiomyopathy - Development
of Methodology, projekt MZ ¢. 15-27178A, 2015-2018, hlavni fesitel
J. Tintéra.

B [nvestigation of shallow subsurface flow with phase transitions, projekt
GACR ¢&. 17-06759S, 2017-2019, hlavni fesitel J. Mikyska.

® Analysis of nature of flow and prediction of changes in endovascu-
lary treated vains by MRI and mathematical modeling, projekt MZ
¢. NV19-08-00071, 2019-2021, hlavni resitel J. Tintéra.

® Computational Models and Experimental Investigation of Fluid Dyna-
mics, Mass Transfer and Transport, and Phase Transitions in Porous
Media for Environmental Applications, projekt MSMT Interexcellence
LTAUSA19, 2020-2022, hlavni fesitel R. Fucik.

B 6.5 Budouci vyzkum

V soucasné dobé pokracuji intenzivni prace na tématech matematického
modelovani proudéni v poréznim prostredi, které jsou shrnuty v predchozich
sekcich. Zejména se jednd o feSeni dloh vicefazového kompozi¢niho proudéni
v poréznim prostiedi (pfipadné s propojenim s nadpovrchovym proudénim) a
pokracovani vyzkumu pouzitelnosti aproximace srdecni svaloviny poréznim
prostfedim v medicinské problematice perfuze myokardu.

Problematika zkouméani dynamickych procesti v poréznim prostredi vsak
stale nabizi nové tlohy, které lze resit pomoci metod matematického modelo-
vani. V roce 2021 napiiklad zacaly prace na novém projektu GACR:

® Multiphase flow, transport, and structural changes related to water free-
zing and thawing in the subsurface, 2021-2023, projekt GACR ¢. 21-09093S,
hlavni resitel J. Mikyska,

ve kterém je autor ¢lenem ftesitelského tymu.

Ve vSech oblastech vyzkumu bude pro autora této prace i nadale klicova
spoluprice se studenty FJFI CVUT v Praze a jejich zapojeni do témat
matematického modelovani v rdmci jejich ro¢nikovych praci (v bakalaiské
praci, vyzkumném ukolu, diplomové praci a dizertacni préci).
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In general, analytical solutions serve a useful purpose to obtain better insights and to verify numerical
codes. For flow of two incompressible and immiscible phases in homogeneous porous media without
gravity, one such method that neglects capillary pressure in the solution was first developed by Buckley
and Leverett (1942). Subsequently, McWhorter and Sunada (1990) derived an exact solution for the one
and two dimensional cases that factored in capillary effects. This solution used a similarity transform
that allowed to reduce the governing equations into a single ordinary differential equation (ODE) that
can be further integrated into an equivalent integral equation. We present a revision to McWhorter and
Sunada solution by extending the self-similar solution into a general multidimensional space. Inspired by
the derivation proposed by McWhorter and Sunada (1990), we integrate the resulting ODE in the third
and higher dimensions into a new integral equation that can be subsequently solved iteratively by means
of numerical integration. We developed implementations of the iterative schemes for one- and higher
dimensional cases that can be accessed online on the authors’ website.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Development of complex mathematical models of two-phase
flow in porous media such as those described by Fucik and
Mikyska [9,10] and Petri et al. [17] often requires versatile bench-
mark solutions that allow to verify numerical convergence and
estimate the accuracy of the numerical method. A simplification
of the domain geometry, system properties or parameters, and
boundary conditions allows to derive exact (analytical or semi-
analytical) solutions for the displacement of two incompressible
and immiscible phases within a homogeneous or a layered het-
erogeneous porous medium [4,5,12]. These exact solutions not
only serve as benchmark solutions, but also as effective tools
to study fundamental displacement processes. A number of re-
searchers have investigated exact solutions for cases where the
gravity and/or capillarity are neglected and the exact solution of
the governing equations is obtained in a form of a traveling wave
such as the well-known Buckley and Leverett one dimensional an-
alytical solution [2], generalization of the Buckley and Leverett so-

* Corresponding author. Tel.: +420 224 358 540.
E-mail address: fucik@fjfi.cvut.cz (R. Fucik).

http://dx.doi.org/10.1016/j.advwatres.2016.02.007
0309-1708/© 2016 Elsevier Ltd. All rights reserved.

lution by van Duijn et al. [6], or the relatively recent approach pre-
sented by Mathias et al. [14].

When the capillary effects are important, the exact solution can
be found in the form of a self-similar solution as shown by Chen
[3], McWhorter and Sunada [15], Sander et al. [19], Fucik et al. [11],
Bjernara and Mathias [1] for a homogeneous porous medium and
by van Duijn et al. [4], van Duijn and de Neef [5], Fucik et al. [12]
for a porous medium with a single material discontinuity. For a
particular functional choice of the capillary diffusion coefficient
that allows to reduce the system of governing equations to the
first integral, a d-dimensional exact solution can be obtained as re-
ported previously by Sander et al. [18] and Weeks et al. [21].

This paper focuses on the self-similar solution in a homoge-
neous porous medium without gravity that was originally pub-
lished by McWhorter and Sunada [15] and generalize its deriva-
tion to a d-dimensional space where d € N. This includes the self-
similar solution for d = 3 that to the best of our knowledge has
not been published in the literature and will have important prac-
tical applications in the analysis of three-dimensional numerical
schemes such as convergence verification and/or estimation of the
order of convergence. Even though this solution assumes the zero
gravity condition that may not be realistic in three-dimensional
groundwater flow, a practical application that is of relevance is in
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flow simulations in space. Such an application for plant irrigation
in micro-gravity was discussed by Scovazzo et al. [20].

Note that in the one dimensional case, unidirectional or
counter-current flows can be considered [11,12,15], but in two and
higher dimensional spaces, the self-similar solution can be de-
rived for the unidirectional displacement only [3,15]. The main
idea behind the derivation of the self-similar solution is to use a
similarity substitution to transform the governing two-phase flow
equations into a single ordinary differential equation (ODE) in the
d-dimensional spherical coordinates. The resulting ODE is either
solved directly as proposed by Bjernara and Mathias [1] for d =1,
or transformed into an equivalent integral equation that can be
solved iteratively by means of numerical integration [15] for d =
1,2. We show that the derivation of the self-similar solution can
be done in a general way regardless of the choice of d € N. For
d > 3, we transform the resulting ODE into a new, general inte-
gral equation for which we propose a fast and efficient iterative
solution.

The paper is organized in the following way. First, we briefly
present the mathematical model and describe its transformation
into the multidimensional spherical coordinates. In Section 3, we
discuss the similarity transform of the governing equations into a
single ODE and we highlight the important mathematical aspects
of the transform that have been omitted previously in the litera-
ture but are essential in the further derivation of the self-similar
solution. Then in Section 4, we present the integral approach of
solving the ODE for a general dimension d > 3. In the final sec-
tion, we present several typical self-similar solutions and discuss
the applicability of the computational method with respect to the
magnitude of the injection rate and the initial saturation.

2. Governing equations
2.1. Two-phase flow equations

We consider incompressible and immiscible flow of two phases
in a homogeneous and rigid porous medium without gravity in
a d-dimensional space R?, d € N. The wetting and non-wetting
phases are indexed by w and n, respectively.

The continuity equation for the phase o € {w, n} is given by

9S4 B
¢t +V T =0, (1)

where ¢ [—] is the porosity, Sy [—] is the «-phase volumetric sat-
uration, and ¥, [LT~'] is the Darcy velocity of the phase o given
by

- k
U =—ﬁkvpa, )
where k[L?] is the intrinsic permeability and kpo [-].

e IML7IT-1], and py [ML-'T-2] are the relative permeabil-
ity, dynamic viscosity, and pressure of the phase «, respectively.
By definition, Sy, + Sy = 1.
The Egs. (1) and (2) can be combined to express the wetting

phase velocity as
Vw = f(Sw)Vr — D(Sw)VSw, (3)
where #; [LT~1] denotes the total velocity defined by ¥y = By + ¥y,
f[-] is the wetting-phase fractional flow function defined by

krw(Sw)

P
U @
How An

and D [L2T—'] is the capillary diffusion function given by

Krw(Sw) Krn(Sw)

D(Sw) = k55— Pe(Sw). )
Hw + Hn

where pc [ML-1T—2] is the capillary pressure defined by pc = pn —
pw and p;. denotes its first derivative with respect to Sy. In this
work, we consider the following empirical models for the Sy,-
dependent functions

2

K (Sw) = S (1 . (1 - sjn)m) ,

Ken(Sw) = (1—So)¥ (1 - si)zm, (6a)
[16] and
pe(s) =h(s." - 1)17”1 (6b)

[13]. In Egs. (6), m[—] and Py [Pa] are the fitting parameters and
Se [—] denotes the effective wetting phase saturation defined by
_ Sw - 5w,r
] - SW,I’ - Sﬂ.]’ ’
where Sy r [—] denotes the residual saturation of the phase «.

Further, the continuity Eq. (1) for both phases can be trans-
formed into

Se (7)

V. =0, (8a)
0Sw ~
(bW + V- (f(Sw)Vr —D(Sw)VSw) =0, (8b)

where the unknown functions are the wetting phase saturation
Sw = Sw(t, %) and the total velocity vy = vir(t,X) for all t > 0 and
% e R4, The boundary and initial conditions will be discussed in
Section 2.3.

2.2. Multidimensional spherical transform

A general multidimensional self-similar solution of the govern-
ing Eq. (8) can be obtained in the radial phase displacement flow
where the wetting phase is injected through a point source placed
at the origin of coordinates. Note that the complementary problem
where the non-wetting phase is injected and displaces the wetting
phase is described by an equation similar to Eq. (8) but with differ-
ent coefficients as shown by McWhorter and Sunada [15] or Fuéik
et al. [11]. The derivation of the corresponding self-similar solution
is analogous to the one given here.

Assuming vt = Up(t,r) and Sy = Sw(t, r) exhibit spherical sym-
metry in RY, where r[L] denotes the non-negative radial coordi-
nate, Eq. (8a) is resolved by

Qo(t)
Yard-1 " ©

vr(t,r) =

where Qg [LIT~!] denotes the time-dependent volumetric injection
rate, 7 is the unit vector in the spherical coordinates pointing in the
positive radial direction, and

drs
g1
where I' is the I'-function, denotes the surface area of the d-

dimensional unit sphere.
As in [15], Eq. (8b) is then transformed into

a1, 0Sw ) BF_
Yal' ¢W + (1~ f(st))Q(Jﬁ =0, (11)

where S;[—] denotes the initial saturation. The function F =
F(t,r) [-] is expressed as
Qu X
_ Q f(sx) (]2)
1-fS) "’

Ya = (10)
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with the wetting-phase volumetric flow rate Qy = Qu(t,r) [LIT~1]
defined by
aS,
Qw = fQD - VdrdilDTW-
r
The volumetric flow rate Qyu(t, r) for each r > 0 describes the
overall volumetric flux of the wetting phase through the surface
of a d-dimensional sphere B(0, r) centered around the origin with
radius r. Hence, Qy is related to the phase radial velocity vy =
vw(t, 1) for spherical symmetry as

(13)

Qu(t,1) = yar v (£, 7). (14)
Eq. (12) can be combined with Eq (13) to obtain

-1
Fofy— YOS (15)

CA-FENQ o
where F,[—] denotes the normalized wetting-phase fractional flow
function

_ fSw) = fS)
S (T

as in Fucik et al. [11].

(16)

2.3. Initial and boundary conditions

Eq. (11) is endowed with the boundary and initial conditions for
the unknown functions S, = S (t,r) and vy = vr(t,r). According
to the formulation by McWhorter and Sunada [15], the following
boundary and initial conditions are considered for Sy:

Sw(t,0) =Sy, Vt=>0, (17a)
Jim S, (t.r) =S V>0, (17b)
Sw(0,1)=S;, Vr>0, (17¢)

where S; < Sy because of the wetting fluid being injected into a
domain with lower water saturation.

Since we assume that the unidirectional displacement occurs in
the radial direction only, the total velocity vi(t, r) is equal to the
wetting phase velocity vy(t, r) at the inlet r =0 and, therefore,
it has to be compatible with the expression for the total veloc-
ity ¥y that is given by Eq. (9) for r > 0. If d > 1, however, v(t,
r) is unbounded as r — 0* and therefore the injection velocity of
the wetting phase cannot be prescribed at r = 0. Instead, for d = 2,
McWhorter and Sunada [15] propose to formulate the boundary
conditions for Qy and Qg as

Qu(t,0) = Qr(t,0) = Qo (1), (18)

for all t > 0. We extend applicability of this condition for all d € N.

In order to derive a self-similar solution in the sense of
McWhorter and Sunada [15], the following boundary conditions
are imposed on the function F:

F(t,0)=1, Vt>0, (19a)
Jim F(e.r) =0, Ve>o0. (19b)

First condition (19a) is a straightforward combination of Eq. (18)
and the definition of F given by Eq. (12). In order to obtain zero
value of F at r — +oo in Eq. (19b), we need to assume that, for all
t>0,

lim rd-! aai:v(t, r) =0. (20)

r—+00
The physical meaning of Eq. (19b) is that the propagation of the in-

jected fluid has finite velocity and the total volume of the injected
fluid is contained inside a d-dimensional sphere of a finite radius.

3. Reduction to an ordinary differential equation
3.1. Similarity transform

The similarity substitution Sy (t,r) = Sw(A), where
A=rt3, (21)

allows to express the function F in terms of Sy, only, and to trans-
form the partial differential equation (11) into a second order or-
dinary differential equation for F. As in Weeks et al. [21], the sim-
ilarity transform is possible if and only if the volumetric injection
rate has the specific form

Q(t) = AT, (22)

where A [LdT’%] denotes the volumetric injection rate constant.
We use Eq. (21) to transform F given by Eq. (15) into

_ Vd A(Sw)*!
FSw) = Fo(S) = 7= 157 PO 576 (23)
and the governing Eq. (11) into
2A(0 - f(SD) 1
ASw) = F'(Sw),
(Sw) Vad (Sw) (24)

where A’ and F' denotes the first derivative of A and F, respectively.
For a known function F, the saturation S, = Sy (t,r) is implicitly
expressed by Eq. (24) as
st _ 2A0 = [(5))
Ya®
forallt > 0andr > 0.
We differentiate Eq. (24) and combine the result with Eq. (23)

to eliminate A and its derivative A’ to obtain the following second
order ODE for F:

F'(Sw(t, 1), (25)

F'(F)i2=_At 7ch[; , (26)
where
2 2.1
_d(—ve ' (¢)'
Cd_d(l_f(si)) (2) : @n

3.2. Boundary conditions

Atr =0, Sy =Sg as a result of Eq. (17a) and the boundary value
for A follows from (21) as

A(So) = 0. (28)

It is important to note that the transform Sy (t, r) = Sy(X) is in-
vertible to A = A(Sy) only if S; < Sy < Sp because for a given time
t >0, Sw(t,r)=S; for all r > r,(t) where r, [L] denotes the position
of the head of the saturation profile. McWhorter and Sunada [15]
state that S, = S; when A — +oo. This can, however, lead to a mis-
interpretation that A(Sw) tends to infinity as Sy — S;". In fact, the
relationship A«<— Sy, is not unique for all A € [0, +o00) but only for
A € [0, A,], where A, denotes the upper bound given by

lim A(Sw) = As (29)
Sw—S;

as illustrated in Fig. 1. Consequently, we can compute the position
of the head of the solution as r,(t) = A,/ for all t > 0.

The boundary conditions described by Eq. (19) are transformed
by Eq. (21) into

lim F(Sy) =0, (30a)
Sw—S;
F(So) = 1. (30b)
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A — 8, relationship

S; S So

Fig. 1. Illustration of the typical A<—S,, relationship that is not uniquely invertible
for Sy = S;.

Eqgs. (24),(28) and (29) allow to express the boundary conditions
for the derivative of F in the form

/ R 7 _yd Vd¢
F(Sf) = Slgrr;rF (Sw) _)»*72/1(] =L (31a)
F'(So) = 0.

Evaluating Eq. (23) at Sw =Sy and using F(Sp) =1 and
X(So) = 0 reveals that for d = 1, A is related to Sy as
Ao Yo DGy 1

1— f(5) 1—Fu(So) 2 (So)”
For d > 1, however, A does not depend on Sy and Eq. (23), evalu-
ated at S,y = Sy, reduces into

1 =Fv(So). (33)

(31b)

(32)

This relation holds if and only if Sy =S, where SI! denotes the
maximal wetting phase saturation for which f(SJ) = 1.

In the next section, we will show that the second order ODE
in Eq. (26) can be integrated twice to obtain an equivalent integral
equation for F that can be solved iteratively by means of numerical
integration.

4. Integral solution of ODE

As pointed out by McWhorter and Sunada [15] who in their
work discussed the cases d =1 and d = 2, ODE (26) can be inte-
grated twice to obtain an integral equation for the unknown func-
tion F that can be solved iteratively by using numerical integra-
tion. Note that in the one-dimensional case, the resulting iterative
scheme converges fast for Sy lower than the maximal saturation
Sy =1 — Sy . However, the number of iterations increase consider-
ably as Sp — Sji. The numerical algorithm can even cease to con-
verge. Fucik et al. [11] proposed to overcome such numerical diffi-
culties for Sy close to SI by transforming the integral equation into
two variants of modified integral equations. The authors show that
both these variants can be used to obtain the numerical solution
for a larger extent of values of Sy close to S} than the original it-
eration scheme by McWhorter and Sunada [15]. The online imple-
mentation of the numerical solver capable of solving the original
and modified integral equations mentioned above can be accessed
on the website in Fucik [7].

For d > 3, we propose to integrate ODE (26) from S; to Sy and
after algebraic manipulations, we obtain the following expression
of F

S D) o
F(n)—me)d"] ’
(34)

-2 2
a2
d pdA d 8

F(Sy) = [(F’(S,*))% e

for all Sy € [S; Sp). In Eq. (34), it is important to emphasize
that the limit F'(S;") given by Eq. (31a) is finite as discussed in
Section 3.2, c.f. Eq. (29). Similar to the case d =2 discussed by
McWhorter and Sunada [15], Eq. (34) is consistent with F/'(Sg) = 0
given by Eq. (31b) if and only if the integral
So D
() dn
s, F(n) —Fe(n)
is divergent.

Further integration of Eq. (34) allows to obtain the following
integral equation for F

(35)

dni| 2-d dﬂ’
(36)

where the boundary condition given by Eq. (30a) has been already
used. Evaluating Eq. (36) at Sy =Sy and using the remaining con-
dition (30b), we obtain an implicit equation for F’(Si*)
b
D =
m } ap.

So 2a  d—2 . [P
= "(SH)) T —d
17/5 [(F GO+ A | Fay - R

Sw 2-d — 2 B
F<5w>:fs |:(F’(S;'))T+d - 2043 D(n)

s, F(n) — Fv(1)

d

i

(37)

Due to the implicit form of Eq. (37) with respect to the value of
F'(S]"), the solution of the integral equation (36) is not straightfor-
ward as ford =1 ord = 2.

Eq. (36) can be solved iteratively and by means of numerical
integration in the form

Sw —
E® (Sw) = min{/s [32% +4 dzcd/r%

£ by =
— 1 d dg; 1%, 38
st[ EP (1) - Fu(n) "] P } 9

with FO(B) =1 as the initial guess, where Fk(B) denotes the kth it-
eration of F and B approximates the value of F/(S}"). For a given
B, the iterative process is terminated when the difference between
the successive values of the functional # that represents the con-
straint given by Eq. (37)

S _
HED B : =1 —/ ’ [B%“ + ddzch*%
Si

d
2-d
x fﬁ %dn] B (39)
s B2 () = Fu(n)
is sufficiently small. For simplicity, we denote by H(B) the value of
H(F[(B), B), where the index ¢ denotes the final iteration of the iter-
ative process. Altogether, solving Eq. (36) with the constraint given
by Eq. (37) is equivalent to finding F’(Si*) such that H(F'(S)) = 0.
Our numerical experiments show that the behavior of H = H(B)
is monotone with respect to B as illustrated in Fig. 2. Therefore, the
bisection method can be used to compute the root of H.

5. Computational examples

In this section, we show examples of the solutions computed
using the integral iterative scheme given by Eq. (38) with the em-
phasis on novelty of the presented approach for d = 3 and discuss
the admissible range for the input injection parameter A. Addition-
ally, we show how the initial wetting phase saturation affects the
saturation redistribution profiles.

All results are computed using the following setting of the
material and fluid properties: ¢ =0.4, k=10"1"m?, m=1, P =
1000 Pa, fty = 0.001kg m~'s~!, and sy = 0.0009kg m~'s~1.
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Plot of F: d =3, S; =0, A [m3s~3]
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Fig. 2. Illustration of the H «<— B relationship for the simulation parameters given

in Section 5,d =3, A=10"6 [m3s~2].

Plot of F: d =3, 5, =0, A [m3s’g]

| 1 L 1 L 1

0 0.01 0.02 0.03
r [m]

Fig. 3. Example of the functions F and the saturation profiles S, evaluated at
t=1 for S; =0 and various choices of the injection rate constant A in the three-

dimensional space, d = 3.

o =]
04 // /.

02 .

log(Sw)

Fig. 4. Illustration of the evolution of the function F as A— 0% for d =3 shown
using the decadic logarithmic scale for the horizontal axis.
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Fig. 5. Comparison of the saturation profiles S,, evaluated at t =1 for various
choices of the injection rate parameter A and initial water saturation S; in the three-
dimensional space, d = 3.

Although an arbitrary value of A can be chosen for d > 2 in the-
ory (c.f. Section 3.2), our numerical experiments indicate that the
solution can be computed for a bounded range of A, depending on
the dimension d considered. As shown in Fig. 3, larger values of
A correspond to flow situations where the advection produced by
the large injection rate dominates over the capillary diffusion and
the solution profile resembles the traveling wave solution similar
to the one dimensional case, where the self-similar solution ap-
proaches the Buckley and Leverett analytical solution (where cap-
illary diffusion is neglected) as Sy — S as reported by McWhorter
and Sunada [15], Fucik et al. [11], or Bjernard and Mathias [1].

On the other hand, under lower injection rates, A corresponds
to slower propagation of the wetting phase front and as A — 0, the
function F approaches a step function as illustrated in Fig. 4 where
the horizontal axis corresponds to log(Sw).

In Fig. 5, the effect of the initial saturation on the solution pro-
files at t = 1 is shown for various choices of the injection rate pa-
rameter A. As expected, the initial presence of the wetting phase
facilitates the propagation of the front with respect to the case
with S; = 0. Note that similar saturation profiles as in Figs. 3 and
5 were shown by Weeks et al. [21] using their exact solution for a
particular functional choice of the capillary diffusion function. Sim-
ilar behavior can be shown for solution profiles in higher dimen-
sional spaces d > 4 although the physical meaning of such solu-

tions is disputable.

In order to facilitate computation of the self-similar solutions
discussed in this paper, we developed an online implementation of
the integral solution of ODE (26) that includes the iterative scheme
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proposed by McWhorter and Sunada [15] for d =2 and the one
given by Eq. (38) for d > 3, c.f. [8].

6. Conclusion

We discussed the higher dimensional generalization of the
self-similar (or semi-analytical) solution originally proposed by
McWhorter and Sunada [15] that can be obtained for a uni-
directional displacement of two immiscible and incompressible
phases without gravity. Regardless the dimension d considered, we
showed that a particular similarity transform can be used to re-
duce the system of the governing partial differential equations into
a single ordinary differential equation (ODE). Similar to McWhorter
and Sunada [15], we transformed the resulting ODE for d > 3 into
the equivalent integral equation and proposed a numerical algo-
rithm for obtaining its solution.

We developed online implementations of the computational al-
gorithms that can be accessed on the website in Fucik [7] for d = 1
and Fucik [8] for d > 2.
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Prague [6].! TNL provides all requisite algorithms and data struc-
tures such as structured or unstructured meshes, vectors, sparse
matrices, or linear solvers that have unified interface and allows to
implement numerical schemes independently of the architecture:

1. Introduction

Numerous general-purpose or custom-designed computational
tools are available for solving systems of partial differential equa-

tions originating from mathematical modeling of various indus- CPU or GPU via CUDA. ) ) . )
trial, biological, or environmental problems. In particular, for ‘ The system of PDEs is considered in the general coefficient
orm as

multiphase compositional flows in porous media, computational
software such as DUNE [ 1], TOUGH2 [2], or COMSOL Multiphysics
that are used in practical applications take limited or no advantage
of using parallel computation on graphical processing units (GPUs).

Based on the mixed-hybrid finite element method (MHFEM)
[3-5], we have developed a numerical scheme capable of solving
general systems of non-stationary partial differential equations
(PDEs) in 1D, 2D, or 3D and we propose a modification that allows
to consider problems with vanishing or degenerate diffusion. The
ability to handle degenerating diffusive fluxes is important, for
instance, in dealing with near-saturated regions in two-phase flow

n az n
)

n n n
Velm| - ZDi.jVZj +wi | + szai‘j + Z rijZj = fi,
j=1 =1 =1

(1)

where the unknown vector functionZ = [Zy, ..., Z,]" depends on

in porous medium.
The numerical scheme is implemented using the Template nu-
merical library (TNL) that is being developed at the FNSPE, CTU in

* Correspondence to: Katedra matematiky, FJFI CVUT v Praze, Trojanova 13, 120
00 Praha 2, Czech Republic.
E-mail address: fucik@fjfi.cvut.cz (R. Fucik).

https://doi.org/10.1016/j.cpc.2018.12.004
0010-4655/© 2018 Elsevier B.V. All rights reserved.

time t € [0, T] and position vector x € £2 C R% where T denotes
the final simulation time, £2 is a polygonal domain, and d is the
spatial dimension. Based on the letters denoting the coefficients in
(1), we refer to the computational method presented in this paper
as NumDwarf.

1 http://www.tnl-project.org.
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System of Egs. (1) is supplemented by the initial condition

Z(0.x)=Z"(x), Vxe, j=1,....n, (2a)
and boundary conditions for all t € (0, T),

z =27, Vx e Iy C 082, j=1,...,n, (2b)
q-n=q", vxe Iy C %2, i=1,...,n, (20)

where by g;, we denote the conservative flux

n
q=m|— ZDi.jVZj +wi|. (3)
=1

In general, the coefficients in Eq. (1) are functions of t, x, and Z.
Their meaning can be described as follows: N = {N;;}{;_; is the
damping matrix, u = {ui,j}}fj:l describes the convection in the
non-conservative form, m = {m;}{_, is the vector of the mobility
coefficients of the conservative fluxes given by Eq. (3) assumed to
be non-negative, D = {D;;}},_, is the matrix of diffusion tensors,
w = {w;}], is the vector representing external conservative
forces, a = {a;;}{;_, describes the convection in the conservative
form, r = {ri_j}:]-:l is the matrix of reaction terms, and f = {fi}]_,
is the vector of the source/sink terms.

Although NumDwarf has been primarily developed for two-
phase compositional flows in porous media that include capillar-
ity, gravity, and heterogeneous porous materials, its applicability
may be extended to other systems of partial differential equations
simply by specifying the coefficients in (1).

In this paper, we describe derivation and main features of the
numerical scheme, both serial and parallel implementations, and
present a numerical analysis of the method using available bench-
mark problems. The paper is organized as follows. First, we present
a detailed derivation of the proposed numerical scheme based
on the semi-implicit time discretization variant of the MHFEM
and describe the computational algorithm and its implementation.
Then, we present results of the numerical analysis for two-phase
flow and two-phase compositional flow benchmark problems in
Sections 3 and 4, respectively. Finally, we summarize the paper in
the last section.

2. Mixed-hybrid finite element method

We use the mixed-hybrid finite element method to solve the
system of general coefficient form partial differential equations
given by Eq. (1). The unknown functions Z(t, x) are assumed con-
tinuously differentiable with respect to time t and weakly differ-
entiable with respect to spatial coordinate vector x in £2.

We consider a spatial discretization K, of £2 C R? consisting
of segments in R', triangles or rectangles in R?, and tetrahedra or
cuboids in R? where h > 0 is the mesh size defined as largest ball
diameter circumscribed around elements in K. We assume that
the mesh is conforming. We denote by V}, the set of all vertices of
K , by & the set of all sides of K, and by £ and £8** the set of
interior and exterior sides of i, respectively. By £, we denote the
set of all sides of an element K € K. In the following subsections,
we will always use index i = 1, ..., n that corresponds to the ith
equation of Eq. (1).

2.1. Velocity approximation

In Eq. (1), we define the velocity v; by

n
v = - Z D;;VZ + w; (4)
j=1
and thus the conservative flux defined by Eq. (3) is related to v;
by q; = mjv;. We assume that both the conservative velocity

v; and flux q; belong to the functional space H(div, £2). On each
element K € Kj, we shall approximate v; and g; in the lowest order
Raviart-Thomas-Nédélec space RTNo(K) C H(div, K), [7,8]. The
basis functions wg ¢ € RTNo(K) are chosen such that VE, F € &

(5)

1
@k £ MK F = OpF iy’ V-wk £ Kz’
where d = 1, 2, 3, ng  is the outward unit normal to side E € &
with respect to element K, g is the Kronecker symbol, and |-|; is
the s-dimensional Lebesgue’s measure, s = 0, 1,2, 3 and |-|o= 1.
The approximated velocity v; and flux q; are given in the basis of
RTNy(K) as

v = Z Vik EQKE, G = Z i K EWK.E> (6)

Ee&k Eegg

where v and gk g are the velocity and flux across the side
E € & in the outward direction with respect to K, respectively.
Since q; = m;v;, we approximate the flux across the side E by

Qi = MiKEViKE (7)

where m; k ¢ is the mean value of the mobility m; over the side
E € &.

In order to express vj k ¢ in terms of the unknown variables Z; x
and Zjr, we define partial velocities v;; by v;; = —D;;VZ and
assume that v;; belongs to H(div, £2) where its approximation in
the basis of RTNy(K) for all K € K, can be written as

vij = Z vij k@K E = —D;;VZ. (8)
Ee&g

We assume that the tensor D;; is either zero or positive definite.
In the first case, the zero tensor D;; implies that v;; = 0 and
its projection into RTNy(K) is trivial. If the tensor D;; is positive
definite, we can multiply Eq. (8) by its inversion and project the
resulting VZ; into RTNo(K) to obtain for all F € &

Zix —Zjf = E Vijk EBijK EF,s 9)
Ee&g

where the coefficients
BijkEF = / wE'EDEjlepdx (10)
K

form a local, positive definite matrix B;jx and by b;;x =
{bi .k }E.Feey» We denote its inversion, i.e., b;j x = B{.?K. The system
of linear equations given by Eq. (9) for v; j ¢ r is solved locally (per
elementK € K,) and its solution allows to express the components
of v;; in RTNy(K) as

vijkE = bijkeZik — Y bijxrrZi, (11)
Fe&g

where bijxe =D ree bijk.EF-
As aresult, Eq. (11) is used to express vj ¢ ¢ in terms of Z; x and
ZjF as

VikE = Z bijx.eZix — Z bijkeFZiF | + wik.E, (12)

jeoik Fegg

where w; ¢ ¢ denote the coefficients of the projection of w; into
RTNy(K)and by o;x € {1, ..., n}, we denote the set of all indices j
for which D; j is non-zero (i.e., positive definite) on element K € Kj,
i=1,...,n

As shown later in Section 3.2, a mass-lumping technique based
on [9] needs to be employed to stabilize the numerical scheme.
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2.2. Discrete spatial and temporal approximation

We use the finite volume approach in order to discretize the
ith Eq. (1). As a result, we obtain a system of ordinary differential
equations (ODEs) for the averages of Z; over K denoted by

1
Zik = Zik(t) = —— /zj(t,x)dx, j=1...n (13)
IKla Jx
First, we integrate Eq.(1) over a finite volume K € Kj and
use Green’s formula together with the discretization of the phase
velocities defined by Eq. (6) and the properties of the RTNq(K ) basis
functions given by Eq. (5). The resulting system of ODEs is further
discretized in time using
Az 4k — 2
Tt (14)
de Aty
where Aty = i1 — ty and 0 < t < tyi1, k € N, are the discrete
time levels. By a superscript k, we denote the value of a function
evaluated at time t = ty, i.e., Z ‘« = Zjx(t). Consequently, the ith
Eq. (1) is discretized in time (k € N) and space (K € Kp) as

K -
l la ZNIJ K ZH] -’,(K) + Z Z Z,-’j-f‘é’"’ (@ij.e + Uijk.E)

j=1 Eegg
upu +1
+ E m;’ UIKE"‘E rijklKla— E Ui jK.E ]1(
Ee&g Ee&g
= [K|dfix,

(15)

where the subscripts K and E denote the mean value of a variable
over the finite volume K and side E € &, respectively. By jkE !y
we denote the average of Z; over side E evaluated at time t =t
where we drop the element index K due to the assumption of Z;
being continuous in £2. The symbols u;; x ¢ and a;j x ¢ denote the
coefficients in the basis of RTNo(K) of the projection of u;; and a;
into RTNy(K), respectively. In Eq. (15), all coefficients are evaluated
at the previous time level t; or by using the initial condition given
by Eq. (2a) at the beginning of the simulation. This includes the
upwinded variables mk WPY and Z" “P" defined by

X .
My, if U.“Kl.E >0,
kupw __ k
mip’ = mi, v, >0, (16a)
0 otherwise,
zt, ke +UijK.E >0,
k.upw .
Z5¥ = ZY, ke +Uijie >0, (16b)
0 otherwise,
for all interior sides E € S’"t such that E € &, N &, and
k
m; if v¥ >0,
mhupw — xl.jKl i,K1,E (16C)
i mi () otherwise,
X .
Koupw Z, ifaijk, g+ Uijk e >0,
Zije =\ o herwi (16d)
Zj,E(fk) otherwise,

for all external sides E € £ and E € &,, where m7} and Z%}
denote the mean value of the Dirichlet boundary condition for
m; and Z; over E, respectively, and K; and K; are the neighboring
elements of side E. The upwind technique is used in Eq. (15) to
stabilize the numerical approximation of the advection terms [10].
Note that the convection coefficients a;; and u;; are assumed
continuous across side E, i.e.,

Uij ki E+ Uijky e =0, Gijk; E+ ijiy e =0, (17)

VE € 5”" N &k, NE&k,. If anegative Neumann boundary condition is
prescrlbed atE € & for gixe = qjy K £» a non-zero value of m;'y"
(usually unity) must be supplemented

Following Eq. (12), the velocities v¥
ered as

k —
VikE = § erKE

jeoik

i,k 0 Eq. (16) are consid-

ZbleEFZF

Fe&g

+ Wik E, (18)

where the coefficients b;j k g, bk gr and w; g are evaluated at
time t;_1. This will be the basis for the balance equation discussed
later in this section which will ensure that the upwind direction is
selected based on conservative quantity.

Eq.(15) describes a system of n x nx equations for n x (nx +ng)
unknowns Z\¢" and Z'", where nx and n¢ denote the number of
elements and sides in Ky, respectively. The system of Eqs. (15) is
closed by adding n x ng equations that represent the balance of the
normal components of the conservative fluxes g; k ¢ across internal
sidesE € &.

Assuming no mass is produced or lost at a common side E of
two neighboring elements K; and K3, the balance of the normal
components of g; can be written by virtue of Egs. (7) and (11) as

2
k

Z m; g, Z Z bij, .. FZ

=1

Jeaik, Fegg,

bijk EZ, “Q + Wik, .k

=0. (19)

Eq.(19) can, however, degenerate when one of the terms m; g, . (or
both) vanishes as, for instance, it is the case for multi-phase flow in
porous media. Inspired by the ideas in [3,5], we propose to employ
the unique upwinded variable m{"” at side E instead of m! K.£ N
Eq.(19), i, miP" = mfy, g € = 1,2, allowing us to cancel mk it
in Eq. (19) if mk WP~ 0. Vanishing mobility mk Y= 0 lmplles
that gk, r = 0 at side E, ¢ = 1, 2, thus yielding the value on’H']
undefined and the resulting system of linear equations smgular To
overcome this difficulty, we impose balancing v; k  instead of g; x ¢
across side E in the form

2
k+1
§ E bijk, 625 2 bijk, £FZjF

=1 | jeoj, Ky FEEKK

+ wik, e | =0,

(20)

for all values ofmf{E, i.e., even if the upwinded mobility term is zero.
Later in Sections 3 and 4, we demonstrate that this approach works
in terms of numerical convergence and accuracy for the selected
benchmark problems and computational examples.

2.3. Local system of equations for cell-averages
The combination of the discretized equation (15) and the ex-

pression for the conservative velocities given by Eq. (12) allows
to express the vector Z k+1 containing the cell-averaged unknowns

Z"“,j =1, , n, for all K € Ky, in the matrix form
=3 Q,;’RK.FZ’;“ +Q; 'R (21)
Fe&g

where the entries of the matrices Qx and R  are given by

|K\d k.
{Qcli; Nijic = D tije+ Y mig " bijuce + IKlariji
Ee&g Ee&g
(22a)
kupwp
RI(F Zmﬂwu ij.K.EF>s (22b)
Fegy
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and the components of the vector Ry are given by

kup
E m; " Wik E

Ee&g

kupw
- Z Z ZiiF axj.K,E + ui,j,K.E) .

j=1 Ee&g

{Rk}; \I<|dfl(+7ZNuKZJK
(22¢)

As follows from Eq. (21), the coefficients in Eq. (1) must be given
such that the matrix Q is non-singular.

2.4. System of equations for side-averages

Using Eq. (21), the cell-averaged variables Z]k,*gl are algebraically
eliminated in Eq. (20) and we complete the system by including the
boundary conditions (2b). As a result, we obtain a global system of
linear equations for the unknown side-averaged variables Zj",fl for
allF e 8‘"[ that can be represented in the matrix form as

MZ1 = b, (23)

where Z°1 = {zi*') = {{Zi7 )L I}FEE is the vector of
n x ng unknowns. As follows from Eq. (20 and the definition of
the coefficients b; k  r, the non-singularity of the sparse matrix M
is determined by the choice of coefficients in Eq. (1). In particular,
M is positive definite if the matrix of tensors {D;;}{,_, is positive
definite. Note that Eq. (23) is the only global linear system (of n x ng
equations) that needs to be solved in order to proceed from t; to the
next time level t,,1. Based on the computed Z¥t' = M~'b, we use
Eq. (21) to compute ijf which completes the time step t, — ty1.
2.5. Barrier condition implementation

In applications such as two-phase flow in a porous medium
with material discontinuities, a zero flux condition for one of the
equations in Eq. (1) are required at some interior sides, typically
placed at material interfaces. When this is the case, instead of
balancing the velocities from K; and K; in Eq. (20), we consider the
following zero flux condition

n

Z l]KEZ+1 bejKEFZ

j=1 Fe&g

+ wike =0, (24)

where K denotes the element from which the zero flux condition is
required. The application of the barrier condition given by Eq. (24)
is further discussed in Section 3.2.

2.6. Computational algorithm

The computational algorithm of the numerical solution can be
summarized in the following order:

1. Set k = 0 and use Eq. (2a) to initialize Zj?,( forallK € K, and
ji=1....n

2. Repeat the following steps until the final time of the simu-
lation is reached.

(a) Update the discrete coefficients Njj, uijk e Mik,
Wik.E Qije Tijx fix forallij=1,....,nK € Ky
and E € &.

(b) Update the coefficients of upwinded variables m;%"
and Z”pg accordmg to Eq. (16) for all E € &, and

i,j= 1
(c) Compute the mesh—dependent coefficients of matri-
cesh;j forallK € Kpandi,j=1,...,n

(d) Based on Zk from the previous time t, use Eq. (22)
to compute the coefficients of matrices Q_K Ri r and
vectors Ry and compute the inverses QK Rk F, QK Ry
needed in Eq. (21) forallK € Ky and F € &.

(e) Assemble M and b in Eq. (23) using Eq. (20) and
boundary conditions (2b).

(f) Solve the linear system given by Eq. (23
ZJ"ET],E e&andj=1,...,n

(g) Compute Zj",ﬁl using Eq. (21) forall K € Ky andj =
1,...,n

(h) Settyr1 =ty + Atgand setk ==k + 1.

) to obtain

For simplicity, we assume that the temporal discretization of the
numerical scheme is given by the set {t,}. However, an adaptive
time stepping strategy can be implemented for each particular
application of the numerical scheme. Here, for the sake of brevity,
we use constant time stepping strategy only.

2.7. Implementation on CPU

On CPU, the resolution of many local linear systems in Eq. (22)
(per elements K € Kp) is done using the LAPACK package [11]
or using a custom implementation of the LU decomposition. The
global sparse linear system in Eq. (23) is resolved with either direct
solvers from UMFPACK [12] or iterative solvers from TNL where
common iterative methods such as (restarted) GMRES or BiCGStab
with Jacobi or ILU preconditioners are implemented. In TNL, a
parallel implementation of GMRES is also available for multicore
CPUs using OpenMP.

2.8. Parallel implementation on GPU

All steps of the computational algorithm summarized in
Section 2.6 can be implemented entirely on GPU. The steps 2b,
2a, 2c and 2g of the computational algorithm involve local com-
putations on element K € K, that are independent of data
stored in other elements in K, and thus their implementation on
GPU is straightforward: we map one CUDA thread either to each
element K € Ky, (steps 2a, 2¢, and 2g) or side E € &, (step 2b). All
supporting algorithms and data structures, including unstructured
meshes [13], are implemented in TNL.

In step 2d, the local matrices Q are usually small (n x n) and
they can be discarded after the evaluation of Q,?RK‘F and QEle.
Hence, we map one CUDA thread per element K € Kp, allocate
the matrices in the fast on-chip shared memory and write only
the results Q 'Ry r and Q; 'Ry into the much slower global mem-
ory. The inversions are resolved using the LU factorization of the
matrix Q.

Regarding the assembly of the global sparse matrix in step 2e,
the choice of MHFEM is advantageous for the GPU architecture
because degrees of freedom are associated with mesh sidesE € &,
rather than vertices V € V; as is the case of the standard finite ele-
ment method (FEM) with Lagrangian elements. Hence, the MHFEM
assembly involves accessing at most two neighboring elements per
row, which significantly reduces the number of conflicts between
elements contributing to the same non-zero matrix elements. Note
that several approaches for assembling FEM on GPU were investi-
gated in [ 14-17], but only some of them are applicable to MHFEM.
Most importantly, the element data computed in step 2d are used
to construct the global sparse matrix and then reused in step 2g,
so the Local and Shared approaches from [14], which discard the
element data after the matrix assembly, would cause significant
computational redundancy. Of the remaining approaches, we have
implemented a row-by-row assembly which avoids conflicts be-
tween elements and provides more work per thread compared to
the non-zero approach from [14].
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Another advantage of MHFEM is that if the mesh consists of
the same type of elements, the resulting linear system has the
same number of non-zero matrix elements in each row (except for
the rows associated with the domain boundaries). This is advan-
tageous for GPUs because it avoids insertion of padding zeros to
the sparse matrix storage format as well as divergent threads dur-
ing the sparse matrix-vector multiplication. The sparse matrix is
represented in the Sliced ELLPACK (SELLPACK) format [ 18], whose
GPU-optimized implementation is available in TNL.

The resolution of the linear system in step 2f is the compu-
tationally most demanding part of the algorithm. The system is
solved using the (restarted) GMRES(s) method [19,20] which can
be implemented efficiently on GPU by replacing the traditional
modified Gramm-Schmidt procedure with Householder transfor-
mations and using the compact WY representation (CWY) [21]
to express the products of Householder transformations in terms
of dense matrix multiplications. Similar technique was proposed
in [22] and tested in [23,24]. In order to reduce the number of iter-
ations needed for the GMRES method, we use the Jacobi (diagonal)
preconditioner and the adaptive strategy for the selection of the
restarting parameter proposed in [25].

3. Two-phase flow in porous media

We use the numerical scheme presented above to solve the
two-phase flow equations in porous media. First, in order to inves-
tigate the convergence, accuracy, and efficiency of the numerical
scheme implementation, we perform a numerical analysis using
exact (semi-analytical) solutions available for two-phase flow in
homogeneous porous medium for 1D, 2D, and 3D. Then, we use
two benchmark problems for flow across material discontinuities
in heterogeneous porous media to demonstrate the need of using
the mass-lumping technique discussed in Section 2.1 as well as the
barrier condition discussed in Section 2.5.

We set n = 2 for the number of equations in Eq. (1) and use
the vector Z to represent the primary unknown variables Z =
(Pw, pn)". The non-zero coefficients in (1) describing the incom-
pressible and immiscible two-phase in isotropic porous medium
are evaluated as follows:

O P
N= ( jope T (25a)
¢ 5 W _¢ 2 w
apc apc
2 "
m= <—'”, —") , (25b)
At At
_( MKL 0
b= ( 0 AKI ) (259)
w= (hpuKg, ApuKg)", (25d)

where ¢ [1] is the porosity, K [L?] is the intrinsic permeability,
g [LT7?] is the gravitational acceleration vector. The symbols
pe [ML73], S, [1], Ay [ML™'T~'], and p, [ML~'T~?] stand for
the a-phase density, volumetric saturation, mobility, and pressure,
respectively, where « € {w, n}. The a-phase mobility is defined
as Ay = Kro/Ma, where k-, [1] is the relative permeability and
1te [ML™'T~1]is the dynamic viscosity of the phase a.

The relative permeability functions k; ,, and k; , are assumed to
be nonlinear functions of the wetting phase saturation S,, and the
empirical models by Burdine [26] and Mualem [27] are employed,
cf. Eqs. (C.3) and (C.4), respectively. The wetting phase saturation
S isrelated to the difference between the phase pressures, defined
as the capillary pressure p. = pn — Pw, aS Sy = Su(pc) and the
Brooks and Corey (B&C) [28] and van Genuchten (vG) [29] empir-
ical models are employed, cf. Egs. (C.1) and (C.2), respectively. In

Eq.(25), Ay = Ay + A, denotes the total mobility. Additionally,
by

vy = —AoK (Vpa - pag) s
we denote the «-phase Darcy velocity, & € {w, n}.

(26)

3.1. Numerical analysis: flow in homogeneous porous medium with-
out gravity

For homogeneous porous media with neglected gravitational
effects, exact (semi-analytical) solutions can be derived that in-
clude effects of both diffusion and advection. For one- and two-
dimensional cases, these are the well known semi-analytical
solutions by McWhorter and Sunada [30,31]. Recently, the work
of the first author showed that the semi-analytical solution can be
obtained also for the three-dimensional case [32]. In 2D and 3D, the
exact solutions are derived for radially symmetric problems with a
point injection source placed at the origin of the coordinate system.

By means of the L, norms of the error of the numerical solution
denoted by Ej, 5, and the experimental order of convergence eocs, ,
(for p = 1, 2) evaluated at the final time of the simulation T, we
investigate the accuracy and convergence of the numerical scheme
in all dimensions d = 1, 2, 3. Definitions of Ey 5, and eocs, , are
given in Appendix A. For the numerical analysis presented in this
section, we employ the non-wetting saturation S, for which the
semi-analytical solution is known.

The setup of the computational domain is depicted in Fig. 1. To
optimize computational resources, we take advantage of the radial
symmetry of the exact solution [32] and consider a quarter and an
eighth of the computational domain instead of the full geometry in
2D and 3D, respectively. For 1D, 2D, and 3D cases, we use the same
material denoted as Sand A (see Table C.8) and fluid properties of
water and DNAPL, (see Table C.7). Since both B&C and vG empirical
properties are available for Sand A based on [33], we compare
results for both of these models in the numerical analysis.

At t = 0, the saturation of water in the computational domain
is Si'' = 0.95 and through a point source placed at the origin x =
0, the injection of the non-wetting phase begins. Based on [32],
the volumetric rate of DNAPL;, injected through the point source,
denoted by Qg [L9T~1], is given by

Qo = Qolt) = Agt T,

where Aq [LIT~ $ ] denotes the volumetric injection rate parameter.
The values of Ay, the final simulation time T, and the domain
dimensions are selected such that for both B&C and vG models, the
non-wetting phase saturation profile does not reach the neighbor-
hood of the boundaries that approximate boundaries placed in in-
finity (see Fig. 1). We consider the dimensions of the computational
domain as shown in Fig. 1, we fix T = 20000 s, and we select the
following values of Ag: Ay = 31074 ms~7, A, = 10° m?s7 !,
and A; = 1077 m3 s’%. In 1D, A; is related to the inlet boundary
saturation SO as described in [30,31], here, S = 0.378 for the B&C
and SO = 0.427 for the vG models, respectively.

As follows from the derivation of the numerical scheme, the
point source boundary condition at the origin cannot be treated
directly by the numerical scheme but it has to be approximated by
all elements adjacent to the origin x = 0 as shown in Fig. 2 where
the injection part of the domain boundary I" = 942 is denoted
by I},. At I3, we prescribe a zero Neumann boundary condition
for the wetting phase velocity and a non-zero Neumann boundary
condition for the non-wetting phase velocity v, such that

/ vy - = —Qp(t),
Tin

The remaining boundary conditions are shown in Fig. 1.

In Table 1, we show results of the numerical analysis for
segments, rectangles, triangles, cuboids, and tetrahedrons, respec-
tively, for both B&C and vG models. For each case, a series of

(27)

vt € [0, T]. (28)
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‘atx:(): at z=1m:
_ AL
1Dy = Dy g — AL
‘pu Pref e ‘11\5

0'Pn=Dw+pc(S)  u, =0
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Vi
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Fig. 1. Setup of the computational domain with boundary conditions for (a) 1D, (b) 2D, and (c) 3D cases, respectively.

Table 1
Results of the numerical analysis using the L; and L, norms of Ey s, .
Brooks & Corey van Genuchten
Id. 1En,s, I11 €0Cs;, 1 lEhs, 2 €0Cs,, 2 1En,s, I11 €0Cs, 1 |Ens, 2 €0Cs, 2
1D, 6.04-1073 094 1.56- 1072 061 3.45-1073 121 5.06-1073 126
1D, 3.14-1073 091 1.02-1072 0.70 1.49-1073 104 2.11-1073 1.02
1D3 1.67-107° 0.92 6.28-1073 072 7.24-107* 101 1.04-107° 101
1D, 8.83-107* 0.92 3.80-1073 0.69 3591074 1.00 5.17-107* 101
1Ds 467-107* 095 2.35.1072 0.4 1.79-107* 098 257-107* 0.96
1Dg 2.42-1074 0.96 1.31-10°° 0.9 9.06-107° 091 1.32-10* 0.80
1D, 1.24-107* 7.05-10~* 4.83-107° 7.56-107°
W sees  om rm0e M S ARSI
00 497107 082 135102 o.62 431107 087 68310 086
2Dé 276 1073 083 8.93.10°3 0.60 2341073 088 3721073 088
4 : 0.87 : 0.63 : 0.86 : 0.85
2D5 1.51-107° 5.79-1073 1.29-1073 2.06-1073
zni 1.45- 10:2 0.92 3.17- 10:2 078 1.42- 10:2 0.98 2.12- 10:2 0.94
S - R
3 o . 0.95 e - 0.69 e 73 1.05 S . 1.03
2D4A 2.41- 1073 085 7.84- 1073 066 2.03- 1073 0.90 3.19- 1073 0.9
2D5 1.30- 10 4.85-10 1.06 - 10 1.68- 10
DR em 2EET e IEET e S0ET om
2 : . 0.84 : ., 0.69 ’ - 0.90 : . 0.89
3D5 2.60 - 10 0.6 9.87-10 0.69 2.36- 10 093 4.90-10 0.92
3D} 1.44-.1073 6.12-1073 1.24-1073 2.58-1073
3Di 1.12- 10:2 0.69 3.38- 10:2 0.60 1.21- 10:2 077 2.43. 10:2 073
3DZA 7.82-10 . 084 2.47-10 : 072 8.13- 10 . 093 1.66 - 10 ' 0.90
3D3A 4.35- 1073 103 1.49- 1073 0.92 4.25 . 1073 114 8.84- 1073 112
3D1 2.37- 1073 0.82 8.63- 1073 0.79 217 1073 1.04 456 - 1073 1.02
3D5 1.41-10 5.23-10 1.12- 10 2.39-10
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Fig. 2. Approximation of the point injection boundary condition at ¥ = 0 for (a) rectangles, (b) triangles, (c) cuboids, and (d) tetrahedra elements, respectively.

meshes was generated such that the mesh size parameter h is
consecutively reduced approximately by the factor of 2. The com-
puted experimental orders of convergence indicate that the nu-
merical scheme converges with the first order of accuracy in all
dimensions. As listed in the tables, different strategies for the
choice of the constant time step t had to be used in 1D, 2D, and
3D to ensure the numerical convergence.

The computational times CT [s], multicore CPU efficiency Eff [1],
and GPU speed-up GSp [1] in Tables 2 and 3 demonstrate the ad-
vantages of the parallel implementation of the MHFEM numerical
scheme on GPU. Additionally, we show the performance of two
GMRES(s) variants: using the modified Gramm-Schmidt procedure
with re-orthogonalization (MGSR) or using the compact WY rep-
resentation (CWY) as discussed in Section 2.8. The computational
analysis was performed on 2D rectangular and triangular meshes
and 3D cuboidal and tetrahedral meshes using the B&C model for
which the results of the numerical analysis are given in Table 1.
For the comparison, we used Nvidia Tesla K40 GPU (with 2880
cores, 12 GB GDDR5 global memory) and Intel Core i7-5820K CPU
(with 6 cores and 12 threads). In order to obtain distortionless
CPU computational times, the Intel Turbo Boost Technology was
disabled on the CPU during computations. The efficiency index
Eff quantifies the parallel scalability of the numerical scheme on
multicore CPU using OpenMP with ¢-threads as

CT for 1 thread
Eff = 7
X

-_ 29
(CT for ¢ threads) (29

The GPU speed-up GSp is the ratio between the CPU and GPU
computational times.

The CWY variant of GMRES is substantially faster than MGSR
on GPU as shown in Tables 2 and 3. When compared to the single-
threaded CPU, the GPU speed-up GSp for grids rises above 20 or
24 and above 5 or 7 for the six-threaded CPU for finer meshes in
2D or 3D, respectively. The speed-ups for unstructured meshes in
Tables 2b and 3b are slightly lower compared to structured grids
in Tables 2a and 3a.

Additionally in Appendix D, we illustrate the computational
accuracy and performance of the proposed MHFEM approach in
comparison with the fully time-implicit box method implemented
using the DuMu* project [34].

3.2. Flow in heterogeneous porous media

In heterogeneous porous media, mathematical modeling of
two-phase flow across sharp material discontinuities requires a
careful treatment that includes the capillary barrier effect (or
the extended capillary pressure condition) at material interfaces
as reported by [35,36]. In brief, the capillary barrier condition
describes a phenomenon where the non-wetting phase cannot
penetrate into a finer material until its capillary pressure reaches
the entry capillary pressure of the finer material.

We use two benchmark problems in 1D (denoted as BP;) and
2D (denoted as BP,) from [35,37] that consider a gravity induced
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Table 2
Comparison of the computational time CT, multicore CPU efficiency index Eff, and GPU speed-up GSp of the numerical scheme solver in 2D using the problem described in
Section 3.1.
(a) 2D grids
GPU CPU
1 thread 2 threads 4 threads 6 threads
Id. cr cT GSp cT Eff GSp cT Eff GSp cT Eff GSp
2D7 5.1 0.6 0.12 0.7 0.45 0.13 0.8 0.19 0.15 0.9 0.11 0.17
2Dy 28.1 115 0.41 7.9 0.72 0.28 6.4 0.45 0.23 6.8 0.28 0.24
MGSR 2D§ 1171 173.6 1.48 95.9 091 0.82 61.2 0.71 0.52 52.8 0.55 0.45
2DY 740 4024 5.43 2154 0.93 291 1192 0.84 1.61 942 0.71 1.27
2Dy 8237 82324 9.99 47982 0.86 5.82 26919 0.76 3.27 19916 0.69 242
ZDf 1.5 0.7 0.45 0.4 0.79 0.28 0.3 0.52 0.22 0.3 0.41 0.18
2D} 11.0 132 1.20 7.6 0.87 0.69 4.8 0.68 0.44 4.0 0.55 0.37
CWY 2D§ 46.3 197.0 4.25 107.5 0.92 2.32 65.7 0.75 1.42 52.6 0.62 1.14
2D} 380 4326 11.38 2361 0.92 6.21 1448 0.75 3.81 1196 0.60 3.15
ZDE 4450 91166 20.49 49004 0.93 11.01 29182 0.78 6.56 24684 0.62 5.55
(b) 2D unstructured meshes
GPU CPU
1 thread 2 threads 4 threads 6 threads
1d. cr cT GSp cT Eff GSp T Eff GSp cT Eff GSp
ZDIA 4.7 0.3 0.07 0.5 0.33 0.11 0.5 0.18 0.10 0.6 0.09 0.13
2D2A 224 5.0 0.22 39 0.65 0.17 3.1 0.40 0.14 3.6 0.23 0.16
MGSR 205 120.0 985 0.82 595 0.83 050 383 0.64 0.32 357 0.46 0.30
ZDf 778 2383 3.06 1299 0.92 1.67 701 0.85 0.90 574 0.69 0.74
2D5,A 7388 45953 6.22 25512 0.90 345 14603 0.79 1.98 11976 0.64 1.62
2D1A 15 0.4 0.27 0.3 0.60 0.22 0.2 0.45 0.15 0.2 0.32 0.14
ZDZA 89 6.2 0.70 37 0.84 0.42 23 0.66 0.26 20 0.52 0.23
cwy 2D3A 51.1 122.0 2.39 67.7 0.90 1.32 40.3 0.76 0.79 325 0.63 0.64
ZDf 396 2696 6.80 1481 091 3.74 855 0.79 2.16 672 0.67 1.70
2D5A 4008 57404 14.32 32101 0.89 8.01 18814 0.76 4.69 16414 0.58 4.09
Table 3
Comparison of the computational time CT, multicore CPU efficiency index Eff, and GPU speed-up GSp of the numerical scheme solver in 3D using the problem described in
Section 3.1.
(a) 3D grids
GPU CPU
1 thread 2 threads 4 threads 6 threads
1d. cr cT GSp cT Eff GSp cT Eff GSp cT Eff GSp
3D} 5.9 138 234 7.2 0.96 1.22 4.3 0.80 0.73 34 0.67 0.58
MGSR 3D 55.7 524.6 9.42 304.7 0.86 5.47 173.7 0.76 3.12 128.2 0.68 230
3D§ 1234 21129 17.12 12771 0.83 10.35 7317 0.72 5.93 6242 0.56 5.06
3D2 44798 (not computed on 1, 2 and 4 threads) 272104 6.07
3Df 21 15.2 7.30 8.0 0.96 3.82 4.4 0.86 213 34 0.75 1.62
cwy 3D} 30.8 564.3 18.33 319.5 0.88 10.38 186.7 0.76 6.07 150.3 0.63 4.88
3D; 828 20570 24.84 12406 0.83 14.98 7093 0.73 8.57 5534 0.62 6.68
3Df 31806 (not computed on 1, 2 and 4 threads) 234066 7.36
(b) 3D unstructured meshes
GPU CPU
1 thread 2 threads 4 threads 6 threads
1d. T cT GSp cT Eff GSp T Eff GSp cT Eff GSp
3DlA 38 1.7 0.44 1.2 0.71 0.31 0.8 0.53 0.21 0.8 0.33 0.22
3D2A 6.1 7.2 1.19 4.3 0.84 0.70 2.6 0.70 043 2.3 0.53 0.37
MGSR 3D5 453 2745 6.06 152.6 0.90 337 87.5 078 1.93 72.4 063 1.60
3Df 873 11270 1291 6228 0.90 7.13 3415 0.83 391 3188 0.59 3.65
3D5A 55880 (not computed on 1, 2 and 4 threads) 298810 5.35
EIDIA 14 2.0 1.48 12 0.85 0.88 0.7 0.68 0.54 0.6 0.54 0.46
3DzA 2.6 8.7 3.30 4.9 0.89 1.85 29 0.75 1.10 2.3 0.64 0.86
cwy 3~D3A 239 3309 13.87 184.8 0.90 7.75 107.9 0.77 453 934 0.59 3.92
3Df 566 12070 21.32 6506 0.93 11.49 3771 0.80 6.66 3306 0.61 5.84
3D5A 37695 (not computed on 1, 2 and 4 threads) 201786 5.35
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Fig. 3. Setup and the boundary and initial conditions of the benchmark problem BP; in 1D based on [35].
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Fig. 4. Example behavior of the numerical solution across material discontinuities when the mass-lumping technique is or is not employed for the barrier effect benchmark
problem in 1D. Top and bottom figures correspond to the B&C and vG models, respectively.

imbibition of a dense non-aqueous phase liquid (DNAPL) into a Ig Iy Iy
fully water saturated domain. We demonstrate how the numerical | | -
solution behaves at material discontinuities with and without 38.375 em 13.95 em 18.75
using (a) the mass lumping technique (in BP;) and (b) the capil- cm
lary barrier condition (in BP;) described in Sections 2.1 and 2.5, 1495
respectively. Sand E or F 0
The setup together with the boundary and initial conditions Ts cm Iy
of the first benchmark problem BP; are shown in Fig. 3 with
the material properties given in Table C.8. The fluid properties gl
used in BP; are given in Table C.7: the wetting and non-wetting Sand D 32 cm ’
phases are water and DNAPL,, respectively. The gravity acts along 18.75 em 52.5 cm 18.75 ¢cm
the x-axis. At material discontinuities placed at x = 0.145 m and J J
x = 0.345 m, the spatial profile of S, exhibits a jump across the r,
interfaces as shown in Fig. 4 where the numerical solutions for
both B&C and vG models are shown at t = 1650 s. When the
mass-lumping technique is employed, the numerical solution of
S, matches the results in [35], pages 286 and 289. Without this
technique, the saturation profiles are approximated incorrectly

Fig. 5. Setup of the benchmark problem BP, based on [37].

especially at the material interface at x = 0.345 m where the non- allt € [0.T}:

wetting fluid flows from the finer to the coarser material. In higher I

dimensions, we have observed the same behavior and a mass- ~ ¥n-®=—5.13-10"ms™" and v,-n=0 only, (30a)

lumping technique based on [9] needs to be employed. po=10°Pa and S, =1 onl3UT%:, (30b)
The second benchmark problem BP, consists of a 2D computa-

tional domain illustrated in Fig. 5 with the boundary conditions for ~ Un-®=0 and v,-m=0 on/lRUILU TG, (300)
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Fig. 6. Illustration of the unstructured (a) and structured (b) meshes in 2D consisting of 2880 elements used in the benchmark problem BP,.

and the initial condition: S,,(0, ) = 1 for all ¥ € £2. The material
properties of sands D, E, and F are given in Table C.8. The fluids
used in the simulations are water and DNAPL, with the parameters
given in Table C.7. The gravity acts in the negative direction of the
y-axis. The purpose of BP; is to investigate whether the barrier ef-
fect has been simulated properly. Based on the material properties
of the buried lens consisting of either coarser sand E or finer sand
F, the non-wetting phase infiltrates into or pools around the lens,
respectively. In [5], a similar approach to solving the two-phase
flow equations in heterogeneous porous media using an implicit
pressure-explicit saturation (IMPES) variant of the MHFEM was
presented. The authors concluded that the numerical scheme is
able to handle flows across material interfaces without any explicit
implementation of the extended capillary pressure condition. For
some particular (structured) meshes, we found that this is not the
case when the barrier effect occurs.

In Figs. 7 and 8, we show a series of numerical solutions of S,
at t = 4500 s for both unstructured (left columns) and structured
(right columns) meshes where the first two rows of figures demon-
strate numerical convergence using a coarser and a finer mesh and
the last row contains results computed using the barrier condition.
In Fig. 6, we show two examples of unstructured (a) and structured
(b) meshes that both consist of 2880 elements.

For the coarser lens (sand E), the numerical results in Fig. 7a-d
using the unstructured and structured meshes are comparable
with the results in [37], page 211. Therefore, it may seem that
no explicit implementation of the barrier condition is required in
accordance with the findings by [5]. For the finer lens (sand F),
however, the numerical solution is strongly mesh-dependent as
shown in Fig. 8b and d, where the majority of the non-wetting
phase is deflected side-wise following the orientation of the struc-
tured mesh. As shown in Fig. 8d, such apparently incorrect solution
converges numerically as the mesh is further refined indicating
that the non-symmetry of the solution is not caused by coarseness
of the mesh. For unstructured meshes, such as the one shown in
Fig. 6a, the non-uniformity of elements suffices to produce sym-
metrical pooling of the non-wetting phase at material interfaces,
thus supporting the observations by [5] again.

When employing the barrier condition described in Section 2.5,
the numerical solutions on both structured and unstructured
meshes preserve their symmetry and are comparable with the

results published in [37], page 211. Furthermore, the solutions for
the coarser lens (sand E) show better symmetry when the barrier
condition is used in Fig. 7g compared to the case in Fig. 7d, where
no attention is paid to the fluid behavior across material interfaces.
This is because a pooling (i.e., the barrier effect) occurs for a short
period of time that affects the final symmetry of the solution before
the non-wetting fluid penetrates into the coarser lens.

Consequently, we recommend using the mass-lumping tech-
nique as well as the implementation of the (capillary) barrier
condition in order to obtain reliable numerical results.

4. Compositional two-phase flow in porous media

In order to demonstrate the applicability of the presented
method, we construct an analytical solution for a transport
equation for mass fraction X = X(t, x) coupled with the two-phase
flow problem in R? described in Section 3.1 in the form
¢%+V~(th—DXVX)+rxX=O, (31)
where v, [LT™'] is the total velocity defined as the sum of the
Darcy’s phase velocities given by Eq. (26), i.e. v, = v,, + v,, and
X [1]is the mass fraction of some chemical compound dissolved in
both phases under the assumption of local equilibrium. Derivation
of Eq. (31) is summarized in Appendix B.

4.1. Analytical solution

Eq. (31) is considered as another equation added to the sys-
tem of two-phase flow equations discussed in porous media in
Section 3 in the same domain, shown in Fig. 1, and radial symmetry
as the semi-analytical solution by [32] in the general dimension
d = 1, 2, 3. The analytical solution of (31) is assumed in the radial
coordinates as

X(t, p) = Xo exp (—Bxp’e ™), (32)

where p = ||x||; is the radius, X, [1] is the injection mass fraction
at the origin ¥ = 0, and Ax [T~'] and Bx [L™2] are positive
coefficients.

The analytical function given by Eq. (32) resolves Eq. (31), if the
reaction term ry is given in the radial coordinates as
rx(t, p) = —Bx (pp*Ax + 2Dxd — 2pvy(t, p)

— 4Dy p?Bye™M!) et (33)

where v,(t, p) is the radial component of the total velocity v;.
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Fig. 7. Spatial distribution of the non-wetting phase saturation S, at t = 4500 s for and various meshes with (left) and without (right) using the barrier condition. The lens

consists of the coarser sand E.

Eq. (31) and the analytical solution in Eq. (32) allow to use
vanishing or zero diffusion coefficient Dy. Hence, the problem is
suitable for benchmarking numerical schemes for both diffusion-
advection and pure advection cases. In order to simulate the
vanishing diffusion case using the presented MHFEM numerical
scheme, we split the diffusion coefficient Dy into two parts as
Dy = myDy, where Dy > 0 is a constant diffusion coefficient

and myx > 0 is a mobility coefficient that can be set small for

the vanishing diffusion case or even to zero for the pure advection
case.

4.2. Conservative and non-conservative formulations

The transport equation given by Eq. (31) together with the two-
phase flow equations can be represented by the coefficients in
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Fig. 8. Spatial distribution of the non-wetting phase saturation S, at t = 4500 s for and various meshes with (left) and without (right) using the barrier condition. The lens
consists of the finer sand F.

For both (C) and (NC) variants, we set n = 3,Z = (p,, pn, X)',
and the coefficients in (1) as

Eq. (1) using either a conservative (C) or a non-conservative form
(NC). The conservative form is directly given by Eq. (31) while the
non-conservative form results from the combination of Eq. (31)

Conservative form (C) : Non-Conservative form (NC) :

with the two-phase flow continuity equations as follows: ,¢% ¢% 0 *‘P%ST"J ¢% 0
aX N= ¢% —¢% of|. N= ¢gf;: —¢% 0|, (35a)
¢§+v[-VX—V-(DXVX)+rXX=0. (34) 0 0 4 0 )
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Table 4
Results of the numerical analysis using the L; norm of E, x and the B&C model.
Conservative Formulation Non-Conservative Formulation
Dx =0m?/s Dx = 107> m?/s Dx =0m?/s Dx = 10~ m?/s
Id. lEnxll1 €0Cx, 1 1Enx[l1 eocx.1 lEnxIl1 €0Cx,1 [1EnxIl1 €0cx 1
1D, 1.68 - 1072 0.94 3.46-1073 1.02 1.69-1072 093 3.46-1073 1.02
1D, 8.77-1073 1.00 1.70-1073 101 8.89-1073 0.98 1.70-1073 101
1D; 4.38-1073 1.02 8.45-1074 1.00 4.50-1073 1.00 8.45-107* 1.00
1Dy 2.16-1072 1.02 423.107* 1.00 2.25-1073 1.00 423.10~* 1.00
1Ds 1.07-10°3 0.97 2.12-1074 1.00 1.13-1073 1.00 2.12-1074 1.00
1Dg 5.45.10~* 0.94 1.06-107* 1.00 5.64-107* 1.00 1.06-1074 1.00
1D, 2.84-1074 5.31-107° 2.82-1074 5.31-107°
DT ERT e ET SR
ZD§ 6.18 - 10°3 099 2111073 099 6.18 - 103 099 2111073 099
2Di 3‘16 -1073 097 llOS 1073 097 3A164 103 097 1'08 1073 097
4 : 0.95 : 0.94 : 0.95 : 0.94
207 1.64-1073 5591074 1.64-1073 5.59-107*
e = Be om aw o= oSm o
206 6.92 103 %9 219-10° %2 421 1073 %4 219 10° 991
3 : 1.06 : 1.08 : 1.10 : 1.07
2D; 3.55-1073 1.11-1073 2.10-1073 1121073
o om0 e s M e
2 : 1.00 : 0.95 : 1.00 : 0.95
3D7 2.07-1073 8.89-107* 2.07-1073 8.89-107*
Iome = Be w omm owm omm e
3t 77 1073 106 2.06 103 o7 288 1073 110 201 103 7
3 : 1.23 : 1.26 : 1.26 : 1.20
3D; 2.30-1073 9.77-1074 1.36-1073 9.83-107*
00 0 analysis, we set Dy = 1-107° m?/s, Xy = 1,Ax =5-10>s~!,and
u=0, u=|0 0 0 |, (35b) Bx = 20 m~2 and we consider myx € {0, 0.1, 0.01, 1}.
00 v In Tables 4 and 5, we show results of the numerical analysis in
Ao An T Ao An T the Ly norm for B&C and vG models, respectively, that cover the
m= (Tt v mX) ) m= (M v mX) , (35¢) pure advection case (Dx = 0) and diffusion-advection case with
WKL 0 0 WKl 0 0 the largest diffusion (Dx = Dy) §0n51dered m_thls paper. In Section
D 0 LKL 0 . b= 0 K 0 2 of the supplementary material, we compile tfibles and figures
0 0 Dol 0 0 Dol that cover the results from_ the whole computational study. I_n all
cases, the computed experimental order of convergences indicate
(35d) that the numerical scheme is convergent with the first order of

w = (Apukg, AcpuaKg,0)", w = (Aepukg, AepaKg, 007, (35e) accuracy. Although substantially larger norms of E, x are obtained
00 0 for the pure advection case compared to the cases with non-zero
diffusion Dy, the upwinding strategy defined in Eq. (16) is sufficient
a=[ 0 0 0 |, a=0, (35f) . . .
00 o to stabilize the numerical scheme for the pure advection problems.
t
00 0 0.0 0 5. Conclusion
r=(0 0 o0 |, r=00 0 |, (35g)
0 0 1x 0 0 Based on the mixed-hybrid finite element method, we have de-
f=o, f=o0 (35h) veloped a computationally efficient multidimensional numerical

4.3. Numerical analysis

Initial and boundary conditions for the two-phase flow part
of the system are the same as in Section 3.1 and except for the
choice of time steps t, we use the same values for the problem
parameters. Compared to the numerical analysis in Section 3.1,
the time steps t need to be reduced in order to assure numerical
convergence of the transport equation, cf. Table A.6. For the mass
fraction X, the initial condition is given by the analytical solution in
Eq.(32) evaluated at t = 0. We consider Dirichlet boundary condi-
tions given by the analytical solution at I, and on the boundaries
representing the infinity, i.e.,atx = 1min 1D, on I'y and I in 2D,
and on all front faces in 3D, cf. Fig. 1. On the remaining boundaries,
zero Neumann boundary conditions are applied. For the numerical

scheme for solving a system of n non-stationary partial differential
equations with general coefficients that can be parallelized on GPU.
The numerical scheme is primarily designed for simulating two-
phase compositional flow in porous media and allows for solving
problems with degenerate or zero diffusion, or capillary barrier
effect in heterogeneous porous materials. We have presented a
detailed derivation of the numerical scheme and emphasized the
key aspects of its numerical stabilization that is inspired by the
upwind technique and our previous work. Furthermore, we have
shown how the numerical scheme has to be modified in order to
properly simulate the barrier capillary effect that occurs at material
discontinuities in heterogeneous porous media.

In order to solve the numerical scheme, a sparse linear system
needs to be assembled and solved in each time step. The main
advantage of the presented scheme is that the assembly of the
linear system as well as the resolution of the linear system can
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Table 5

Results of the numerical analysis using the L; norm of Ej, x and the vG model.

R. Fucik, J. Klinkovsky, . Solovsky et al. / Computer Physics Communications 238 (2019) 165-180

Conservative Formulation

Non-Conservative Formulation

Dx = 0m?/s Dx = 107> m?/s Dx = 0m?/s Dx = 107 m?/s
Id. lEn.x Il €0Cx,1 [1En,x Il €0Cx.1 lEn.x Il €0Cx .1 Enxl1 €0Cx1
.1072 .1073 .1072 .1073
1D 1.78 1073 1.02 343 1073 1.02 1.81 1073 0.99 3.43 1073 1.02
1D, 8.77 - 1073 1.03 1.69 - 1074 1.00 9.08 - 1073 0.99 1.69 - 1074 1.00
1D; 4.30 - 1073 1.00 8.43- 1074 1.00 4.57 - 1073 0.99 8.43- 1074 1.00
1D4 2.16- 1073 0.95 422 1074 1.00 2.30 - 1073 1.00 422 1074 1.00
1Ds 1.11- 1074 0.92 2.11- 1074 1.00 1.15- 1074 1.00 2.11- 1074 1.00
1Dg 5.90-10 0.90 1.06 - 10 1.00 5.75-10 1.00 1.06 - 10 1.00
1D, 3.16- 1074 5.29-107° 2.88-107* 5.29-107°
0 —2 -3 —2 3
2D1D 2.59- 10,2 1.09 8.45- 1073 1.01 2.59- 1072 1.09 8.45- ]073 1.01
2Dé 1.21- 1073 1.00 4.18 - 1()73 0.99 1.21- ]073 1.00 4.18 - 1073 0.99
2Di 6.05 - 1073 0.99 2.11- 1073 0.97 6.05 - 1073 0.99 2.11- 1073 0.97
2D, 3.04-10 0.99 1.07 - 10 0.95 3.04-10 0.99 1.07 - 10 0.95
2Dy 1.53.1073 5.56- 1074 1.53.1073 5.56- 1074
A —2 -3 -2 -3
2D1A 2.88- 1072 113 9.00 - 1073 1.10 1.79 - 1073 113 8.84- 1073 1.09
2DZA 1.38-10 , 0.92 4.40-10 . 092 8.61-10 , 0.91 4.35-10 , 091
2D, 6.90- 10 1.09 2.19-10 1.08 4.32-10 1.08 2.19-10 1.06
2D4A 3.47-1073 1.11-1073 2.18-1073 1.12-1073
0 -3 -3 -3 -3
3D1D 9.57 - 1073 121 345 1073 1.00 9.51- 1073 1.20 345 ]073 1.00
3D} 4.14-10 1.00 1.72-10 0.95 4.14-10 1.00 1.72-10 0.95
3D§ 2.07-1073 8.89-107* 2.07-1073 8.89-107*
o . 102 .10-3 .10-3 .10-3
3D1A 1.49-10 , 0.66 6.64 - 10 , 078 8.70- 10 , 0.72 6.29-10 , 078
3DZA 1.06 - 10 , 1.09 4.42-10 , 1.07 5.98-10 i 107 4.19-10 , 1.07
3D3A 4.93-10 1.26 2.08-10 1.28 2.83-10 123 1.99-10 118
3D, 2.34-.1073 9.77-1074 1.37-1073 9.90- 1074
Table A.6

Parameters of meshes used in the numerical analyses in Sections 4 and 3.1: identifier (Id.), number of elements Ni, mesh size h, degrees of freedom (=size of the global
linear system) Nyor, and time steps zec and 7, for the B&C and vG models, respectively. The identifiers describe meshes that consist of segments (1D) rectangles (2D"),
triangles (2D*), cuboids (3D), or tetrahedra (3D*), respectively.

Benchmark in Section 4

Benchmark in Section 5

Id. N h[m] Naof Tgac [S] 7y [s] Naof Tpac [S] TG [S]
1D, 50 2.00-1072 102 60.10 377.00 153 1.78 5.88
1D, 100 1.00- 1072 202 58.50 256.00 303 0.89 2.96
1D3 200 5.00-1073 402 33.70 132.00 603 0.44 1.48
1D4 400 2.50-1073 802 15.90 69.00 1203 0.22 0.74
1Ds 800 1.25-1073 1602 5.96 36.60 2403 0.11 0.37
1Dg 1600 6.25-1074 3202 2.55 19.90 4803 0.06 0.19
1Dy 3200 3.12-107* 6402 1.09 11.10 9603 0.03 0.09
2D7 225 9.43.1072 960 253.16 317.00 1440 253.16 317.00
2D 900 4.71-1072 3720 90.50 80.00 5580 90.50 80.00
2Dy 3600 2.36-1072 14640 31.90 19.96 21960 31.90 19.96
2D 14400 1.18-1072 58080 10.62 5.02 87120 10.62 5.02
2Dy 57600 5.89-1073 231360 3.57 1.26 347040 3.57 1.26
2D1A 242 6.71-1072 766 454.55 36.36 1149 10.00 5.00
2D2A 944 3.49-1072 2912 145.99 15.49 4368 4.00 2.00
2D3A 3714 1.64-1072 11302 44.64 4.64 16953 1.00 0.50
2D4A 14788 8.73-1073 44684 13.44 135 67026 0.25 0.10
2D5A 59336 4.23-1073 178648 5.00 0.50

3D¢ 3375 1.15- 107! 21600 33333 235.29 32400 200.00 200.00
3D5 27000 5.77-1072 167400 131.58 58.82 251100 12,50 12.50
3D§ 216000 2.89-1072 1317600 53.48 14.71 1976400 0.78 0.78
3D} 1728000 1.44-1072 10454400 22.10 3.68

3D1A 1312 2.13-107" 5874 833.33 152.67 8811 10.00 10.00
3D2A 3697 1.27-107" 15546 571.43 125.79 23319 5.00 5.00
3D3A 29673 6.29-1072 121678 232.56 60.24 182517 2.50 2.50
3Df 240372 3.48-1072 973750 101.01 43.86 1460625 1.00 1.00
3D5A 1939413 1.84-1072 7807218 25.00 20.00

be done directly on GPU with the help of the Template numerical
library TNL. Therefore, the implementation on GPU can be more
than 20 x (for rectangles), 14 x (for triangles), 24 x (for cuboids), or

21x (for tetrahedra) faster than a single-threaded implementation
on CPU (with the Intel Turbo Boost Technology disabled), or more
than 5x (for rectangles), 4x (for triangles), 7x (for cuboids), or
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Table C.7

Fluid properties.
Symbol P m
Units [kg m~3] [kgm™'s7']
Water 1000 0.001
DNAPLy, [35] 1400 0.001
DNAPL,, [37] 1460 0.001

5x (for tetrahedra) faster than a six-threaded implementation on
CPU. In the discussion, we compared performance of serial (on
CPU), parallel (using OpenMP on CPU), and massive parallel (on
GPU) implementations.

The applicability of the numerical scheme has been demon-
strated using a series of benchmark problems for two-phase (com-
positional) flows in (heterogeneous) porous media. We have
presented results of a numerical analysis for selected problems of
two-phase flow in 1D, 2D, and 3D for which exact (semi-analytical)
solutions are known. Then, a series of benchmark problems for
two-phase flow in heterogeneous porous media has been pre-
sented to illustrate various aspects of numerical approximations
of the capillary barrier effect. Additionally, we constructed an
analytical solution for a two-phase compositional flow problem
and used it in another numerical analysis. In all numerical analyses,
we computed the experimental order of convergence using the
L, and L, norms of the numerically approximated solutions and
showed that the numerical scheme is convergent with the first
order of accuracy.
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Appendix A. Tools for numerical analysis

The L, normin £2 C RY of some integrable function v is defined
by

Iy, = ( / \w(xw’dx) "
2

where we consider p = 1,2 and d = 1, 2, 3 in this paper. For
a given mesh Ky, the error Ej, ; of the numerical solution of some
function is defined by

(A1)

Eh,g = Zex — &h>» (A~2)

where g, and gy denote the exact and the numerically approxi-
mated function g = g(t, x), respectively.
Atagiventime t = T, we assume the L, norm of E ; in the form

HEh‘g ”p = Ctime.g.p T + Cspace.g.p hoer, (A3)

where h [L] denotes the spatial step, t [T] denotes the (constant)
time step, Ciime,g,p aNd Copace g, p are some positive constants, and
ocg p is the order of convergence of the numerical scheme with
respect to g in the L, norm.

We investigate the convergence and accuracy of the numerical
scheme using the experimental order of convergence eoc, , that
approximates the order of convergence ocg , as

coc. - — In [[En, g ”p —In |y, ¢ ”p
&p Inh; — Inhy ’

where hy and h, denote spatial steps of two different meshes Ky,
and Ky, , respectively.

(A4)

Appendix B. Transport equation derivation

Following the notation in Section 3, a general compositional
continuity equation with a reactive term for a component y in a
phase « is considered in the form
¢ a(suxa,ypa)

at
+ parot.yxoz,y =0,

+ V- (_paDX,ot,yVXa,y + puXa.yva)
(B.1)

where X, ,, [1] is the mass fraction of the dissolved species y in
the phase «, « = n, w. Under the assumption of weak solutions,
densities p,, and p, can be considered constant in time and space
and therefore factored out of Eq. (B.1). Furthermore, we assume
local equilibrium partitioning of the component y between phases

for which Henry’s law allows to express
Xn.y = H}/Xu;,ya (Bz)

where H,, [1] is the dimensionless Henry’s constant. When Eq. (B.2)
is substituted into Eq. (B.1), the Henry’s constant H,, can be factored
out of the resulting equation. As a result, we obtain two equations
for X, , that we sum together to obtain Eq. (31), where we set
X :=Xn,Dx = Dx w,y +Dxny,andrx =71y, + 1y .

Appendix C. Fluid and material properties

We consider capillary pressure-saturation relationships by (a)
Brooks and Corey [28]:

Pc
DBac

—AB&C
Su;,e(pc) = ( > for Pc Z Ps&c, (C-l)
where pgec [ML™'T~2]is the entry pressure and Aggc [1] character-
izes the pore distribution of grains in a porous material, or by (b)

van Genuchten [29]:

4L
Swe(Pe) = [1+ (@vepc)™e] e for p >0,

where a,¢ [M~'LT?] and n,¢ [1] are empirical parameters. By S, .,
we denote the effective saturation S, = (Sy, — Suw.r)/(1 — Su,r),
where S,, » [1] is the residual saturation of the wetting phase.

Based on the p. <> S, relationships given by (C.1) and (C.2),
relative permeability-saturation relationships can be derived as
follows from (a) Burdine [26]:

(C2)

342
Krw(Sw) = Su,e ™,

(C3a)
T+
kr‘n(sw) = (1 - Sur,e)z (1 - Sw,eﬂ&c ) 5 (C-3b)
or (b) Mualem [27]:

1 1\ MGy 2

Keuw(Sw) = Si e (1 - (1 - SIZ',”E’;) ) ) (C4a)
| 1\ 2MyG

ke n(Sw) = (1= Sye)3 (1 - SJ)",%G> . (C.4b)

Appendix D. Illustrative comparison with DuMuX

InTables D.9 and D.10, we illustrate the computational accuracy
and performance of the proposed MHFEM approach in comparison
with the fully time-implicit box method implemented using the
DuMu* project [34].

Appendix E. Supplementary data

Supplementary material related to this article can be found
online at https://doi.org/10.1016/j.cpc.2018.12.004.
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Table C.8

Material properties.
Symbol ¢ K Dasc Apac Ay Ny Suw.r
Units [11 [1072 m?] [Pa] [1] [10-4Pa™'] (1 [
Sand A, [33] 0.343 5.168 4605.80 2.857 171 6.64 0.04
Sand B, [35] 0.4 504 370 3.86 225 8.06 0.08
Sand C, [35] 0.39 52.6 1324 249 5.81 5.34 0.1
Sand D, [37] 0.40 66.4 755 27 - - 0.1
Sand E, [37] 0.39 332 1163.5 2.0 — - 0.12
Sand F, [37] 0.39 332 1466.1 2.0 - - 0.12

Table D.9

Accuracy comparison between the proposed MHFEM approach and the fully time-implicit box method implemented using the DuMu* project [34] for the 2D test problem
discussed in Section 3.1 and with the B&C model used.

DuMu* NumDwarf
Id. lEn.s, ll1 €0Cs, 1 [IEn.s, Il2 €0Cs, 2 l|En.s, II1 €0Cs, 1 lEn.s, ll2 €0Cs, 2
o .10-2 .10-2 1102 .10-2

2D1A 2.21 10,2 0.97 3.74 1072 0.65 1.42 1073 0.98 2.12 1072 094

2DZA 1.13-10 , 0.79 2.44-10 , 0.53 7.51-10 , 0.86 1.15-10 , 0.84

2D3A 6.19- 10 . 0.98 1.64-10 , 0.68 3.93-10 . 105 6.11-10 . 1.03

2DZ 3.34-10 0.86 1.07-10 0.68 2.03-10 0.90 3.19-10 0.89

2D; 1.79- 1073 6.78-1073 1.06- 1073 1.68- 1072

Tgble Dtl(: . i ds) on Intel Core [7-5820K CPU of [15] J. Chan, Z. Wang, A. Modave, J.F. Remacle, T. Warburton, J. Comput. Phys. 318
omputational times (in seconds) on Intel Core i7- o (2016) 142-168.
the NunDwarf scheme and xthe fully time-implicit box method im- [16] A. Logg, K.A. Mardal, G.N. Wells, et al., in: A. Logg, K.A. Mardal, G.N. Wells
plemented using the Dultu® project [34] for the 2D test problem (Eds.), Automated Solution of Differential Equations by the Finite Element
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Supplementary Material:
Multidimensional Mixed-Hybrid Finite Element Method for
Compositional Two-Phase Flow in Heterogeneous Porous Media and
its Parallel Implementation on GPU

Radek Fucik?, Jakub Klinkovsky?®, Jakub Solovsky?®, Tom&s Oberhuber?, Jifi Mikyska®

@Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Trojanova 13,
120 00 Prague, Czech Republic

1. Summary

This document contains supplementary information such as figures and tables for the
manuscript entitled: Multidimensional Mized—Hybrid Finite Element Method for Compositional
Two-Phase Flow in Heterogeneous Porous Media and its Parallel Implementation on GPU.

In Section 2, examples of numerical solutions of the non—wetting phase saturation 5,, are
presented that correspond to the two-phase flow benchmark problem in R? discussed in Sec-
tion 4.1 of the main manuscript.

Section 3 is devoted to the compositional two—phase flow benchmark problem in R¢ discussed
in Section 5 of the main manuscript and contains figures of numerical solutions of the mass
fraction X and the numerical error of the solution Ej x for various choices of the diffusion
coefficient Dy . Additionally, tables containing L; and Ly norms of the error and experimental
orders of convergence are shown in Section 3.6.
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Figure 1: Numerical solutions of the non-wetting saturation profiles at ¢ = 20000s using the Brooks and Corey
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van Genuchten model, 1D segments
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Figure 2: Numerical solutions of the non-wetting saturation profiles at ¢ = 20000s using the van Genuchten

model.
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3.1. Results in 1D
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Figure 3: Numerical solutions of the mass fraction profiles X (left column) and plots of the numerical error
Ej, x (right column) and at ¢ = 20000 s using the conservative formulation (C) and the Brooks and Corey model
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Figure 4: Numerical solutions of the mass fraction profiles X (left column) and plots of the numerical error
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Figure 5: Numerical solutions of the mass fraction profiles X (left column) and plots of the numerical error
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in 1D for various choices of Dx.

80




Clanek v Computer Physics Communications

vG model, Dy =0, NC

0.8

0.6

X[

0.4

0.2

0.8

— 0.6

0.4

0.2

0.2

vG model, Dx =107 m?s~!, NC
. . . —

0.4

0.6 0.8
x [m]

0.8

— 0.6

0.4

0.2

T

Exact
1D,
1D,
1Dy

L

0 0.2

vG model, Dy = 1076 m?

0.4

0.6 0.8
x [m]
s, NC

1

Exact
1D,
1D,
1Dy

1

0 0.2

0.4

0.6 0.8

x [m]

vG model, Dy = 1075 m?s~!, NC

Exact
— 1D,
1D,
1Dy

0 0.2

Figure 6: Numerical solutions of the mass fraction profiles X (left column) and plots of the numerical error
Ej x (right column) and at ¢ = 20000s using the non-conservative formulation (NC) and the van Genuchten

0.4

0.6 0.8
x [m]

model in 1D for various choices of Dx.

Error Ej x [1] Error Ej, x [1] Error Ej, x (1]

Error Ej, x [1]

vG model, Dx =0, NC

x [m]

vG model, Dx = 1079 m?s~!, NC

0.05 T T T T
0

— 1,
D,
1Dy

—0.05 : : ! !

0 0.2 0.4 0.6 0.8 1
x [m]
vG model, Dy = 107" m?s~!, NC
040\) T T T T

— 1D,

1Dy

L L R I R L
0 0.2 0.4 0.6 0.8 1

z [m]

—0.05

81




Clanek v Computer Physics Communications

3.2. Results in 2D on rectangles
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Figure 7: Numerical solutions of the mass fraction profiles X (left column) and plots of the numerical error
E), x (right column) and at ¢ = 20000s using the conservative formulation (C) and the Brooks and Corey model
in 2D on rectangles for various choices of Dx.
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Figure 8: Numerical solutions of the mass fraction profiles X (left column) and plots of the numerical error
E), x (right column) and at ¢t = 20000 s using the non-conservative formulation (NC) and the Brooks and Corey
model in 2D on rectangles for various choices of Dx.
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Figure 9: Numerical solutions of the mass fraction profiles X (left column) and plots of the numerical error
Ej x (right column) and at ¢ = 20000s using the conservative formulation (C) and the van Genuchten model
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Figure 10: Numerical solutions of the mass fraction profiles X (left column) and plots of the numerical error
Ej x (right column) and at ¢ = 20000s using the non-conservative formulation (NC) and the van Genuchten
model in 2D on rectangles for various choices of Dy.
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3.8. Results in 2D on triangles
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Figure 11: Numerical solutions of the mass fraction profiles X (left column) and plots of the numerical error
E), x (right column) and at ¢ = 20000s using the conservative formulation (C) and the Brooks and Corey model
in 2D on triangles for various choices of Dx.
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Figure 12: Numerical solutions of the mass fraction profiles X (left column) and plots of the numerical error
Ej, x (right column) and at ¢t = 20000 s using the non-conservative formulation (NC) and the Brooks and Corey
model in 2D on triangles for various choices of Dy.
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Figure 13: Numerical solutions of the mass fraction profiles X (left column) and plots of the numerical error
Ej x (right column) and at ¢ = 20000s using the conservative formulation (C) and the van Genuchten model
in 2D on triangles for various choices of Dy.
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Figure 14: Numerical solutions of the mass fraction profiles X (left column) and plots of the numerical error
Ej x (right column) and at ¢ = 20000s using the non-conservative formulation (NC) and the van Genuchten
model in 2D on triangles for various choices of Dx.
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8.4. Results in 3D on cuboids
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Figure 15: Numerical solutions of the mass fraction profiles X (left column) and plots of the numerical error
E), x (right column) and at ¢ = 20000s using the conservative formulation (C) and the Brooks and Corey model
in 3D on cuboids for various choices of Dx.
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Figure 16: Numerical solutions of the mass fraction profiles X (left column) and plots of the numerical error
Ej, x (right column) and at ¢t = 20000 s using the non-conservative formulation (NC) and the Brooks and Corey
model in 3D on cuboids for various choices of Dx.
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Figure 17: Numerical solutions of the mass fraction profiles X (left column) and plots of the numerical error
Ej x (right column) and at ¢ = 20000s using the conservative formulation (C) and the van Genuchten model
in 3D on cuboids for various choices of Dy.
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Figure 18: Numerical solutions of the mass fraction profiles X (left column) and plots of the numerical error
Ej x (right column) and at ¢ = 20000s using the non-conservative formulation (NC) and the van Genuchten
model in 3D on cuboids for various choices of Dx.
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3.5. Results in 3D on tetrahedra
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Figure 19: Numerical solutions of the mass fraction profiles X (left column) and plots of the numerical error
Ej, x (right column) and at ¢ = 20000s using the conservative formulation (C) and the Brooks and Corey model
in 3D on tetrahedra for various choices of Dx.
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Figure 20: Numerical solutions of the mass fraction profiles X (left column) and plots of the numerical error
Ej, x (right column) and at ¢t = 20000 s using the non-conservative formulation (NC) and the Brooks and Corey
model in 3D on tetrahedra for various choices of Dx.
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Figure 21: Numerical solutions of the mass fraction profiles X (left column) and plots of the numerical error
Ej x (right column) and at ¢ = 20000s using the conservative formulation (C) and the van Genuchten model
in 3D on tetrahedra for various choices of Dx.
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Figure 22: Numerical solutions of the mass fraction profiles X (left column) and plots of the numerical error
Ej x (right column) and at ¢ = 20000s using the non-conservative formulation (NC) and the van Genuchten
model in 3D on tetrahedra for various choices of Dx.
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Table 1: Results of the numerical analysis using the L; norm and the Brooks and Corey model.
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Table 3: Results of the numerical analysis using the L; norm and the van Genuchten model.
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Table 4: Results of the numerical analysis using the Ly norm and the van Genuchten model.
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Effect of NAPL Source Morphology on Mass
Transfer in the Vadose Zone

by Benjamin G. Petri', Radek Fucik?, Tissa H. lllangasekare®, Kathleen M. Smits®, John A. Christ*,
Toshihiro Sakaki®, and Carolyn C. Sauck®

Abstract

The generation of vapor-phase contaminant plumes within the vadose zone is of interest for contaminated site management.
Therefore, it is important to understand vapor sources such as non-aqueous-phase liquids (NAPLs) and processes that govern their
volatilization. The distribution of NAPL, gas, and water phases within a source zone is expected to influence the rate of volatilization.
However, the effect of this distribution morphology on volatilization has not been thoroughly quantified. Because field quantification
of NAPL volatilization is often infeasible, a controlled laboratory experiment was conducted in a two-dimensional tank (28 cm x
15.5ecm x 2.5cm) with water-wet sandy media and an emplaced trichloroethylene (TCE) source. The source was emplaced in two
configurations to represent morphologies encountered in field settings: (1) NAPL pools directly exposed to the air phase and (2)
NAPLs trapped in water-saturated zones that were occluded from the air phase. Airflow was passed through the tank and effluent
concentrations of TCE were quantified. Models were used to analyze results, which indicated that mass transfer from directly
exposed NAPL was fast and controlled by advective-dispersive-diffusive transport in the gas phase. However, sources occluded by
pore water showed strong rate limitations and slower effective mass transfer. This difference is explained by diffusional resistance
within the aqueous phase. Results demonstrate that vapor generation rates from a NAPL source will be influenced by the soil water
content distribution within the source. The implications of the NAPL morphology on volatilization in the context of a dynamic
water table or climate are discussed.

and Illangasekare 2007), knowledge gaps remain in
understanding mass transfer (volatilization) from NAPLs
in the vadose zone (Rivett et al. 2011).

One area where more knowledge is needed is in

Introduction

The fate and transport of volatile organic contam-
inants (VOCs) within the vadose zone has received
much attention at contaminated sites due to interest in

contaminant attenuation mechanisms, vapor intrusion,
and performance of remediation technologies such as
soil vapor extraction (Rivett et al. 2011). However,
models capable of predicting VOC transport may require
knowledge of the rates and mechanisms controlling
vapor generation from non-aqueous-phase liquid (NAPL)
contaminant sources in the vadose zone. While extensive
research has been conducted on NAPL entrapment and
mass transfer within the saturated zone (e.g., Schwille
1988; Miller et al. 1990; Kueper et al. 1993; Saenton
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determining how the distribution of NAPL within the
vadose zone affects mass transfer. NAPL entrapment mor-
phology describes the spatial distribution of the NAPL
phase resulting from the infiltration of multiphase flu-
ids in porous media. Within the saturated zone, NAPL
entrapment morphologies have been shown to consist
of complex distributions of NAPL pools and residual
ganglia (Illangasekare et al. 1995; Lemke et al. 2004)
that result from NAPL infiltration through heterogeneous
porous media (e.g., Kueper et al. 1989; Poulsen and
Kueper 1992; Fagerlund et al. 2007). The NAPL entrap-
ment morphology is of particular importance to the mass
transfer rate (Lemke et al. 2004; Fure et al. 2006; Page
et al. 2007), and quantitative metrics such as the NAPL
ganglia-to-pool ratio have been proposed to character-
ize saturated zone mass transfer behavior (Lemke et al.
2004; Christ et al. 2005; Fure et al. 2006). However,
the current literature does not describe such metrics for
NAPL mass transfer in the vadose zone, nor has this phe-
nomenon been widely evaluated. This is partly because
three-phase air-water-NAPL entrapment morphologies are
more complex than two-phase NAPL-water systems. For
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Residual NAPL:
NAPL Phase exposed to air
throughout the porespace

Arrows show air
pathway connectivity

NAPL phase (red)

Water phase (blue)

Free NAPL:
Free NAPL flows in pore space, often
stabilizes in pools at soil textural
interfaces. Direct exposure to air
phase limited to pool surfaces

Pool surface

Texture

interface
Occluded NAPL

Porewater separates NAPL from air filled
porespace. May occur due to rewetting
of NAPL zones, or trapping of NAPL in
water saturated fine media. No direct
NAPL - air contact.

Texture 7
interface I

Diffusion barrier

NAPL occluded by pore water

Figure 1. Conceptual model of NAPL configurations within
a vadose zone source.

example, constitutive models of three-phase flow concep-
tualize NAPL as being present in “residual,” “free,” and
“occluded” configurations (Figure 1) (Kaluarachchi and
Parker 1992; Wipfler and van der Zee 2001; Lenhard et al.
2004; White et al. 2004), whereas two-phase flow systems
typically only consider residual and free NAPL. These
configurations have important implications for vapor mass
transfer.

In the vadose zone, vapor transport is often assumed
to be diffusion-dominated (Johnson and Ettinger 1991;
Rivett et al. 2011); advection and dispersion within the
gas phase are usually included only in the presence of
strong barometric effects (Auer et al. 1996; Parker 2003;
Tillman et al. 2003; Luo et al. 2009), vapor density
effects (Falta et al. 1989; Sleep and Sykes 1989; Lenhard
et al. 1995; Jang and Aral 2007), or forced advection
such as from soil vapor extraction (SVE). This transport
regime affects the assumptions regarding NAPL mass
transfer: local equilibrium between NAPL and gas
phases is typically assumed under diffusion-dominated
conditions (Rivett et al. 2011), while mixing models such
as Gilliland-Sherwood correlations are typically used in
high advection systems (e.g., Wilkins et al. 1995; Yoon
et al. 2002).

However, the current knowledge base does not
fully incorporate NAPL entrapment morphologies into
either local equilibrium or Gilliland-Sherwood models.

2 B.G. Petri et al. Groundwater

Furthermore, Gilliland-Sherwood correlations are largely
unexplored in low advection systems outside SVE (Rivett
et al. 2011). Traditional three-phase flow models assume
NAPL is an intermediate wetting fluid located at the inter-
face between the air and the water phases (Leverett 1973;
Stone 1973; Lenhard and Parker 1987), which has served
as a justification for assuming local equilibrium between
NAPL and air (Rivett et al. 2011). However, this may
not be an appropriate assumption for occluded NAPL.
Occluded NAPL may form where NAPL sources are
subjected to water imbibition and drainage cycles, such
as during water table fluctuations and water infiltration.
It is worth noting that occluded NAPL may exist at both
the pore scale (e.g., blobs of NAPL isolated from the gas
phase by pore water) and the macro scale (e.g., NAPL
entrapped in water-saturated fine layers or submerged
below the water table). The occluded phase represents
a different mass transfer regime than the assumption of
direct NAPL-gas contact because the contaminant must
first transfer through the aqueous occlusion before it
may volatilize within the bulk gas phase (Yoon et al.
2008). Given that typical VOC diffusivities in water
are about four orders of magnitude lower than in gases
(e.g., the diffusivity for TCE in air is 8.75 x 10~%m?/s
[Lugg 1968] vs. 9.1 x 10~'m?/s in water [Batterman
et al. 1996]), the mass transfer resistance imparted by the
aqueous occlusion can be considerable (Yoon et al. 2008).

Studies of bulk volatilization from NAPLs show that
mass transfer rates decrease with increasing soil water
content (Wilkins et al. 1995; Liang and Udell 1999; Yoon
et al. 2002; Yoon et al. 2003; Oostrom et al. 2005) due to
a net decrease in the effective diffusivity. However, these
studies fail to account for the differing NAPL morpholo-
gies that may be present in the subsurface, which lead to
large differences among observed mass transfer rates. For
example, Yoon et al. (2002) investigated NAPL volatiliza-
tion in one-dimensional (1D) sand columns ranging from
dry to 61% water saturation with a gas-phase Darcy flux
of approximately 3 m/h. They report that mass transfer
rates decline from equilibrium values when the water
saturation exceeded 48% and resulted in tailing of NAPL
mass transfer at high water saturations. In contrast, a
similar 1D column tested by Liang and Udell (1999) with
very high gas velocities (~115m/h) observed no effect on
volatilization with soil water content (range from dry to
50% water saturation). Note, however, that both experi-
ments were conducted in columns, a design that forces air
or vapor flow through the contaminated zone. Field would
likely allow the vapor phase to bypass zones of high water
or NAPL saturation making it necessary to consider flow
in multiple dimensions (2D or 3D). Indeed, a comparison
of NAPL dissolution rates in groundwater in 1D vs. 2D
and 3D experimental apparatus showed that multidimen-
sional systems had lower mass transfer rates due to flow
bypassing (Saba and Illangasekare 2000). Also, in 1D
column systems, three-phase flow is often unstable unless
two of the phases are reduced to residual (immobile)
saturations, which limits the contaminant configurations.
For example, Yoon et al. (2002) noted considerable
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displacement of the water phase when investigating their
highest water saturation systems (61%). Thus, studies
in multiple dimensions may be necessary to gain an
understanding of mass transfer under field conditions.

Studies in 2D test systems suggest different effective
mass transfer behavior than what is observed in the
1D systems. Oostrom et al. (2005) investigated SVE
in a variably saturated 2D sand tank contaminated
with NAPL. Their experiment found that the removal
of NAPL from pools and low permeability regions
was only achieved by effectively drying out the porous
media, suggesting strong mass transfer limitations even
at low water contents—an observation in contrast to
the experimental results from the 1D column studies
discussed previously. The experiment by Oostrom et al.
(2005) contained residual and free NAPL, though it did
not explore the role of occluded NAPL.

Saturated zone air sparging studies focusing on NAPL
remediation suggest strong mass transfer limitations due
to diffusion from the occluded NAPL through the water
phase (Braida and Ong 1998; Braida and Ong 2000;
Rogers and Ong 2000). However, the three-phase flow
regime of these systems differs from typical vadose zone
environments because airflow under air sparging is usually
restricted to a network of air channels (Clayton 1998).
Furthermore, these studies focus on active remediation
systems where gas-phase advection is forced at a high rate.
For instance, the study by Braida and Ong (1998) explored
air channel velocities on the order of 200 to 2000 m/day.
SVE experiments by van der Ham and Brouwers (1998)
included bulk soil gas flow on the order of 8300 to
38,000 m/day. Thus, to our knowledge, no experimental
evidence exists that examines NAPL volatilization at low
ranges of advection that may be encountered at sites where
active remediation is not present. Conflicting laboratory
data and lack of field experimental data, combined with
the commonly employed, but untested local equilibrium
assumption for NAPL mass transfer illustrates that
research is needed to better understand how NAPL
morphology affects mass transfer in three-phase systems.

The central challenge in understanding volatilization
from NAPL sources lies in incorporating the role of
three-phase entrapment morphology into the mass transfer
expression. If all three NAPL configurations (shown in
Figure 1) are present within the same source, the higher
mass transfer contributions from the “residual” and
“free” (e.g., pooled) configurations may initially mask
smaller contributions from the “occluded” configuration.
However, as the source ages, the residual and free frac-
tions will likely be depleted leaving “occluded” NAPL
as a long-term source that contributes to significant
concentration “tailing.” Because occluded NAPL mass
transfer requires diffusion across the aqueous occlusion,
it is logical to expect that the thicker the occlusion,
the stronger the observed NAPL mass transfer rate
limitation. Furthermore, because bulk diffusion and
advection transport mass away from the contaminated
region, these processes may also affect mass transfer. The
objective of this study is to explore mass transfer from
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occluded and exposed (i.e., free) NAPL sources under
low advection systems to determine the mechanisms and
rates of NAPL volatilization. The use of controlled 2D
experiments and numerical transport models provides
insight into the NAPL mass transfer process and the
factors controlling NAPL mass transfer in complex NAPL
morphologies commonly found in the vadose zone.

Materials and Methods

Two separate series of experiments were performed
for this to meet the stated goals. The first evaluated
mass transfer from an “occluded” NAPL source (Case 1,
Figure 1) and the second from an “exposed” (free) NAPL
source (Case 2). Exploring both NAPL configurations
independently enables the comparison of mass transfer
characteristics between the two. Both experiments were
conducted using the same apparatus, instrumentation and
analytical methods, but differed in source creation pro-
cedure, sand pack geometry, and experimental procedure
(Figure 2). An important procedural difference is that the
occluded (Case 1) experiments are run until mass transfer
reaches a pseudo steady state because the low mass trans-
fer rates in these systems would require exceptionally long
experimental run times (month to years) to completely
deplete the NAPL sources. For the exposed (Case 2)
NAPL sources, mass transfer is rapid and transient, and
therefore these experiments are run until complete NAPL
source depletion (within days). An abridged description
of the experiment is included here, while a more detailed
description is included in the Supporting Information.

Both experiments were conducted in a 2D sand-
packed flow tank [internal dimensions: 28cm x 15.5cm
x 2.5cm (height x length x depth)] (Figure 2). The
rear tank face contained syringe injection ports through
which NAPL could be injected to create the desired
trapping configuration. Pure trichloroethylene (TCE) was
used as the test NAPL, dyed red with 100 mg/L. Sudan
IV to aid in visualization. The porous media used to pack
the tank consisted of well-characterized, uniform, silica
sands (Accusand, Unimin Corp., Ottawa, Minnesota) of
varied grain size. Selected properties of the test sand
are summarized in Table 1. The tank was wet packed
with sand and deionized water with different source
configurations for Cases 1 and 2 (Figure 2). The tank
was subsequently drained to establish an unsaturated
zone under hydrostatic conditions. Following drainage, a
known mass of NAPL was injected into the source zone.

Immediately after NAPL injection, airflow was intro-
duced into the tank flowing from left to right (Figure 2).
Air from a compressed gas cylinder was used as the air-
flow source and a mass flow controller (Cole Parmer, 16
Series Mass Flow Controller, 0-50 SCCM range) was used
to control the airflow. The airflow was bubbled through a
water column to humidify the air to prevent evaporative
losses and maintain a steady-state water saturation profile
throughout each experiment. The flow range tested by this
apparatus equates to average pore velocities of around 3 to
145 m/day within the unsaturated zone of the experimental

B.G. Petri et al. Groundwater 3

105




Clanek v Groundwater

Bentonite clay on top
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Case 1: “Occluded” NAPL packing configuration Case 2: “Free” NAPL packing configuration
Mass flow 2-D porous media tank:

controller 28x18x25cm

Temperature and
pressure sensors

Automatic
injection valve

Exhaust

Agilent 6890 Gas
Chromatograph, FID

TCE NAPL source

Humidification Air flow direction
column

Air tank

Figure 2. Experimental apparatus and tank packing

Table 1
Selected Properties of Sands
Saturated
Sand Dry Bulk Residual Hydraulic
(Tightly Density Water Conductivity van G ht van Genuchten
Packed) dsy! (mm) (g/cm3) Porosity Content? (cm/s)? o (1/cm)* n(m=1 - 1/n)* Source
12/20 1.04 1.82 0.312 0.017 0.376 0.10 9.21 Smits (2010)
20/30 0.75 1.78 0.330 0.027 0.237 0.07 15.68 Smits (2010)
30/40 0.52 1.77 0.334 0.028 0.106 0.06 17.81 Smits (2010)
40/50 0.36 1.74 0.335 0.029 0.052 0.04 10.18 Smits (2010)
70 0.20 1.56 0.413 0.033 0.014 .0.02 11.53 Smits (2010)
Gravel ~9.5 n/a 0.42 0.01 0.100 0.35 4.30 Retention parameters
assumed from Wolf
et al. (2007)
I Estimated from sieve data provided by the manufacturer.
2Measured in a separate 1D long column experiment.
3 in a separate i ivity test.
4Estimated using RETC (van Genuchten et al. 1991).
4 B.G. Petri et al. Groundwater NGWA.org
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apparatus. This velocity is considerably lower than veloc-
ities previously studied in soil vapor extraction (~100
to 10,000 m/d; Ho and Udell 1992; Wilkins et al. 1995;
Yoon et al. 2002; Oostrom et al. 2005) and in air sparg-
ing (~100 to 100,000 m/d; Braida and Ong 1998; Braida
and Ong 2000; Rogers and Ong 2000) and was intended
to represent more passive conditions in the subsurface
than have typically been investigated. Temperatures and
pressures within the tank were monitored continuously by
separate sensors (EC-T, Decagon Devices Inc. and Omega
Engineering PX138-001D5V). The average temperature
was measured at 22.6 +0.7 °C. Absolute pressure within
the tank varied with flow rate due to positive pressur-
ization of the apparatus, ranging by 82,090 to 87,171 Pa
(note that the atmospheric pressure in Golden Colorado
is ~82,000 Pa). The effluent air stream was directed into
a gas chromatograph (GC) with a temperature-controlled
automated gas sampling valve for continuous measure-
ment of gas-phase TCE concentrations.

Case 1 "“Occluded” NAPL Experiments

The objective of the Case 1 experiments was to
emplace an occluded NAPL source, with two different
occlusion thicknesses, and test their steady-state mass
transfer rate under different gas-phase velocities. Different
occlusion layer thicknesses are tested because the mass
transfer rate from the occluded NAPL is related to the
length of the diffusion pathway across the occlusion. The
tank was wet-packed with two sands: fine sand (#40/50
sand) in the lower section of the tank and course sand
(#12/20 sand) in the upper section of the tank (Figure 2).
During packing, a coarse sand block (#12/20), 12.7cm
x 1.2 cm, was emplaced within the lower section of fine
sand to serve as the NAPL source zone. This packing
produces a narrow band of fine sand between the coarse
upper tank section and the coarse NAPL source zone (see
dimension marked “variable” in Figure 2). This variable
dimension is 13.9 mm for the “thick” occlusion layer sys-
tem and 8.5 mm for the “thin” occlusion layer. Gravel well
screens distributed the airflow evenly and the tank top was
sealed airtight with bentonite and an aluminum plate.

After packing was complete, the tank was drained
by lowering the water table to 5.2cm below the bottom
boundary of the tank using a constant-head device. This
creates a suction of approximately 12cm of water at
the interface between the upper coarse sand section and
the lower fine sand section. Because of the difference in
air entry values for the coarse and fine sands (7.1 and
19.4 cm, respectively), the drainage results in a sharp sat-
uration front at the interface between coarse and fine sand
such that the upper coarse sand is drained and the lower
fine sand is fully water saturated under tension. Because
air entry into the fine sand has not occurred, the coarse
sand NAPL source zone also remains fully saturated.

After 24 h of drainage to a hydrostatic condition, the
constant head device is isolated via a shutoff valve, and
NAPL is injected into the source zone. A known mass
of TCE NAPL was slowly injected into the source zone
through five injection ports. Injection was performed in
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this manner to ensure as high and uniform a NAPL satura-
tion distribution as possible without allowing any NAPL
to escape from the source zone. The NAPL is effectively
occluded from the gas phase by the water-saturated fine
sand that surrounds the source zone. The NAPL injection
volumes for the “thick” and “thin” occlusion systems cor-
responded to 11.3 and 12.3 g, and equate to approximately
52% and 55% NAPL saturation in the source zone, the
rest of the pore space being occupied by water. This
injection takes approximately 15 min. After injection,
airflow is started through the tank and continuous effluent
concentration sampling begins. Because mass transfer
from NAPLs is affected by the velocity of the mobile
phase (Miller et al. 1990; Powers et al. 1994; Saba and
Illangasekare 2000), various airflow pore velocities were
tested. These alternative velocities were achieved using
a step-wise approach that allowed the system to reach
steady state (each run was typically 1 to 2 days). An
initial velocity was set, and steady state was assumed
when the effluent concentration stabilized with minimal
variation. Steady state was then maintained for at least
12h. The velocity was then changed and a new steady
state attained. In this manner, six different velocities
(Table 2) were tested for both the “thick” and the “thin”
occlusion systems while gathering data continuously.

Case 2: "“Free" NAPL Experimental Procedure

The objective of the Case 2 experiments was to
evaluate mass transfer from an “exposed” NAPL pool
representative of the “free” NAPL in Figure 1 and provide
a basis for comparison to the Case 1 experiments. For
these experiments, the tank was uniformly wet packed
with water and medium sand (#20/30 sand), except for a
small NAPL source “trough” of very fine sand (#70 sand)
in the center of the tank (see Figure 2). This “trough”
was aligned with NAPL injection ports and was bounded
at its upstream and downstream ends by a 0.6-cm lip
to confine the lateral spread of the NAPL. Similar to
Case 1, gravel well screens distributed airflow at the left
and right boundaries, and bentonite was used to seal the
top of the tank. Also similar to Case 1, the tank was
drained through suction applied at a known pressure head
(9.3-cm water below the tank bottom). However, unlike
Case 1 that produces a sharp water saturation front, Case
2 packing produced a capillary fringe in the bottom of
the tank. Only the trough remains fully saturated due
to the high air-entry pressure of very fine #70 sand
(41.2cm). After drainage is completed, 2.93 g (2.0mL)
of TCE NAPL was slowly injected into the source trough
where it settled forming an NAPL pool with approximate
dimensions of 7.6cm x 2.5cm x 0.6 cm (length x width
x depth) and an estimated 50% average saturation of the
“trough” pore space. Following NAPL injection, airflow
was started in the tank and effluent gas concentrations
were monitored as described in Case 1. The experiment
was operated until all NAPL was depleted through visual
observation from the system and effluent concentrations
declined to steady-state values.

B.G. Petri et al. Groundwater 5
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Table 2
Summary of Experimental Results
Observed Fraction of Modeled
Airflow Rate Average Pore Steady-State Mass Flux  Saturation Steady-State
(Standard Velocity Concentration Rate Vapor Pressure Concentration

Run NAPL Configuration cm?®/min) (m/d) (g/m3)! (mg/min) (%) (g/m)
1 Case 1: Thick occlusion 50.0 145 0.0401 £ 0.0009  0.002 0.01 0.0971
2 Case 1: Thick occlusion 22.5 67.9 0.1754 £ 0.0001 0.005 0.04 0.2080
3 Case 1: Thick occlusion 10.0 30.2 0.2467 £ 0.0013  0.003 0.06 0.4620
4 Case 1: Thick occlusion 5.00 15.1 0.4999 + 0.0008  0.003 0.11 0.9185
5 Case 1: Thick occlusion 225 6.72 1.5656 £ 0.0024  0.004 0.33 2.0093
6 Case 1: Thick occlusion 1.00 2.88 2.1389 £ 0.0086  0.003 0.48 4.5421
7 Case 1: Thin occlusion 50.0 145 0.1412 £ 0.0003  0.008 0.03 0.1483
8 Case 1: Thin occlusion 22.5 67.4 0.3270 £ 0.0025  0.009 0.08 0.3114
9 Case 1: Thin occlusion 10.0 30.2 0.6542 £ 0.0003  0.008 0.16 0.7088
10 Case 1: Thin occlusion 5.00 15.1 1.2859 + 0.0012  0.008 0.31 1.4075
11 Case 1: Thin occlusion 225 6.72 2.8812 £ 0.0048  0.008 0.68 3.1789
12 Case 1: Thin occlusion 1.00 2.88 5.2813 £ 0.0076  0.006 1.27 6.9203
13 Case 2: Free NAPL (pool) 50.0 138 163.63 + 5.10 9.442 33 Transient
14 Case 2: Free NAPL (pool) 10.0 29.0 323.78 £+ 8.51 3.921 67 Transient
15  Case 2: Free NAPL (pool) 5.00 14.6 426.68 + 5.30 2.591 87 Transient
16  Case 2: Free NAPL (pool) 1.00 3.84 41591 £ 3.00 0.484 97 Transient

IMean + 95% confidence interval of the mean.

Model Description

To explore the experimental results using the
advection-dispersion-diffusion equation, a numerical
model was developed to simulate coupled volatilization
and mass transport behavior within the NAPL, gas, and
water phases. The model solves for immiscible flow
of gas and water phases, nonequilibrium mass transfer
of immobile NAPL from the liquid to the gas phase,
and mass transport of the volatilized NAPL vapor in
the gas phase. The model uses a mixed-hybrid finite
element and finite volume numerical method to simulate
transient multiphase flow, transport, and mass transfer
(see Fucik and Mikyska 2011, 2012 for details). The
model formulation and approach is described in detail in
the Supporting Information and summarized in brief here
with special emphasis on the mass transfer formulation.

The model solves two-phase gas and water flow
according to Darcy’s law and using the Mualem (1976)
and van Genuchten (1980) models for relative perme-
ability and soil water retention functions. Gas-phase
density changes due to compressibility and contaminant
vapor components are incorporated, and the gas phase is
assumed to be at 100% relative humidity. NAPL phase
is included, but is assumed immobile. The mass balance
equation for the contaminant component is described by
an advective-diffusive-dispersive transport Equation 1,
which is expressed in terms of the mass fraction of the
contaminant in the phase o (Class et al. 2002; Class et al.
2008; Mosthaf et al. 2011):

9 (¢Saxft,/0a)
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where o =g represents the gas phase and o =w repre-
sents the water phase. For mass transfer between the water
and gas phases, the local equilibrium assumption is made
via Henry’s law,
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where, H, the Henry’s constant, is a function of
temperature the values of which were provided by
Heron et al. (1998). The flux between phases representing
mass transfer is commonly described using boundary
layer theory, as given by Cussler (2009). For NAPL
to gas-phase mass transfer, this flux is represented as a
source/sink term, F,, given as

Fog

k(e — Xf;'pg) s 3)

This formulation solves for a cumulative or lumped
mass transfer from the NAPL into the gas phase.
The mass transfer rate coefficient k,, is often estimated
from empirical Gilliland-Sherwood mixing models (e.g.,
Wilkins et al. 1995; Braida and Ong 1998; Chao et al.
1998; van der Ham and Brouwers 1998; Yoon et al. 2002;

Anwar et al. 2003), which typically follow the form:

B
Sh = Sho (Pe)’ (do)* ( SS"O) @

where Sh is the dimensionless Sherwood number defined
as kngdszo/Dﬁ,, dsg is the mean soil particle size, Shy is
a empirical constant, Pe is the Peclet number defined as
Pe = |vg| d50/Di¢, dy is the normalized mean grain size
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defined as dg =dso/d,,, d,, is the mean grain size of sand
set as 0.05cm by the Department of Agriculture (Yoon
et al. 2002), S, is the initial NAPL saturation, and &,
e, and B are all empirical exponents of the correlation.
The B in particular relates to the decline in mass transfer
that occurs as a result in decline in NAPL mass due to
decreasing surface area.

The solution approach for the Case 1 and 2 models
differed. Because the Case 1 experimental system was
operated under a pseudo steady-state condition, a steady-
state solution approach was used. For the more transient
Case 2 experiments, a transient model was used to
estimate mass transfer as these systems were run to full
NAPL depletion. In all cases, the TCE NAPL source is
assumed to be uniformly distributed at an average initial
saturation based on the mass of TCE injected and the
source zone porosity. Relative permeability for the gas
phase is adjusted to reflect the total liquid saturation
(NAPL + water). Mass transfer of TCE into the bulk gas
phase (volatilization) is simulated, along with diffusion
and advection in the gas phase. Aside from initial drainage
to create the gas-water saturation profile, aqueous phase
advection was not present in either Case 1 or Case 2 due
to the hydrostatic conditions. The atmospheric reference
pressure and temperature used for all calculations were
based on the measured values from the temperature and
pressure Sensors.

Case 1 (Occluded NAPL) Simulations

The model simulations were performed stepwise by
first solving for drainage in the tank to create the air-water
saturation distribution and then simulating the airflow
and contaminant transport from the TCE source. Initial
drainage was simulated by setting the top tank boundary
to atmospheric pressure and the bottom tank boundary to
—5.2cm water pressure, reflecting the drainage pressure
in the constant head device. A steady-state solution then
derived the hydrostatic gas-water phase distribution for the
NAPL volatilization runs. The system is then simulated
using the experimental airflow regime. For the advection-
dispersion-diffusion equation, given that a negligible mass
of the TCE source was volatilized (<0.8%) over the
course of the 10-day experiments, the NAPL source in
the model was assumed to be constant. Because there
is no flow within the source zone, the source was
simulated by assigning Dirichlet boundary conditions at
the source zone boundaries with the TCE concentration
held at this solubility limit (1440 mg/L as measured). The
model then simulated the combination of aqueous and
gas-phase plumes that emanate from the source to the
effluent boundary, where comparisons to the experimental
measurements could be made.

Case 2 (Exposed NAPL) Simulations

In Case 2, the rate of mass change in the source zone
is very rapid and required solution as a transient prob-
lem incorporating the Gilliland-Sherwood mixing model
approach (Illangasekare et al. 2010). Again, the initial
drainage was modeled as a steady-state process, followed
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by transient solution of the mass transfer problem. Model
domain dimensions and material parameters were consis-
tent with the experiment as shown in Figure 2. As in
Case 1, the initial drainage was solved (for Case 2, the
water pressure at the bottom tank boundary was —9.3 cm
H,0). The initial drainage solution was stored for use as
the initial condition for the transient NAPL volatilization
model, where airflow and volatilization was solved. The
initial NAPL saturation S is assumed to be uniformly
distributed within the TCE source trough and is computed
from the injected TCE mass (2.93 £ 0.024 g) and the pore
volume of the source trough, averaging 53% initial satu-
ration. In this case, a new Gilliland-Sherwood correlation
was developed by fitting a select set of parameters (8,
Sho, 8) to determine which effluent concentration profile
best fits the data from more than 11,000 results obtained
using the numerical simulator.

Results and Discussion

Measurements from each experiment include contin-
uous effluent concentration data, as well as temperature,
pressure, and airflow rate. The results for the Case 1 and
2 experiments are discussed separately. Modeling results,
based on the experiments, are used as a data analysis
tool to determine the role of advection-diffusion trans-
port given the two NAPL configurations and to determine
how well existing physical transport theory can capture
the observed mass transfer behavior. Presented are exper-
imental data followed by comparison to the simulations.

Case 1 "Occluded” NAPL Results

Figure 3a and 3b shows the measured effluent TCE
vapor concentration and the gas-phase Darcy flux through
the unsaturated portion of the tank for the “thick” and
“thin” occlusion experiments. Stepwise changes in the
flow rate resulted in step-like behavior in the effluent con-
centration response, with slower flow rates yielding higher
effluent concentrations. The saturation concentration of
TCE in the gas phase, estimated from measured temper-
ature data (which fluctuated between 19°C and 26 °C)
and the TCE saturation vapor pressure curve reported by
Boublik et al. (1973), is also given in Figure 3 to show
the departure from equilibrium concentrations. Clearly,
observed effluent concentrations are lower than the equi-
librium saturation concentration, often by two orders of
magnitude or more, suggesting significant rate-limited
mass transfer across the occlusion layer. Interestingly,
effluent concentrations adjusted rapidly to new pseudo
steady-state values following decreases in the air-phase
flow rate. The measured effluent concentration variations
with time are generally well behaved with only minor
“blips” in the concentration plot, which correspond to
ambient temperature changes in the laboratory. Note that
there was an unrecorded no-flow period in the “thick”
occlusions system that resulted from a power failure.
Though this flow interruption was unplanned, it may
present an opportunity for further exploration of transient
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Figure 3. Measured TCE effluent vapor concentration vs. time for (a) the 13.8 mm “thick” occlusion and (b) the 8.5 mm
“thin” occlusion. The red line represents the concentration of TCE in the effluent soil gas (g/m%), green line represents the
saturation concentration of TCE estimated from temperature data using values from Boublik et al. (1973) (g/m3) (note y-axis
break), blue line represents the air phase Darcy flux in the unsaturated portion of the tank.

nonequilibrium behavior via the stopped flow method pro-
posed by Brusseau et al. (1989).

Table 2 presents a summary of the experimental
results, including the average pseudo steady-state concen-
tration for each flow rate tested in both the “thick” and
“thin” occlusion tank experiments, as well as the average
TCE mass flux eluting from the tank (product of gas-phase
concentration and flow rate).

The rapid response of the system to the air-phase
velocity changes may be partly explained by strong rate
limitations caused by diffusion across the water-phase
occlusion. The date in Table 2 indicate that despite
large shifts in air-phase concentrations (range of 0.04 to
2.1 g/m? for the thick occlusion and 0.14 to 5.3 g/m> for
the thin occlusion), the average TCE mass flux rate from
the occluded sources for all velocities varies over a narrow
range (mean, standard deviation of 3.28 4 0.89 pg/min
for the thick occlusion and 7.74 +0.74 ug/min for the
thin occlusion), suggesting that shifts in flow rate largely
dilute the relatively constant flux emanating from the
occluded source.

The reason the source flux does not respond strongly
to changes in airflow can be explained by conventional
advection-diffusion theory. Because the “occlusion layer”
in this system is stagnant and fully water saturated, it iso-
lates the NAPL source from the flowing air phase in the
coarse sand above. To volatilize, the NAPL must first dis-
solve within the source zone, and then diffuse through the
water-phase occlusion to the interface with the gas phase.
This diffusive flux is controlled by the concentration
gradient across the water occlusion. On the NAPL side of
the occlusion, the aqueous TCE concentration is near the
solubility limit, whereas at the air-water occlusion inter-
face, the concentration reflects that of the bulk flowing air,
which under these experimental conditions are around 1%
or less of the gas-phase saturation concentration. Thus,

8 B.G. Petri et al. Groundwater

within this experimental system, the concentration gradi-
ent across the occlusion layer is near the maximum value,
which results in a source flux that is relatively insensitive
to the airflow velocity. This gradient will only reduce
significantly if gas-phase TCE concentrations in the bulk
gas phase accumulate to significant levels, reducing the
net change in concentration across the occlusion. In this
event, gas-phase transport processes such as bulk advec-
tion and diffusion may begin to affect source flux. Case
1 results are also consistent with what can be explained
through theory of diffusion because experimental results
demonstrate that the occluded layer thickness affects the
source flux, that is, a thicker occlusion has a longer diffu-
sion distance and therefore lower concentration gradient
(Table 2).

Comparison of Numerical and Experimental Results
for Case 1

The steady-state concentrations predicted by the
model for each experimental run are presented in Table 2,
while a comparison of model and experimental values
for each run is presented in Figure 4. The figure shows
that without any fitting or calibration, the model predicts
values within the range of the experimental observations,
though with a slight positive bias in that the model predicts
144 + 29% of the observed steady-state effluent concen-
trations. However, the fit of the model is considerably
better for all of the “thin” occlusion experiments, as well
as both “thick” occlusion experiments that occurred after
the unexpected flow shutdown, predicting 113 + 12%
of the experimental value on average. Here, the model
prediction nearly brackets the experimental observations.
It is important to note that in Case 1 model results, none
of the model parameters is fitted through calibration, and
only literature values for all basic process parameters
are used. This is to ensure that the model yields insight
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Figure 4. Comparison of steady-state model to steady-state
experimental effluent concentration values for Case 1 runs.

into the physical process, rather than just fitting curves to
unknown physics.

Overprediction by the model is generally possible
due to inaccuracies in the precise representation of source
zone geometry and NAPL-phase distribution, which
could control the contaminant flux through the occluded
layer. In the model, the source is assumed to be at the
TCE solubility limit everywhere within the source zone,
based on the assumption that the NAPL is uniformly
distributed. However, in practice, it is difficult to create
uniform saturations in multiphase systems, and in this
case, TCE visibly settled toward the bottom of the source
zone. Thus, the actual diffusion path in the experimental
system might be longer than assumed within the model,
leading to overprediction of the simulated mass transfer
rate. In the specific case of the “thick” occlusion system
where the model overpredicts by a much higher amount, it
appears that the no-flow period affected the observed mass
transfer behavior. It is possible that before the unexpected
no-flow period, the system was not in a fully steady state
and that the no-flow period may have given additional
time to bring the system up to the steady state. Figure 5
shows a plot of the simulated total TCE concentration
(sum of gas and aqueous phases) throughout the tank, as
well as the magnitude of the diffusion-dispersion tensor
term (e.g., Equation 11). The plot shows that a steep
concentration gradient is present within the occlusion
layer. Likewise, the dispersion tensor shows a strong dis-
continuity across the occluding layer. It is this gradient, in
combination with the dispersion tensor, that governs mass
transfer within the tank. Only a very dilute gas-phase
plume (<1% of the saturation) extends downstream from
the source, supporting the finding that aqueous-phase
diffusion is limiting this mass transfer process.

Case 2, "Exposed" Source Experiments

Results from the exposed source experiments (runs
13 to 16 in Table 1) are presented in Figure 6. The data
are normalized by the saturation concentration of TCE
to reduce the effect of ambient temperature fluctuations,
which caused higher or lower effluent concentrations in
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Figure 5. a) Simulated concentration profile: Pastel color
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ous concentrations. b) Diffusion/Dispersion tensor magnitude
profile for run #12, 8.5mm occlusion run at a pore velocity
of 2.88 md~'. TCE source zone is outlined in white.

response to ambient heating and cooling in the labora-
tory. In contrast to the occluded systems where effluent
concentrations never exceeded more than 1% of the satu-
ration concentration, the concentrations in the “exposed”
NAPL systems clearly approached the saturation concen-
tration. Upon NAPL injection, the effluent concentration
rises quickly and approaches the saturation concentration
until the NAPL source is depleted, after which the con-
centrations diminish. Unlike the occluded systems, the
exposed sources were run until depletion of the NAPL
was visually confirmed. The overall NAPL recovery mass
balance on runs 13 through 16 (conducted sequentially in
the same tank) was 97.8%

Compared to the occluded systems, the exposed
sources exhibit much higher average mass transfer rates
and concentrations (Table 2). This is expected as the
absence of an occlusion barrier to mass transport allows
the NAPL to diffuse and disperse more rapidly within the
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Figure 6. a) Model (solid line) and measured data (dashed) outflow concentration versus time for exposed source NAPL
systems, and b) model (solid line) and measured data (dashed) mass depletion curves for exposed source NAPL systems.

soil gas. In addition, the mass flux rate in the NAPL-
exposed systems is dependent on the air velocity, which
contrasts with the occluded systems that had mass flux
rates that were independent of velocity. This suggests that
mass transfer in exposed systems is limited by gas-phase
advection.

To explore the role of advection in the mass transfer
from exposed pools, a transport model was prepared
to simulate the mass transfer from the NAPL source.
The original intent of running the “exposed” sources
was to provide a basis of comparison to the occluded
mass transfer systems within a similar porous media. A
Gilliland-Sherwood mass transfer expression was tested
to determine if such a relation could accurately reproduce
the experimental observations. As it was not the original
intent of this study to produce a Gilliland-Sherwood
mass transfer model, only a narrow range of experiments
were run to investigate the mass transfer. However, these
experiments do allow the estimation of a simple Gilliland-
Sherwood model as a function of the Peclet number, and it
is insightful to compare this system to other volatilization
mass transfer models in the literature (Table 3).

For the purpose of estimating a Gilliland-Sherwood
relationship, the numerical model was used to simulate
the tank and the Gilliland-Sherwood parameters were
adjusted to best fit the data. Fitted parameters included
the regression constant (Shg), Peclet number exponent (4),
and the mass tailing parameter (). The model output was
compared to the experimental breakthrough curve. The
goal of the fitting procedure was to find a set of fitting
parameter values Sho, 6, and S for which the difference
between the simulated and the experimental dissolution
curves in all four airflow regimes is minimized. The
best fit was obtained using a mixture of least squares
linear regression, which gave f=0.2, Sho=1.1- 1073,
and § =0.05.

In general, when comparing data to the model in
Figure 1, the model fits well to the initial mass transfer
rate (i.e., the initial peak concentration), as well as the
time at which the NAPL mass is depleted (the sharp
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drop in concentrations). However, the model does not fit
the mass tailing, as it predicts a much more rapid drop
in concentrations. This is likely due to the model not
properly considering back diffusion from water-saturated
areas within the tank. This is particularly apparent in
run 16, where considerable mass tailing was observed.
Because this was the lowest airflow system, the NAPL
was present considerably longer than in the other runs
(~1.5days), which would allow considerably more
diffusion into the saturated zone at the bottom of the
tank. The model did not attempt to capture this behavior,
and neglecting this diffusion process may have led to
some of the discrepancy between model and data. It is
also worth noting that run 16 also had a small amount of
NAPL mass escape the source trough and sink into the
capillary fringe. This was not considered by the model,
but may have affected the experiment.

The best-fit mass transfer correlation described earlier
is presented in Table 3, along with other mass transfer
correlations that have been used to quantify volatilization
in porous media in the literature. Several differences
between the proposed and the existing mass transfer
correlations are noted: the range of Peclet values (0.003
to 0.15), and the corresponding vapor-phase velocities
tested in this system (3 to 145 m/day), is much smaller
than those examined in previous studies. Given that
equilibrium is expected in a system with no advection,
it is logical to conclude that as the velocity decreases, the
system approaches equilibrium. This behavior is evident
in the much smaller Peclet number exponent in this study
(0.05), which is likely at the boundary of applicability
for the Gilliland-Sherwood-type model, and approaching
a local equilibrium condition. Under local equilibrium,
volatilization effectively becomes instantaneous. As a
result, the observed NAPL mass flux is a function of the
transport of the NAPL vapor away from the NAPL source
via diffusion, advection, and dispersion. This contrasts
with the occluded NAPL source where the mass flux
was insensitive to the bulk diffusion and advection, and
controlled instead by diffusion within the occlusion.
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Table 3
Volatilization Mass Transfer Correlations
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Gaseous
Dispersion and

Source Zone
Water Content

VOC Source
Configuration

Pore Velocity

Peclet Range

Correlations

Dispersion Term

Flow Regime Range (m/d)

System Type

Reference

0.05<Pe<2

~50 to 1300 Homogeneous NAPL Residual Neglected Sho=10"279pe0624,)1.82

Bulk gas flow

1D column

Wilkins et al. (1995)

residual
Homogeneous NAPL

0.02<Pe<15

Sho = 10277 0684168

Diffusion only

Residual

~50 to 1100

Bulk gas flow

1D column

Yoon et al. (2002)

residual
Homogeneous NAPL

5 < Pe <60

Sho = |043.03P€O.88d0].82

Neglected

Residual

~8300 to 38,000

Bulk gas flow

1D column

van der Ham and

residual
Homogeneous NAPL

Brouwers (1998)
Anwar et al. (2003)

0.03 < Pe <3.7

Sho = ]043430Pel<]59"40v30

Diffusion only

None

~90 to 1700

Bulk gas flow

1D column

residual
Homogeneous

Not reported

Sho= 10‘447‘Pe°<84d0'<7‘H‘°‘6‘

Neglected

Saturated

Not reported

Air channels

1D column

Chao et al. (1998)

aqueous phase
Homogeneous

Sho=10"714pe0.1641.66 1 ~083 0.05<Pe<1.5

Neglected

Saturated

2D cell Single air channel ~173 to 2160

Braida and Ong

Dam = 10481 pe—079 fy —0.83

Sho = 10-282pg005

aqueous phase
Exposed NAPL pool

(1998)
This study

0.003 < Pe <0.15

Both included

Residual

3to 145

Bulk gas flow

2D cell

Conclusions and Implications

Experimental results show that vadose zone NAPL
morphology strongly controls mass transfer, with
occluded NAPL sources emitting considerably lower
mass flux than exposed NAPL sources. In practical
scenarios, an occluded source may represent NAPL
trapped in a fine layer with high water saturation,
or NAPL entrapped in or below the capillary fringe.
Exposed NAPL may represent pooled or residual NAPL
that is in direct contact with bulk air phase. The mass
transfer behavior observed from each type of source
is adequately explained using traditional advection
dispersion diffusion models. Analysis suggests that mass
loading from occluded sources is largely dependent on
aqueous diffusion through the occlusion. With exposed
sources, mass transfer approaches the local equilibrium
condition, and thus mass removal becomes sensitive to
bulk gas-phase transport processes such as advection and
diffusion. Given that such strong differences in behavior
are observed between occluded and exposed NAPL, it
is logical to assume that improved models of NAPL
volatilization will need to carefully include the role of
NAPL morphology. In a complex NAPL source zone that
includes both exposed and occluded NAPL, mass transfer
may initially come overwhelmingly from the exposed por-
tion of the source. However, because of the differences in
mass transfer rates, the exposed NAPL may deplete more
rapidly as the source ages leaving a longer lived occluded
source that may contribute to mass tailing in the field.

The behavior of such a source could be even more
complex when the vadose zone is subjected to dynamic
hydrologic events affecting the water saturation. If an
NAPL is subjected to smearing due to water table
fluctuations, or to infiltration from the land surface, these
may alter the source morphology, fluctuating between
the exposed and the occluded cases. Thus, a source may
effectively turn “off” or “on” depending on the water table
position, or infiltration from rainfall. This has important
implications for management of contaminated sites, such
as with the vapor intrusion exposure pathway or operation
of remediation systems. Water table fluctuations could
be natural, but they can also be caused by anthropogenic
operations, such as the operation of pumping wells.
Likewise, surface activities might affect infiltration
because capping a site with an impermeable barrier may
reduce infiltration and expose more sources. Likewise,
irrigation may increase infiltration and occlude sources.
Incorporating the mass transfer dynamics that may result
from such activities may be useful in improving the
conceptual model of remediation sites.

This study shows that the NAPL mass transfer behav-
ior can be captured with existing transport theory and
modeling approaches under tightly controlled morpholo-
gies. However, further work is needed to model NAPL
volatilization that considers the full range of three-phase
saturation distributions that may occur in the field. An
ideal model may be one that could link the soil water
retention function to the mass transfer relation, allowing
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simulation of mass transfer from complex sources with-
out introducing a large number of new parameters that
need to be calibrated. Further study of this problem may
require an experimental apparatus capable of controlling
and quantifying saturations in a fully three-phase fluid dis-
tribution. Ultimately, an improved three-phase mass trans-
fer model may yield a better understanding of how vadose
zone NAPL sources behave under dynamic conditions as
well as when they age causing changes to morphology.

Nomenclature

Symbol Units Meaning

o — superscript / subscript denoting phase
identity (¢ = gas, w = water,
n=NAPL)

B — exponent for NAPL saturation for
Gilliland-Sherwood model

o kg/m®  saturated concentration of NAPL
vapor in air

cy kg/m?  concentration of NAPL in phase o

dso m grain size of the porous medium, for
which 50% of the entire mass is
finer

do m normalized grain size

dy m reference grain size (=0.05 cm)

Dy, m?/s free molecular diffusion of NAPL in
phase o

Dy m?/s diffusion-dispersion tensor of the
NAPL component phase «

) — exponent on Peclet number for
Gilliland-Sherwood model

Fq kg/m?/s  specific source/sink term of phase «

Fog kg/m3/s  specific mass transfer term of NAPL

into gas phase
H — dimensionless Henry’s constant

kng s mass transfer rate coefficient

Pe — Péclet number

¢ — porosity

Pa kg/m®  density of phase «

Sy — volumetric saturation of phase «

Sno — initial NAPL saturation of source zone

Sh — Sherwood number

Shg — empirical constant for
Gilliland-Sherwood correlation

Vo m/s apparent macroscopic velocity of
phase o

Xy kg/kg mass fraction of NAPL component in
phase «

t s time
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media are investigated under two fundamentally different flow conditions: in a quasi one
dimensional vertical column and in a two-dimensional tank with a lateral background
water flow, both at laboratory scale. In both cases, the CO, dissolved in water under a
given overpressure is injected for a certain period at the bottom of the tank, exsolves,

Ic(zmggs{ional flow and migrates upwards. A layer of fine sand is present in the tanks designed to mimic
Two-phase flow geological scenarios of accumulation and trapping of exsolved CO; in shallow aquifers.
Non-equilibrium mass transfer Then, clean water is injected and the accumulated CO; is dissolved back into the flowing
Kinetic mass transfer water. The study aims to point out the differences in the mass transfer processes between
Gas exsolution the quasi-1D and 2D cases using a mathematical model of two-phase compositional flow in

Gas dissolution heterogeneous porous media calibrated to the experimental datasets, and expose strategies

that should be explored in future research. Additionally, temperature variations observed
during the 2D experiments allow for analysis of isothermal versus non-isothermal effects
on the processes of multiphase CO; evolution. The mathematical model is discretized and
solved using the mixed hybrid finite element method in 2D that allows for the simulation
of both advection- and diffusion-dominated processes accurately.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

To protect human health and the environment from potential deleterious impacts of CO; leakage from deep geologic
sequestration sites, it is important to understand the multiphase flow processes that may occur when CO; enters shallow
aquifer systems. The exsolved gas can accumulate below low-permeability layers resulting in structural trapping [12]. The
shallow groundwater flowing around and through these trapped zones will re-dissolve the gaseous CO,, and even though
the dissolution process has detrimental effects on the water quality [27], it will help to attenuate the migration of the
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leaked gas [21]. Because water with a higher dissolved CO, concentration is heavier than clean water, it will sink and thus
reduce potential subsequent release of gas back into the atmosphere [1-3].

During transport into and within the shallow subsurface, changes in pressure, temperature, and surrounding chemical
composition induce complex multiphase flow phenomena such as dissolution, exsolution, expansion, and migration of gas
phase CO; in otherwise water-saturated media. These processes, defined collectively as multiphase CO, evolution, have
received significant attention in recent years. However, considerable gaps remain in our understanding of these processes,
particularly regarding the fundamental interaction between the fluids in the pore space; that is, the mass transfer of CO;
among aqueous and gaseous phases during flow through porous media. This study aims to help fill that knowledge gap by
comparing a model capable of incorporating various conceptualizations of mass transfer with data from highly controlled
laboratory experiments.

The goal of the present work is not to validate the numerical model, because kinetic mass transfer models for sim-
ilar problems have already been validated [8], but rather to demonstrate the conditions under which the kinetic mass
transfer affects the multiphase evolution of CO, within shallow aquifers. While previous studies have focused primarily on
pore- to core-scale interactions between supercritical CO, and brine under deep reservoir conditions, we instead analyze
intermediate-scale interactions between gas phase CO, and freshwater under low temperatures and pressures, so that the
associated conclusions may help in the design of monitoring, verification, and risk assessment strategies in the field. We
hypothesize that kinetic mass transfer will be important to capture the behavior observed in the experiments under certain
flow conditions within shallow aquifers, but that the equilibrium approximation will also be sufficient in some scenarios.

11. Overview

In general, there are two principal approaches to modeling inter-phase mass transfer from sources of trapped NAPL
(non-aqueous phase liquid) or gas (in this case CO,): equilibrium and kinetic. The equilibrium approach assumes that the
flowing water close to the NAPL/gas source is at the solubility limit with respect to the dissolved phase of the otherwise
NAPL-phase constituent. In situations where the groundwater velocities are low, resulting in large residence times for the
water to be in contact with the separate phase fluid, the concentrations attain equilibrium almost instantaneously.

While the equilibrium model works well in some situations [22], we demonstrate that for other scenarios, the equi-
librium model cannot correctly describe the behavior of the multiphase system, and that a more advanced approach is
therefore needed. To address the more complex scenarios, a kinetic mass transfer model is employed in this work, in which
the mass transfer rate is defined by rate coefficients. These phenomenological coefficients are defined in terms of corre-
lations containing dimensionless numbers with parameters that are fitted to experimental data (e.g. Gililland-Sherwood
correlations) [14], and can be described in terms of physical processes at the pore scale. However, for practical applications,
these coefficients must be determined empirically at the macroscopic scale.

Both the exsolution of previously dissolved gas from an over-saturated solution and the dissolution of trapped separate
phase gas into previously under-saturated water are processes of mass transfer between two phases. Both processes are
generally assumed to be functions of temperature and several dimensionless quantities. In equilibrium-based models, the
rates of exsolution and dissolution are assumed to be equal (both are instantaneous), but in kinetic models, the rates of
dissolution and exsolution can be different. Moreover, they can also depend on the geometry of the flow field [23].

The primary goal of this paper is to demonstrate the conditions under which more complex non-equilibrium mass
transfer processes occur and also elucidate conditions under which the simplified model is sufficient for the description
of the system. The previous works generally isolated various aspects of the system, but did not broadly compare various
scenarios against one another to draw more general conclusions about the conditions that lead to the different types of
mass transfer processes. Therefore, this work again aims to help fill that knowledge gap.

1.2. Experiments and goals of the study

In this work, we propose a mathematical model that describes two-phase compositional flow including kinetic mass
transfer, and investigate how this process affects CO;, fate and transport in shallow aquifers. This goal was accomplished by
comparing results of numerical simulations to laboratory data on exsolution, structural trapping, and dissolution of gaseous
CO, that was previously generated via intermediate-scale experiments conducted at the Center for Experimental Study of
Subsurface Environmental Processes (CESEP) at the Colorado School of Mines. These experiments were unique and valuable
in that they were conducted in test systems that were large enough to allow for flow processes similar to those that would
occur in the field settings, but within a laboratory environment that allowed for careful control of external conditions and
acquisition of data at higher temporal and spatial resolutions than would be possible to obtain in the field. The experiments
focused on multiphase CO; evolution in shallow aquifers, and were designed to represent hypothetical scenarios related to
CO, leakage from deep geologic sequestration sites.

The model developed in this study was compared against two different sets of experiments carried out at CESEP: a
series of six experiments performed in a quasi-1D “rectangular column” test system, and two experiments conducted in a
larger, more complex 2D test system “large tank”. Both systems incorporated layered heterogeneous porous media packing
configurations designed to mimic geologic facies transitions in the field. The heterogeneity configuration of the porous
media in the experiment was simpler than the one that can usually be expected in the field. However, such a simplified
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configuration of a single fine sand layer with various levels of contrast allows us to study the effects of heterogeneity on a
fundamental level.

The column experiments are referred to as “quasi-1D” because the fluids were allowed to move laterally as well as
vertically in this test system, but the sealed vertical walls restricted the flow field to a predominantly vertical orientation.
To more closely mimic the complex 3D processes that occur in the field, the large tank experiments established a fully 2D
flow field by incorporating inlet/outlet boundaries on both vertical sides of the tank, thus allowing fluids to move freely in
two dimensions.

The results from the large tank experiments were previously published by Plampin et al. [21], who built upon several
similar experimental studies [18-20,25]. In a previous benchmark modeling study [22], data from some of these previous
studies were compared against a model that incorporated only equilibrium mass transfer. This paper, on the other hand,
aims to provide more general insights into the complex processes of mass transfer/transport of CO; in the subsurface. We
demonstrate that the proposed complex model is necessary to correctly describe the physical behavior of some scenarios.
We also identify areas where more experimental data are needed to fully explain the multiphase CO, evolution processes.

1.3. Paper structure

The paper is organized as follows. In Section 2, the mathematical model describing multiphase compositional flow in
porous media is presented together with a brief description of the numerical method used to solve the resulting system of
transient partial differential equations. Then, in Sections 3 and 4, comparisons with experimental data for both experiments
justify the usage of the complex mathematical model proposed in Section 2. In the last section, the main findings are
summarized and conclusions regarding further research efforts are drawn.

2. Mathematical model

The mathematical model describing the two-phase compositional flow in porous media that incorporates the phenomena
studied in this work is presented in this section.

2.1. Governing equations of two phase flow in porous media

The governing equations are adopted from [4,11,16] and the quantities corresponding to the liquid (wetting) and gas
(non-wetting) phases are denoted by indices ¢ and g, respectively.
For each phase « € {¢, g}, the mass balance is given by

(@SwPa) =
otV (PaVe) = fa, (M
where ¢ [—] is the material porosity and Sy [—], pe [kgem™3], Vo [ms~'], fy [kgem~3s~1] are the «a-phase saturation,
density, velocity, and the sink or source term.

The velocity v in the mass balance equation (1) is given by Darcy’s law

Vg = —2aK(VPa — pal), (2)

where g [ms~2] is the gravitational acceleration vector, K [m?] is the intrinsic permeability, p, [Pa] is the a-phase pressure,
Ao =Ky /e [Pa—1s~1] denotes the mobility of phase o where pi, [Pas] is the dynamic viscosity, and k¢ (Sy) [—] denotes
the relative permeability. We also introduce the total mobility As = Ag + A¢.

In this work, the fluid properties were assumed to be static with p, = 997.78 kgm~3, pg =198 kgm™3, p,=9.72-
107#Pas, and g = 1.48-107° Pas.

This assumption is justified by the fact that the pressure range in the experiments was rather narrow, and while the
temperature variations (discussed later in Section 4.5) were more significant, the associated changes to fundamental fluid
properties were still outweighed by the changes in interphase interactions (i.e., CO2 gas solubility). Across the temperature
difference of about 11 °C observed in one of the experiments, all relevant fluid property changes were within 5 percent
of the original value, except the liquid phase viscosity, which was within about 25 percent [31]. By contrast, the Henry’s
law coefficient changed by 36 percent across this temperature range. In this study, we were interested in the interphase
mass transfer processes, which are mostly controlled by the physical quantities related to phase interaction and not by
the changes in properties of either fluid alone. Therefore, the effects of temperature variations were only incorporated in
the solubility term. Accounting for changes to fundamental fluid properties due to changes in temperature and pressure
conditions is beyond the scope of the paper as it would require a more complex mathematical model and the experiments
considered in this work were not carried out with this purpose.

The pressure difference at the interface between the wetting and non-wetting phases is defined as the capillary pressure
Pc = Ppg — pe and it is assumed to be a function of the liquid phase saturation S, only [4,5,11]. This dependency is expressed
by empirical relations. In this work, the Brooks-Corey model [6] is used in the form
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pBEC(Sy) = pa(s9) 7, 3)

where pq [Pa] is the entry pressure, A [—] is related to the pore size distribution, and S¢, denotes the effective saturation
defined by

se — So — Sra
o — )
1_Srg_sré

(4)

where S,y is the residual saturation of phase «.
For the relative permeability functions k¢ and kg, the Burdine model [7] with Brooks-Corey parameters is used in the
form
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ki (S =(SH (5)
Kf(Sg) = (552 (1- (1 =5 F"). (6)

By definition, the residual saturation S,, describes the fraction of pore volume occupied by phase « that cannot be
mechanically displaced. The values of S;, are empirical and are obtained during drainage and imbibition experiments [24].
However, as reported by [22,30], the concept of (mechanically) immobile residual saturation is not sufficient for model-
ing gas dissolution and exsolution processes, especially in cases, where no gas is initially present in the porous media.
Consequently, Syg =0 is used in (4).

On the other hand, experimental evidence [22,30] indicates that a certain threshold of gas saturation has to be reached
before the gas phase becomes mobile. Such a value is referred to as the critical gas saturation S. and the non-wetting phase
(gas) relative permeability function k;¢ is modified as

0, ifSg<Se,

krg(sg) = { kfg(s]g:sic)’ otherwise. ’

2.2. Component transport

In this work, the liquid phase is assumed to be a two component mixture: water and dissolved CO, whereas the gas
phase as a single component: pure CO;. Based on [16], the compositional balance equation for CO, dissolved in the liquid
phase is added to the two phase flow equations (1) and (2) as

(@S¢ peX)
at

where X [—] is the mass fraction of COy, fx [kgm=3s~1] is the sink or source term, and vVx [ms~'] is the velocity of the
CO, component given by:

+ V- (peVx) = fx, (8)

Vx:XV@—T[QﬁS@DgVX (9)

where D, [m?s~1] is the free molecular diffusion of CO, in water, D, =1.92-10~° m?s~!, and 7, [—] is the tortuosity given
by T =¢‘/3SZ/3 based on [15].

2.3. Kinetic mass transfer

The mass transfer of CO, between both phases (i.e., the dissolution and exsolution processes) is mediated through the
sink/source terms fx in Eq. (8) and fy in Eq. (1). Based on [17], the kinetic mass transfer model is represented by

—fg=fe=fx =k(Cs — Xpy), (10)

where Cg [kgm™3] is the saturated CO, concentration and k [s~'] is the effective (lumped) mass transfer rate coefficient. In
general, the effective rate coefficient k is a function of the interfacial area, temperature, properties of porous media, or flow
velocity as was discussed in [17], but it is beyond the scope of the present study to address dependency of k on all these
quantities since the experiments considered in this work were carried out to address only a few key parameters that affects
the multiphase CO, evolution. It is further conceptualized that the effective mass transfer coefficient k can be generally
different for exsolution and dissolution, and denoted by kexs and kgjs, respectively.

The kinetic model on a given element at a certain time allows for only one of the processes (exsolution vs. dissolution)
to occur based on the sign of the source term given by Eq. (10) (whether the current concentration is higher or lower than
the solubility limit). When the concentration equals the solubility limit, the source term given by Eq. (10) is zero, so the
mass transfer also becomes zero and this state is referred to as equilibrium. In the kinetic model, equilibrium is reached
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after a certain time (the mass transfer rate decreases with the concentration approaching the solubility limit). This is in
contrast with the equilibrium mass transfer model which assumes that the equilibrium is reached immediately.

In Sections 3 and 4, this concept is explored and compared to the experimental data.

In order to determine the water solubility limit Cs of CO, as a function of the gas pressure, Henry’s law is employed in
the form:

_Ps

Co=
s Kn

My, (11)

where Ky [Pamol™' m?] is Henry's constant and M, [kgmol™'] is the molar mass of CO;, Mg = 44.01 gmol ™.

The experiments considered in this paper were assumed to be run under isothermal conditions. However, these con-
ditions were not maintained for all experiments. Later in Section 4, we show that thermal effects cannot be neglected.
Because the temperature fluctuations most significantly affect Cs through the temperature-dependent Henry's constant Ky,
the Van't Hoff equation is employed in the form

~c(3-1%)
Ki = K refe ref (12)

where T [K] is the temperature, Ky o is the value of Henry’s constant at a reference temperature Tyef [K], and C [K] is
the gas-specific constant [26], i.e., Ky ref =2979.97 Pa mol~ ' m3, Tref =298.15K, and C =2400K.

2.4. Numerical method and implementation remarks

The numerical method for solving the governing equations described in the previous sections is implemented using a
general numerical solver proposed in [10]. The numerical scheme is based on the mixed-hybrid finite element method
which combines velocity discretizations in the lowest order Raviart-Thomas space with a piecewise constant approximation
for the scalar variables.

The main benefit of the numerical method is that it can be used for accurate simulation of degenerate diffusion or
advection-dominated problems like the one discussed here. For more details refer to [10], where the numerical method was
tested against known solution problems of two-phase flow in heterogeneous porous media and two-phase compositional
flow. The numerical scheme was found to be convergent with the first order of accuracy.

The applicability of the numerical method for heterogeneous porous media is further discussed in [29] together with
parallel implementations of the method on GPU [10] or on CPU using MPI [28].

In brevity, the method is designed to solve the system of n partial differential equations in the coefficient form in a
d-dimensional polygonal domain €2 c R? and a time interval [0, trinl:

n n n
0Z;j - -
ZNi’jT;+Zui'j ‘VZj—l-V- m; _ZDi,jVZj""Wi :f,', (13)
j=1 j=1 j=1
where Zj = Z;(t,X), j=1,2,...,n, represent the unknown variables, X € Q, t € [0, tfjy]. Eq. (13) is further supplemented

with either Dirichlet or Neumann boundary conditions, [10].
The system of governing equations given by Egs. (1), (2), (8), and (10) are represented by (13) usingn=3,d =2, Z1 = p.,
Zy=pg, Z3=X, and

—ppept 0 0 00 0
i =| —¢pp, 95t dpg (*. ) _ls o &
(N"j)i,je§ PPgqp. PSemp, 0 ’ i), jes 00 o0
0 0 $Sepe 0 0 peve
( ) MK K0 ) Pest
Dij) .=| o0 K o |. (m) = pe2z |
be Lo 0 oS, S S
~hpeKE ~fe
() = mpske |, (o=l %= |
0 fe—Xfe

where 3 = {1,2,3}.
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Table 1
Material properties used in the column experiment based on [21,18].
Symbol Identification ¢ K Pd A Sre
Units -] [m?] [Pa] -] (-
Accusand #20/30 0.32 2.3x10710 1200 7.33 0.084
Accusand #50/70 0.34 3.0x 1071 3400 16.9 0.207
Table 2

Settings of the column experiments described in Section 3. The material properties are listed in Table 1. The
experiment duration in the last column is selected as the final time tg;; of the simulation.

Id. Overpressure Inflow rate Injection period Experiment duration
[kPa] [mImin~"] [h] [h]

LS 12 4 104.80 150

LF 12 40 10.67 70

MS 20 4 92.62 186

MF 20 40 1045 73

HS 30 4 98.76 212

HF 30 40 10.20 76

3. Quasi-1D case

First, a quasi-1D column experiment with heterogeneous sand packing is considered with a predominant vertical flow
field in which the CO, exsolution, trapping, and dissolution processes were investigated.

The computational study presented in this section aims to find the optimal values of the model parameters (critical gas
saturation and mass transfer coefficients) that control the multiphase CO, evolution in the experimental setup and to use
the calibrated numerical model to investigate the spatial and temporal evolution of CO; in the column.

3.1. Experimental setup

A series of quasi-1D experiments was carried out in a rectangular column tank packed in a configuration that mimics
the apex of an anticlinal geological feature. Fig. 1 shows the column experiment configuration and port positions, where the
gas saturation was measured. Properties of the sands used in the experiments are summarized in Table 1.

The packing configuration (sand properties and position of the ports) remained the same for all six column experiments.

Each column experiment consisted of two consecutive injection periods. First, CO,-saturated water was injected into the
column through the injection port located at the bottom of the tank for a given period of time. A portion of the dissolved
CO; exsolved into the gas phase, migrated upwards, and accumulated under the coarse-fine sand interface. Then, clean
de-ionized (DI) water was injected into the column through the same injection port and the gaseous CO, dissolved into the
clean water and was transported upwards.

The experiments varied in (a) the pressure at which the injected water was saturated by CO, (characterized by the
overpressure with respect to the atmospheric pressure in the laboratory) and therefore the amount of CO, dissolved in
water at the inflow, (b) the inflow rate, and (c) the length of the injection period. In Table 2, the settings of the experiments
are summarized and the following two-letter notation is introduced. The first letter denotes the overpressure of the injected
COy: L = low (12 kPa), M = medium (20 kPa), and H = high (30 kPa), whereas the second letter describes the inflow rate:
S = slow (4 mlmin~!) and F = fast (40 mlmin~).

3.2. Computational study setup

The main goal of the computational study is to determine optimal (best-fitted) values of the unknown model parameters
Kexs, Kqis (the mass transfer coefficients for exsolution and dissolution, respectively), and S (the critical gas saturation)
based on the experimental data. The experimental procedure previously described in Section 3.1 is for the purposes of
the computational study divided into three stages in which 1) exsolution, 2) accumulation, and 3) dissolution were the
dominant processes and are therefore investigated consecutively. The division into (almost) isolated stages (the exsolution
and accumulation both occurred during the CO;-saturated water injection) allows us to use each of them to determine the
aforementioned unknown parameters separately as will be discussed in the following sections.

The mesh used in the numerical simulations is shown in Fig. 1. The mesh consisted of 2552 elements and was locally
refined in the vicinity of the material interfaces. The mesh resolution was sufficient to capture all effects investigated in
this work. At the same time, the coarseness of the mesh allowed many computations with various model parameters to be
carried out efficiently.

Initially at t = 0, the tank contains only pure water with no inflow or outflow: X =0, p. = pg (which corresponds to
Sg=0), and pg = pc + p¢, where the hydrostatic pressure profile for p, was prescribed. The final time of each simulation
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Fig. 1. The column experiment configuration and the triangular mesh of 2552 elements used in the numerical simulations.

trin is the same as the final time of the corresponding experiment shown in Table 2. Constant time steps of 5 s, 2 s, and
1 s were selected for the low, medium, and high overpressure experiments, respectively.

The boundary conditions are given as follows. At "y, and I'y, no flow boundary condition is prescribed for both phases
as well as for the dissolved CO;. At 'y, no flow boundary condition for the gas phase is prescribed for the whole duration
of the experiment. During the injection period, the Neumann boundary condition for the water inflow velocity u, and the
Dirichlet boundary condition for the CO, mass fraction X based on the values in Table 2 are prescribed at I'j,. During
the rest of each experiment, clean water is injected with a given injection schedule shown in Table 3, i.e., the Dirichlet
boundary condition for X =0 and the Neumann boundary condition for u, are prescribed at I';; based on the inflow rate
given in Table 3. Between the individual injections (rows in Table 3), there is always a one minute break where the injection
is stopped that during the experiment allowed for the preparation of the next injection. This break is represented by zero
Neumann boundary condition u, = 0.

At the upper boundary I't, the Dirichlet boundary conditions pc = pg, pg = Pref, and VX =0 are prescribed with pref =
82 kPa as the reference atmospheric pressure in the laboratory (at the altitude of approximately 1800 m above sea level).
This setting mimics the experimental setup on the upper boundary that allowed for the free outflow of gas and water with
dissolved CO,.

3.3. Stage 1: exsolution

During the exsolution stage, the CO, dissolved in water is injected into the tank and exsolves. For the medium and high
overpressure experiments, the gaseous CO; is detected in the lower ports (Ports 22 - 24) far from the fine layer barrier.

After the initial growth, the measured gas saturation values lose the underlying growing trend and the oscillations
center around a constant value as shown in Fig. 2. In the experiment, the fluctuations are caused by the changes in the
gas distribution at the pore scale. For the slow experiment run, there is more time for this diffusive redistribution to occur
when the water is not flowing that fast. Therefore, the fluctuations for the slow runs are more significant.

These plateau values represent the fraction of gas phase trapped in the porous medium that remains immobile and can
be directly interpreted as the critical saturation S..

Combining all four medium and high overpressure experiments, the value of the critical gas saturation is estimated to
be S, =0.25 which is also in agreement with [22].

The dependency of the numerical results on the values of S, for experiment HS is illustrated in Fig. 3, where the
numerical results for the critical gas saturation values 0.05, 0.1, 0.15, 0.2, 0.25, 0.3 are compared. These results indicate that
the estimated value S, = 0.25 is a sufficiently good approximation.

Note that no information about S, can be obtained during this stage for the low overpressure experiments LS and LF
because CO; does not exsolve before it reaches the middle region of the sand column close to the heterogeneity. Hence, a
different mechanism attributed to the capillary barrier of the fine sand is responsible for the detected CO, saturation values
that are also much higher than those measured in the lower ports for high overpressure experiments.
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Table 3

Clean DI water injection schedule for the column experiments.
Id. LS LF MS MF HS HF
duration [h] 1215 12.44 2.80 14.34 2.87 15.70
inflow rate [mlmin~'] 6 8 32 6 32 6
duration [h] 2.53 2.58 16.83 2.35 14.53 3.03
inflow rate [mlmin~!] 32 32 6 32 8 32
duration [h] 2.80 3.28 2,67 2.62 2.7 298
inflow rate [ml min’]] 32 32 32 32 32 32
duration [h] 315 2.25 3.07 2.95 2.67 3.22
inflow rate [ml min~'] 32 32 32 32 32 32
duration [h] 15.57 14.91 23 16.67 2.78 15.67
inflow rate [mImin~'] 6 6 32 6 32 6
duration [h] 298 293 15.95 317 12.68 2.6
inflow rate [mlmin~'] 32 32 6 32 8 32
duration [h] 5.60 2.45 317 3.65 3.93 2.57
inflow rate [mImin~!'] 16 32 32 32 32 32
duration [h] - 292 3.02 16.47 2.73 17
inflow rate [mImin™'] - 32 32 6 32 32
duration [h] - 14.6 1.82 - 3.30 2.87
inflow rate [mImin~'] - 6 32 - 32 32
duration [h] - - 15.28 - 14.733 12183
inflow rate [ml min~—"] - - 6 - 6 8
duration [h] - - 3.28 - 4.40 2.05
inflow rate [ml min~'] - - 32 - 16 32
duration [h] - - 3.30 - 4492 -
inflow rate [ml min~'] - - 32 - 2 -
duration [h] - - 117 - - -
inflow rate [ml min~'] - - 32 - - -
duration [h] - - 17.22 - - -
inflow rate [ml min~'] - - 6 - - -

3.4. Stage 2: accumulation

During the accumulation stage of the experiment, the injection of water with dissolved CO, continues and as more CO;
exsolves and migrates upwards, the gaseous phase accumulates below the fine layer which, due to a higher entry pressure,
acts as a capillary barrier. As a result, the gas saturation below the fine layer reaches up to almost 0.9 as measured in Port
14 placed directly below the heterogeneity. Because of this significant accumulation, this port is selected to demonstrate
the dynamics of the mass transfer in this section.

To capture the experimentally observed gas accumulation by the numerical model, enough CO; needs to be produced
during the exsolution process. For each experimental run, a parameter sensitivity study was carried out in order to deter-
mine the optimal value of k.xs. Many numerical results were computed for a series of values of kexs with a selected step of
0.01 [s7'].

The optimal values of kexs were subsequently selected among the results of numerically computed Sg values such that
they best-fitted the experimentally measured Sz values in all the ports during the accumulation stage. The best fit is
considered in terms of the sum of Euclidean norms of difference between the numerical solution and experimental data (L,
norm over a given time interval) for all the ports.

The numerical results show that substantially large values of keys have to be considered to produce enough gaseous CO;
to match the experimental data. Furthermore, a certain threshold ki, =5 s~! exists for which the rate of exsolved CO; is
maximal, i.e., the numerical results are the same for kj,; and for all kexs > ki, as illustrated in Fig. 4 for the HS experiment.
Similar dynamics can be observed for all the column experiments and the numerical results show that this threshold value
is the same for all the experiments. These findings indicate that a near-equilibrium rather than a rate-limited kinetic mass
transfer process is observed during the exsolution stage for all the column experiments.

3.5. Stage 3: dissolution
During the last stage, clean water is injected into the tank and the gaseous CO, present in the tank dissolves into the

flowing water. The evolution of the experimentally measured gas saturation indicates that similar to the exsolution process,
the dissolution is rapid. Parameter sensitivity studies were again carried out for each experimental run to determine the
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Fig. 2. Medium and high overpressure experiments, measured gas saturation and highlighted value of critical gas saturation S. = 0.25. (For interpretation
of the colors in the figure(s), the reader is referred to the web version of this article.)

optimal values of kg;s in the same way as in the previous section. The best fit is considered in terms of the sum of Euclidean
norms of difference between the numerical solution and experiment for all the ports.

As in the previous section, the results show that a substantially large value of kgis > kjj;; (with kj;. =5 s~! as the
threshold value) is the optimal choice that captures the dissolution rate. The dynamics of the dissolution process and the
threshold value are illustrated in Fig. 5 for Port 14 of the HS experiment. The dissolution rate is represented by the slope
of the gas saturation curve. These findings are the same for all the experiments indicating that the CO, dissolution can be
also interpreted as the near-equilibrium mass transfer process.

3.6. Discussion of results

The division of the experiments into three stages allowed for determination of the optimal values of the model parame-
ters Kexs, Kgis, and Sc. The influence of the parameter variations was demonstrated for selected experiments and ports. For
all computations discussed in this section, the following values of the model parameters, obtained as described above, are
used: S¢ =0.25, kexs = kgis =5 s~ 1.

Different settings of each experiment such as the overpressure or injection rate summarized in Table 2 allow to observe
and explain processes of multiphase CO, evolution in porous media using both experimental and numerical data from
specific ports as shown in Figs. 6-8, where an overall comparison of the numerical results against the experimental in
selected ports is presented for all column experiments.

Once the numerical model is calibrated to fit (in terms of the Euclidean norm) the point-based experimental readings
in all the ports, it can be used to recover more details about the spatial and temporal evolution of CO; such as the gas
formation, migration, accumulation, and dissolution.

First, in Fig. 9, the vertical gas saturation profiles are compared in the middle of the tank at the end of the injection
period of each experiment. The gas saturation profiles of the exsolved CO, are almost identical for both slow and fast inflow
rates implicating that the injected CO, overpressure is the main quantity in consideration that affects the depth, where the
exsolved CO>, is first detected.

In Figs. 6, 7, and 8, the accumulation of gaseous CO, induced by the heterogeneity is observed at Port 14 (placed directly
below the material interface). In this region, the amount of trapped gas is not governed by the value of the critical gas
saturation, instead, the difference in porous media entry pressures (i.e., the capillary barrier) plays the key role [19]. On the
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Fig. 4. Experiment HS, gas saturation in Port 14 for various values of mass transfer coefficient for exsolution keys.

coarse-fine sand interface, the capillary pressure must reach the entry pressure of the fine sand before the gas can penetrate
into the fine sand layer [9,13].

At Port 8 located inside the fine layer, the influence of the material interface can be observed in the opposite configu-
ration (coarse sand above the fine one) than before at Port 14. As expected, both numerical results and experimental data
in Figs. 6, 7, and 8 indicate that no gas accumulation occurs. Measurements show that the behavior of the system is very
similar to the lower ports (Ports 22-24) studied in Stage 1: a plateau gas saturation profile is detected and controlled by the
critical gas saturation which seems to have the same value for both coarse and fine sands.

In Fig. 10, the water flow velocities (given by Darcy’s law in Eq. (2)) in the middle of the tank are shown. We selected
HS and HF experiments to demonstrate the range of velocity observed in the column experiment during both exsolu-
tion (CO,-saturated water injection) and dissolution (clean water injection) stages for the experiments. The inflow rates of
CO,-saturated water for the HS and HF experiments are 4 mlmin~' and 40 mimin~" respectively (see Table 2). The vertical
profiles at the start of the experiment when no gas is presented in the tank are shown in Fig. 10a. The high overpressure
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Fig. 6. Low overpressure column experiments LS and LF, gas saturation S in selected ports.

experiments are chosen because of the most significant gas accumulation in the tank to demonstrate the impact of the gas
phase present in the tank on the velocity as shown in Fig. 10b, where the velocity at the end of the injection period is
given. The corresponding gas saturation profiles are shown in Fig. 9. The results show a significant drop in velocity mag-
nitude in the regions of high gas saturation. During the CO,-saturated water, the injection rate was constant then during
the clean water injection, the flow rate varied. The HS and HF experiment allows us to show also the range of the velocity
during the dissolution stage, because the flow rates after the CO,-saturated water injection stopped are 32 mImin~! and
6mlmin~' (see Table 3) which gives the lower and upper bound of flow rates for the column experiments during the clean
water injection (with the exception of the end of HS experiment, however, there was already almost no gas phase presented
during this low flow rate). In Fig. 10c, we show the velocity at the start of the clean water injection. The corresponding gas
saturation profiles at this time are identical to those shown in Fig. 9. The x-axis range is chosen with respect to the velocity
magnitude in the tank, therefore, the highest velocity magnitude in the vicinity of the injection port is out of the range in
Fig. 10, the maximal value of 13.16 mday ™" is reached during the 40 mlmin~" injection rate.

Altogether, the quasi-1D computational study showed that the numerical model is capable to capture the dynamics of
the exsolution and dissolution processes observed in the experiments. In the lower region of the column, the critical gas
saturation proved to be the best modeling concept that can explain the relatively large values of Sg measured during the
injection period of the experiment. The optimal values of kexs and kgis were determined to be the same and equal (or larger)
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to the threshold rate of 5 s—!, for which further increase of the coefficients has a negligible effect on the numerical results.
As a result of this conclusion, any value larger than the threshold can be used to obtain the match with the experimental
data. Therefore, the threshold value 5 s~ was chosen, taking into account the computational efficiency and properties of
the numerical scheme to avoid enforcing too short of time steps while ensuring stability, thus avoiding unnecessary increase
of the computational time. The rapidity of both exsolution and dissolution processes indicate that the kinetic mass transfer
model acts as the equilibrium one.

Negative values of the gas saturation were measured during the experiment, however, these values were very small.
These negative saturation readings were obtained for all experiments when there is no gas in the vicinity of the port. How-
ever, due to various y-axis ranges, they are visible only in the ports, where no gas was detected for the whole duration of
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Fig. 11. The large tank experiment configuration adapted from [21] and the triangular mesh of 5638 elements used in numerical simulations. EC stands for
the electric conductivity sensor and EC-5, EC-TM, and 5TE denote the specific type of a sensor, for more details, we refer the reader to [21].

the experiment. The negative saturation values are attributed to the post-processing calibration technique with the error of
the gas saturation measurements of approximately +0.05. The negative readings reported here are within the measurement
error.

4. 2D case

In order to study two dimensional multiphase evolution of CO,, two larger laboratory scale tank experiments are con-
sidered with a heterogeneous sand packing and a fully developed two dimensional flow field. As in the quasi-1D case, the
numerical model is first calibrated using experimental data measured in selected ports and then, the numerical results are
used to recover and investigate the spatio-temporal evolution of CO,. The main goal of the computational study is to de-
termine whether and how the CO, exsolution and dissolution processes differ from the equilibrium ones observed in the
quasi-1D column in Section 3. Moreover, the effects of varying temperature are also investigated due to the violation of the
isothermal assumption during one of the experiments.

4.1. Experimental setup

Fig. 11 shows the configuration of the large tank experiments including port positions where the gas saturation was
measured. The clay and gravel regions shown in Fig. 11 are neglected in the model. In the experiment, the gravel layers
are added to uniformly distribute the inflow and outflow boundary conditions. In the model, the boundary conditions are
prescribed along the whole corresponding segment of the boundary.

The clay blocks work as impermeable obstacles for the flow and in the model, they are treated as impermeable domains.

At the beginning of each experiment, a lateral flow of DI water through the tank was established by positioning constant
head devices on both sides of the tank. Then, the CO, saturated water (saturated at 13 kPa overpressure) was injected
through the injection port located near the bottom of the tank for a given period of time with the injection rate of
11.2 mimin~!. In the mesh, the injection port is represented by a square with 1 cm long side that are treated as internal
mesh boundaries through which the CO;-saturated water is injected.

The dissolved CO; plume spread in the tank and a portion of CO, exsolved, which then migrated through the tank as
a gas phase. After the injection was stopped, the experiment continued with the lateral flow of clean DI water only. The
dissolved CO; plume was transported further to the outflow side of the tank and the gaseous CO; dissolved back into the
flowing water.
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Table 4
Material properties used in the large tank experiment based on [21,18].
Symbol Identification ¢ K Pd A Sre
Units (-] [m?] [Pa] -] (-]
Granusil #20/30 0.41 1.21 x 10710 1580 5.79 0.10
Accusand #40/50 0.42 523 x 1071 1940 4.09 0.07

Unimin #110 and #250 0.35 6.39 x 10714 8100 5.35 0.17
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Fig. 12. Air temperature during the high and low contrast experiments.

Two large tank experiments were conducted, which differed in the material of the middle layer and the length of the
injection period. In the first large tank experiment (denoted as the high contrast experiment), the layer consisted of a very
fine sand Unimin #110 and #250 as shown in Fig. 11. In the second large tank experiment (denoted as the low contrast
experiment), the layer consisted of sand Accusand #40/50 that was only slightly finer than the surrounding coarse sand
Granusil #20/30. Parameters of these sands are listed in Table 4.

The CO;-saturated water injection period lasted for 1.88 days in the high contrast experiment and for 2.43 days in the
low contrast experiment. In this work, we focus on the first ten days of the experiment. Port positions were the same for
both experiments and the lateral water flow rate through the tank was very similar for both runs.

During the low contrast experiment, the temperature was almost constant. The difference between the lowest and high-
est temperature during the experiment was less than 2 °C as shown in Fig. 12. However, significantly different temperature
measurements were obtained for the high contrast experiment. The temperature exhibited fluctuations of more than 10 °C
on a daily basis as shown in Fig. 12 which was caused by the problems with the air conditioning in the CESEP experi-
mental facility. Because the large tank experiments were originally not designed to study thermal effects, the tank was not
insulated, nor the temperature, heat fluxes, or thermal conductivity of the sands/tanks walls were measured. Hence, due to
lack of information concerning initial and boundary conditions, the energy (heat) balance equation is not included in the
mathematical model. The thermal effects are at least compensated through Cs which is the only parameter considered as a
function of the measured temperature. Such a simplification is justifiable because the tank is narrow (6 cm) compared to its
other dimensions (4.88 m in length and 1.17 m in height), so with non-insulated walls, it is safe to assume a uniform tem-
perature distribution within the tank and consider only a temporal violation of the isothermal assumption, not the spatial
one.

For more details about the large tank experiments, see [21].

4.2. Computational study setup

The main goal of the computational study in the 2D large tank case is to determine whether the CO; exsolution and
dissolution occur under equilibrium or kinetic (rate-limited) conditions. As in the quasi-1D case, the first goal of the compu-
tational study is to determine the optimal values of keyxs, kgis, and S, compared to the experimental readings from selected
ports. Then, the calibrated mathematical model is used to investigate the fundamental differences between the large tank
and column experiments and, moreover, the influence of temperature.

Fig. 11 shows the computational domain used in the numerical simulations and the triangular mesh consisting of 5638
elements which is locally refined in the vicinity of the injection port. The mesh resolution is sufficient enough to capture the
mass transfer and transport processes of CO, and rather coarse at the same time to reduce the computational cost allowing
to compute many simulations with variable model parameters. For simplicity, the interior region of the tank without the
gravel boundary regions is considered only. Such a simplification is found reasonable since in the experiment, the main role
of the gravel is to uniformly distribute the affluent and effluent water along the interior boundaries.

Initially at t = 0, the tank contains only pure water: X =0, p. = pg (which corresponds to Sg =0, and pg = pc + p¢
where the hydrostatic profile for p, was prescribed. For both low and high contrast experiments, the final time is t g, =
10 days and the time step of 5 s is used.
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The boundary conditions are given as follows. No flow boundary condition is prescribed at I"y, and I'y, for both phases
and for the CO, mass fraction. At the injection port I'j;, no flow condition for the gas phase is prescribed for the whole
duration of the experiment. During the injection period, the Neumann boundary condition is prescribed for the water inflow
velocity u, and the Dirichlet boundary condition for the CO, mass fraction X as described in Section 4.1. For the rest of the
experiment, no flow boundary condition is prescribed for water and for the CO, mass fraction at I'jy. At T'js and T, X =0,
Pc = pd» and pg = pc + p, where the hydrostatic profile for water pressure p, corresponding to the constant head device
on the left side of the tank are prescribed. At 'y, ['o¢, and T'yp, the Neumann boundary condition for the water velocity u,
is set based on the experimental data, [21], and for the remaining unknowns, VX =0 and the no flow boundary condition
for the gas phase are prescribed. This approach allowed for the establishment of lateral flow and accurate reproduction
of the water flow field in the tank. At the upper boundary I';, the gas pressure pg = pres is kept constant, where py.f =
82 kPa is the reference atmospheric pressure in the laboratory, VX =0, and the no flow boundary condition for water are
prescribed.

Similar to the column experiment, the experimental procedure described in Section 4.1 can be divided into two stages:
1) exsolution and 2) dissolution. The experiment was designed to (almost) isolate the exsolution and dissolution processes
which helps to determine the unknown parameters of the model independently. For this experiment, there is no separate
stage to determine the critical gas saturation.

4.3. Critical gas saturation

Unlike in the quasi-1D case, however, the value of the critical saturation S, cannot be determined directly from the
port readings during the exsolution stages. In contrast with the column experiments, there are no gas saturation data ports
located close to the injection port. Moreover, the only significant gas phase accumulation was observed directly below
the fine sand layer. However, the accumulation in this region is controlled by the capillary barrier of the finer sand and,
therefore, gives no information about the critical gas saturation. Likewise, gas saturation readings in the lower homogeneous
region of the sand tank are quite low in comparison with the column experiments (approximately of 0.1) which indicates
that the role of the critical gas saturation is not as important as in the column experiments. The critical saturation is defined
as a threshold at which the gas phase becomes mobile. The gas phase evolution in the ports observed in this experiment is
mainly driven by a flow of water with dissolved gas and exsolution rather than by a flow of mobile gas plume. Therefore,
the only conclusion that can be drawn about the critical gas saturation from this experiment is that the value is at least
0.1.

4.4. Stage 1: exsolution

During the exsolution stage, the CO, dissolved in water is injected into the tank and exsolves in the vicinity of the
injection port. The dissolved CO; is also transported by the background lateral flow in the downstream direction allowing
gas to exsolve further away from the injection port and not only directly above it. As shown in Fig. 13, the gas phase is well
detected in Ports D4, D6, E4, F3 (and others).

In this section, we consider the low contrast experiment and the isothermal model is used. First, the model was cali-
brated with respect to kexs. Many numerical realizations were computed for a series of values of kexs with a selected step
of 0.001 [s~']. In all the ports, the numerical results of Sg were compared to the experimental data and the difference
between them was measured using the Euclidean norm.

For both experiments (with temperature-corrected Cs), the optimal value of keys = 0.005 s~! that minimized the differ-
ence was determined. Compared to the column experiments, significantly lower values of the mass transfer coefficients must
be used in order to capture the gas evolution properly as illustrated in Fig. 14. For the increasing value of the mass transfer
coefficient, the amount of gas detected in the downstream ports (Ports E4 and E5) decreases. For large, near-equilibrium
values of keys comparable to those in the column experiments, CO, exsolves rapidly near the injection port and migrates
upwards (see Port D4), therefore, less CO, remains dissolved in water and little or almost no gas is detected in the down-
stream ports (Ports E4 and F5) as shown in Fig. 14. This is also demonstrated in Fig. 15, where the comparison between the
gas saturation results for the near-equilibrium (with keys = 0.1 s~1) and rate limited kinetic (with kexs = 0.005 s~1) models
is shown.

4.5. Thermal effects

In the previous section, we investigated the low contrast experiment and the isothermal model. Without the consider-
ation of thermal effects, however, it is impossible to find a suitable value of keys to match the high-contrast experimental
data. This is illustrated in Figs. 16 and 17, where the gas saturation distributions are compared for constant Cg; based on
a time-averaged temperature of 19 °C and variable temperature-corrected values of Cs. For the constant temperature cases,
the gas distribution evolution appears to be the same for both low and high contrast experiments. Since the temperature
variations were small during the low contrast experiment, very similar results are also obtained for the variable temperature
as shown in Fig. 16. However, the results for the high contrast experiment in Fig. 17 show a substantially different spatial

133




Clanek v Journal of Computational Physics

J. Solovsky et al. / Journal of Computational Physics 405 (2020) 109178

— 0,12 L
b 0,3 ]
© 0,09 4“2
_g g 0,2F il
= 0,06} 1%
£ F 0,1} 1
7 0,03 1 =
S <]
0 . 1L P S R 0 I
01 2 3 4 5 6 7 8 9 o 1 2 3 4 5 6 7 8 9
time ¢ [days] time ¢ [days]
| Numerical results Experimental data ‘ ‘ Numerical results Experimental data
(a) Low contrast, Port D4. (b) High contrast, Port D4.
T 0.1F L N 1 —of T .
o 0,081 1 200} 1
20,06 ]
z £ 0,06] .
S 0,04 1 E
£ 0,02 1 g 0:03p ]
3 © o —
0 0 1 R O VT R 0 L T .
01 2 3 4 5 6 7 8 9 0o 1 2 3 4 5 6 7 8 9
time ¢ [days] time ¢ [days]
| Numerical resulis Experimental data ‘ | Numerical results Experimental data
(¢) Low contrast, Port D6. (d) High contrast, Port D6.
. . . T T
T i
o5 0,15 F 1 »w 0,21 1
5 g
=] =
= 01 1 £
E ; 0,1F B
£ 0,05 4 E
&} &)
0 e s N 0 I
01 2 3 4 5 6 7 8 9 o 1 2 3 4 5 6 7 8 9
time ¢ [days] time ¢ [days]
| Numerical results Experimental data ‘ ‘ Numerical results Experimental data
(e) Low contrast, Port E4. (f) High contrast, Port E4.
. . T T
F 1 Tos3t §
o
i 1 goz2r
5
L 1 201t
z
O
. L 0 .
0 1 7T 8 9 o 1 2 3 4 5 6 7 8 9
time ¢ [days)| time ¢ [days]
| Numerical results Experimental data ‘ ‘ Numerical results Experimental data

(g) Low contrast, Port F3.

Fig. 13. Large tank experiments, gas saturation Sg, selected ports for the low and high contrast cases.

(h) High contrast, Port F3.

17

gas evolution compared to the constant temperature cases that include the barrier effect below the fine layer and larger

downstream spreading of the gas phase.

4.6. Stage 2: dissolution

For the dissolution process, an analogous model calibration procedure (with the temperature-corrected Cs) was carried
out with the resulting optimal value of kgis = 0.002 s~!, the same again for both experiments. In Fig. 13, the comparison of
the numerical results to the experimental data at selected ports demonstrates that despite of the complexity of the large

tank experiments, the numerical model is able to capture the gas saturation evolution sufficiently well.
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Fig. 14. Gas saturation Sy, various coefficients for exsolution.

4.7. Discussion of results

In Fig. 18, the water flow velocities (given by Darcy’s law in Eq. (2)) at the level of the injection port (y =0.1 m) and
below the fine sand layer (y = 0.7 m) are shown. During the large tank experiments, there are not so significant changes in
the flow rate as in the column experiments, therefore, we show the velocity profiles at the start of the experiment and after
48 hours when the gas accumulation is observed below the fine sand layer (although less significant than during the column
experiments) for both low and high contrast experiments. There is a difference in the velocity magnitude at the level of
the injection port at the later time because at t =48 h in the high contrast experiment, CO;-saturated water injection had
already ended, while it was still occurring at this time in the low contrast experiment. The corresponding gas saturation
distribution is shown in Fig. 15 and Fig. 17 for low contrast and high contrast (non-isothermal model), respectively. The
numerical results show that the velocity is similar for both low and high contrast experiments and a decrease in the
velocity caused by the accumulated gas can be observed for the high contrast experiment in Fig. 18b. The y-axis range is
chosen with respect to the velocity magnitude in the tank, therefore, the maximal value of 2.85 mday~! in the vicinity of
the injection port is out of the range in Fig. 18.

The computational study revealed that the equilibrium mass transfer model overpredicts the CO; exsolution in the
vicinity of the injection port in the large tank experiments, where the two dimensional flow field is present. For specific
values of the mass transfer rate coefficients, the kinetic model is able to capture the experimentally observed gas saturation
evolution. The optimal values of the mass transfer rate coefficients differ for the exsolution and dissolution processes,
indicating that the exsolution is approximately 2.5 times faster than the dissolution. This effect indicates that these processes
differ and further emphasizes the necessity of the kinetic mass transfer model that can take this difference into account.
In general, the mass transfer rate coefficients keys and kgjs are considered quite low, which means that the mass transfer
is rate-limited. However, it is beyond the scope of this paper to rigorously investigate the mass transfer coefficients as a
function of flow properties and further research is needed that would extend the understanding of the gas evolution in
porous media.

5. Concluding remarks

Potential contamination of shallow freshwater aquifers caused by leakage of CO, from deep geologic sequestration sites
constitutes a significant risk, the extent and severity of which depend on complex multiphase flow phenomena that control
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Fig. 15. The gas saturation evolution using the near equilibrium (left) and rate-limited kinetic (right) mass transfer models for the low contrast experiment.

the distribution of CO, in the aquifer. One of the least well-understood aspects of the multiphase flow system is the process
of CO, mass transfer between aqueous and gaseous phases in the presence of flowing groundwater within macroscopic,
heterogeneous, porous media systems. Because these processes are exceedingly difficult to observe in the field directly, this
study uses experimental data gathered from well-controlled, large-scale laboratory experiments to test the capabilities of an
innovative multiphase flow model capable of representing various types of mass transfer processes.

In general, the results indicate that multiphase CO; evolution attenuates transport within shallow aquifers, due to dy-
namic, non-instantaneous exsolution and dissolution processes, and the mathematical model proposed in this work was able
to adequately capture the most important processes observed in the experiments. The kinetic mass transfer model was able
to reproduce the near-equilibrium mass transfer observed in the quasi-1D column experiments as well as the much slower
exsolution and dissolution observed in the 2D large tank experiments. The numerical and experimental results presented
here also indicate that in the more complex 2D case, dissolution and exsolution rates differ, and the kinetic model was able
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Fig. 16. Gas saturation Sg, comparison of isothermal (left) and non-isothermal (right) models for low contrast experiments.

to quantify this difference. The model was also able to explain significant effects that temperature had on multiphase CO,
evolution in multi-dimensional porous media systems.

In both experiments, the model captured the effect of heterogeneity on the gas accumulation and confirmed that het-
erogeneity, even in the simple form presented in the experiment, plays a significant role in the multiphase CO; evolution.
The nuanced effects of this system component need to be carefully addressed in the future by analyzing more complex het-
erogeneous scenarios. In both cases studied herein, we decided to use the uniform sampling approach of the mass transfer
coefficients values and, therefore, used rather coarse meshes. Such a sensitivity study allowed us to investigate the impact
of various mass transfer coefficients on the numerical results.

The difference between the quasi-1D and 2D cases (where the equilibrium and rate-limited approaches, respectively,
were found applicable) can possibly be explained by different flow rates of water through the gas-occupied region of the
system. However, the velocity profiles shown in Figs. 10 and 18 indicate that the velocity magnitude would not be solely
responsible for the fundamentally different results for the quasi-1D and 2D case. The flow velocity magnitude in the 2D
case is comparable to the velocity magnitude during the CO,-saturated water injection for the slow column experiments.
Moreover, during the clean water injection for all column experiments, the flow rate varied and a rather low inflow rate of
6 mimin~! was employed at least once.
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experiments. The position of the injection port is depicted using the dashed line.
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In the quasi-1D case, water is forced through the gas accumulation, and the dynamic inter-phase contact is therefore
likely fast enough that equilibrium mass transfer is applicable. In the 2D case, however, the water flow paths can more
easily avoid the gas phase, meaning slower contact with the gas phase, and thus slower dissolution. Further investigation
is needed to rigorously test these ideas. The results presented here also demonstrated that multiphase CO; evolution is
sensitive to temperature changes. We thoroughly investigated the mass transfer process, however, many processes that
could affect the mass transport but were not the driving mechanisms for the processes studied here were neglected or
simplified in this work. These include the dependence of all quantities on temperature and mechanical dispersion.

In this paper, we discussed the fundamental difference of mass transfer and transport processes between the quasi-1D
and 2D cases. Hence, a question arises about the nature of these processes in 3D and their relation to the 2D case. Such a
question is beyond the scope of the present study, however, based on the results presented here, such a study seems to be
a necessary next step in understanding complex 3D field-scale processes.
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ture and zeolite temperature.
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1. Introduction

The transition from fossil fuels to cleaner and renewable energy
sources is currently one of the highest world priorities. According
to the International Energy Association (IEA), buildings consume
35% of the world energy and cause approximately 33% of global
CO, emissions [1]. Solar energy is one of the most suitable choices
for replacing fossil fuels. However, to use solar energy to its maxi-
mum potential, proper heat energy storage has to be designed.

In recent years, various approaches for the heat energy storage
have been proposed and studied. These approaches can be divided
into three categories based on how the heat is stored: latent, sen-
sible, or thermo-chemical. The first one uses Phase Change Ma-
terials (PCMs), where the latent heat is released when the phase
change occurs. Review of these materials and their usage in the
heating of buildings are presented, e.g., in [2-4]. In the sensible
TES (Thermal Energy Storage) system, the energy is stored or re-
leased by increasing or decreasing the temperature of the storage
medium. A one or two-tank molten salt are examples of such ma-
terials [5,6]. The state of the art of this approach can be found in,
e.g., [7]. The last category is the thermo-chemical energy storage,

* Corresponding author.
E-mail address: jiri.mikyska@fjfi.cvut.cz (J. Mikyska).

https://doi.org/10.1016/j.ijheatmasstransfer.2019.119050
0017-9310/© 2019 Elsevier Ltd. All rights reserved.

where the heat AH is released due to a chemical reaction
AB+ AH <<= A+B

for some materials A and B, where the symbol. represents a chem-
ical bond. The modelling and the numerical simulation of these
energy storages are our main subjects of focus. There exist many
concepts and materials which can be used for energy storage. Hy-
drogen systems with metallic hydrides for storing hydrogen were
one of the first concepts in the 90s for the hydrogen engines. Later,
a concept for thermal energy storage was proposed in [8]. Other
possibilities include carbonate systems with CO, [9] or calcina-
tion with CaO [10]. A review on high-temperature thermo-chemical
heat energy storage can be found in [11].

In this work, we are interested in the modelling of the thermo-
chemical heat energy storage using the zeolite, which is a crys-
talline aluminosilicate with a specific structure and a large inter-
nal surface area. A specific zeolite (e.g., 13X) can adsorb water and
release heat. Such process can be described as

AH,0 + AH < A+ H,0.

The properties of the zeolite 13X have been studied experimentally
and also theoretically [12-14]. Furthermore, a variety of numerical
models has been proposed. In [15,16], a numerical model with only
one temperature has been presented. The model includes a heat
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loss due to the reactor wall. The numerical model is solved us-
ing COMSOL Multiphysics software [17], but no additional informa-
tion about the numerical solver is given. Another one-temperature
model has been presented in [13] where the momentum conserva-
tion is calculated with the extended Brinkman equation [18,19] and
again, no information about the numerical solution is provided. In
[20], a two-dimensional and a two-temperature model is presented
and solved using the Gear’s method [21] in Matlab software pack-
age [22]. In [23], a particle simulation in a rotating drum was per-
formed to survey particle mixing. The adsorption was implemented
in a CFD discrete particle solver for thermodynamic studies. Simu-
lations were performed using the Navier-Stokes Solver ANSYS FLU-
ENT [24]. In [25], a two-temperature model is developed, and a
finite volume approach for the discretization is used. The resulting
differential equations are solved again using the Gear’s method.

In this work, we use a different approach from those published
previously. In our model, we employ a two-temperature approach.
One temperature (T) is assigned to the fluid, the other one (Ts)
to the zeolite (solid matrix). Therefore, we do not assume a local
thermal equilibrium and study the behaviour of individual temper-
atures before, during, and after adsorption or desorption process.
In Section 4, we will show that with an appropriate parameter
adaptation, the temperature difference can be significant. There-
fore, the assumption of the local thermal equilibrium is not pos-
sible, and the two-temperature model is necessary for precise sim-
ulation. One another feature arises from this two-temperature ap-
proach. In this approach, numerical constants such as the heat ca-
pacities are easily computable for both systems, and no averaging
between them or other procedure has to be performed. Another
difference from most published papers is our numerical solver,
which is based on the mixed-hybrid finite element method (MH-
FEM) with a semi-implicit approach for the time discretization
[26]. MHFEM is superior to the methods described above in that
it approximates scalar variables and their gradients with the same
order of accuracy. In the previous approaches, which are based
on finite difference, finite volume or classical finite element meth-
ods, the gradients of scalar variables are evaluated by performing
numerical differentiation, which leads to the loss of accuracy. As
these gradients are needed to evaluate transport velocities, the ac-
curate approximation of these gradients is important for the ac-
curacy of the whole transport simulation. Another unique feature
of our approach is the use of the operator splitting approach. This
approach enables to decouple computation of the transport from
the computation of the adsorption. It is therefore possible to use
different time steps for the computation of transport of heat and
mass between the cells and for the processes occurring within a
cell (adsorption). As the speeds of both processes can be very dif-
ferent, the splitting technique make it possible to use smaller time
steps for adsorption without the need for unnecessarily small time
steps for the transport simulation. This results in much more effi-
cient computation compared to the case when all these processes
are treated using the same time stepping scheme.

The structure of this paper is as follows. In Section 2, the math-
ematical model is presented. In Section 3, a description of the nu-
merical solution is provided. In Section 4, computational studies
for the charging and discharging processes of the thermo-chemical
energy storage are presented. In Section 5, the results are discussed
and some conclusions are drawn.

2. Physical and mathematical model

In this paper, the studied system is a fixed packed bed filled
with zeolite 13X beads. Dry (humid) air is supplied to the bed, and
the desorption (adsorption) process of the water vapor in the zeo-
lite takes place. During the desorption (adsorption) process, the ze-

olite beads do not change position in the bed and create a porous
medium with a fixed solid matrix.

Our mathematical model consists of four balance equations rep-
resenting the balance of mass, the water mass fraction, the energy
of the fluid, and the energy of the solid matrix:

9
5L +V-(pv) =0, )

ow, a
¢PfT;V + oV - Vwy + V'(*prpmVWw) =-(1- ¢)ps£MWq

(2)
(;5/)fcl,W + V- (pseTpv — ke VTy) = Tp V- (pscv)
aP
—¢m—ﬂ(Ts—Tf):0, 3)
Ty dq
1 _¢)105C5W - V'(ksVTs) _ﬂ(Tf - Ts) =(1- ¢)ps§AH,
(4)

respectively, where ¢ [-] is the porosity, pof [kg m~3] is the fluid
mass density, v [m s~!] is the velocity of the fluid, wy, [-] is the
water mass fraction, Dpp [m2 s=1] is the diffusive coefficient, ps
[kg m~3] is the density of the zeolite particle, g [mol kg~!] is the
adsorbed water vapor in the zeolite, My, [kg mol~'] is the molar
mass of water, ¢, [J kg=' K='] is the specific heat of fluid at con-
stant volume, Ty [K] is the temperature of the fluid, k; [W m~1 K=']
is the thermal conductivity of the fluid, P [Pa] is the pressure,
[W K-1] is the heat transfer coefficient between the fluid and the
solid matrix (zeolite), Ts [K] is the temperature of the solid matrix,
s [J kg=! K~1] is the specific heat of solid matrix, ks [W m~! K~1]
is the thermal conductivity of the solid matrix, and AH [J mol~]
is the isosteric heat of the adsorption.
The velocity v of the fluid is given by the Darcy’s law

K
= (vpP-
v M( P—prg). (5)

where K [m?] is the intrinsic permeability, u [Pa s] is the dynamic
viscosity, and g [m s—2] is the gravity vector. In our model, the
gravity is neglected, i.e., g = 0. The diffusive coefficient Dpp, is cal-
culated using [27]

D pm = ¢fDmv (6)
where 7 is the tortuosity and Dy, is the molecular diffusion. The
tortuosity is calculated using Millington-Quirk model [28]

T=¢% 7
The system of the balance laws is supplemented by the equation
of state of the ideal gas [29]

(1 =ww)py  Wupy
P(T =|—>——+—— |RT, 8
(T. oy, ww) ( v )R ®)
where M, is the molar mass of air and R is the universal gas con-
stant. The heat transfer coefficient 8 is modelled [24] using

ke(1—
B = GW’ (9)

where d; is the diameter of the zeolite particle and the Nus-
selt number Nu expresses an increase in the heat flux by convec-
tion compared to the case when there is only conduction and no
convection. The Nusselt number is calculated using correlation by
Gunn [30]

Nu = (7 - 106 + 5¢2)(1 n 0.7Re°»2pr%)

+(133 - 2.4¢ +1.2¢)Re"7Pr3, (10)
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where the Reynolds number Re and the Prandtl number Pr are
calculated using

CpHb
pr=-12, (11)

kf

p[ds
Re = L =|v|. (12)

m lv|
The specific heats ¢, and c, are calculated using

Cy(Ww) = WyCpw + (1 — Wy)Cpa, (13)
Cp(Ww) = WywCpw + (1 —Wy)Cpa, (14)

where ¢;; for i € {v, p} and j € {w, a} are the specific heats at con-
stant pressure (subscript p) or volume (subscript v) of the water
vapor and air, respectively.

The adsorbed water vapor q = q(t, x) in the zeolite is modelled
using the kinetic model. We choose the Linear Driving Force (LDF)
model which is frequently used for the adsorption and desorption
of the water vapor in the zeolite (e.g., [15,16,25]). This model can
be formulated as

il
3t = kior @ — @), (15)

where kjp, > 0 is the rate of the adsorption and g* is the equilib-
rium state. The rate of the adsorption is calculated using the rela-
tion [31]
k*
kipp = —— (16)
PsRT; %

where k* is an empirical numerical constant. The equilibrium state
q* is model using the Langmuir-Freundlich isotherms

. Gmax(bP)'
B EN DI

where gmax is the maximum amount of the adsorbed water vapor
in the zeolite and Py, is the partial pressure of the water vapor. In
the previous equation, b and n are parameters of the kinetic model,
which can be calculated using [32]

(17)

AE /Ty
b = bg exp <ﬁ(7 - 1)) (18)
11 T
ﬁ—n*ﬁ"‘(“?)* (19)

where ng, AE, «, and gmax are empirical constants. The tempera-
ture Ty is set to Ty = 293.15 K. The isosteric heat of the adsorption
AH is obtained using [32]

AH = AE — aRTyn? In (Lq). (20)

qmax -

In summary, our mathematical model consists of five equations:
four balance Eqs. (1)-(4) and one kinetic Eq. (15). To complete the
mathematical model, the equations have to be equipped with ini-
tial conditions and an appropriate set of boundary conditions. The
initial conditions read as

P(0,x) =P VxeQ, (21)
W (0,X) = Wi vxeQ, (22)
T(0.x) =T{™, VxeQ, (23)
T,(0.x) =T VxeQ, (24)
q(0,x) =q"™,  VxeQ. (25)

In order to describe the boundary conditions, we define 02 as the
boundary of € and for each variable ¢ € {P wy, T; Ts} denote
I'y and g, the Dirichlet and the Neumann part of the boundary,
respectively. These parts of the boundary have to satisfy

Ty, UT,, =32, (26)

TyNTy, =4, @7)

for ¢ e {P. ww, Ty, Ts}. Then, an appropriate set of boundary condi-
tions for all ¢ € (0, tf,q) reads as

P(t,x) =PP, ¥xeTh, qp(t,x)-n=q"", Vxely, (28)

Qw, (t,X) - n =g, VxeTy,,,

(29)

wu(t.X) =wd, Vxe Cw,,

W)

Tp(t,X) = T;D), Vxelr., qp(tx) n=g;’, ¥xelq,.

(30)

T(t.x) =T", Vxely, qpt.x) n=g{", VxeTy,. (31)
where n is the outward normal vector to the dQ2 and q,, for ¢ € {P,
ww, Ty, Ts} is the conservative flux.

3. Numerical solution

In this section, we describe the numerical algorithm for solv-
ing the mathematical model. By At, we denote the time step and
define the time level t; by

t, = nAt, n e Np. (32)

The system of Eqs. (1)-(4), (15) from the time level t, to the new
time level t,,q is solved in two steps using the operator splitting
technique [33]. First, the system (1)-(4) is solved with time step
At and zero right-hand-sides, i.e. without the adsorption. Secondly,
the following system of equations

&l
3t = kior @ — ). (33)
oWy _ aq
¢)0fT =-(1- ¢)Psme, (34)
aT; il
(1= $)pscs 3 = (1= @)pit AHL (35)

is solved with the time step At and with initial values being the
solution of the first step. After these two steps, one computational
time step At is completed. This splitting technique is needed be-
cause the adsorption is a very rapid process compared to the con-
vection and diffusion. Since the adsorption process is rapid, the
choice of the computation step At is restricted. When the compu-
tation step At is too large, the simulated mass of water vapor ad-
sorbed in the zeolite can exceed the total mass currently present in
a given cell, thus resulting in negative wy, and a failure of the com-
putation. This problem occurs, for example, when wy, = 0.01131,
T, =294.15 K, g=5 mol kg=', At =0.1s, v=0 m s, and with
parameters from Table 2. After a single time step At using the
forward Euler method, the values will be g =5.00213 mol kg1,
wy = —0.0583083, and the simulation will fail. With the strategy
presented in Section 3.2, the computational steps can be adapted
and the situation when wy, < 0 is avoided. In the next sections, we
will describe both steps of this algorithm in details.
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3.1. Numerical solution of Eqs. (1)-(4) with zero right-hand-sides

The first step is solved using the mixed-hybrid finite element
method implemented in a numerical library NumDwarf [26] which
is designed to solve a system of n partial differential equation in
the form

n 97 n n n
ZNi,ja—t’ +> - VZi+ V.[mi<—20i_jvzj +wi) + szau]
j=1 j=1

j=1 j=1

+3nZ=f (36)

j=1

fori=1,..., n, where Z; = Z;(t, x) are the unknown functions, Njj,

rij» and m; are scalar coefficients, u;;, w;, and a;; are vector coeffi-
cients, D;; are matrix coefficients, t > 0 is time, and X € R? is the
spatial variable, where d is the dimension. The solver implemented
in the NumDwarf library can solve the system (36) for an arbitrary
dimension. The system (36) is supplemented by an initial condi-
tion

Z0x)=2", VxeQj=1,...n (37)

and boundary conditions for all ¢ € (0, tgnq),

zj(t,x)zz;m, Vxelz coQ.j=1.....n (38)

qi(t.x) - n=q",  VxelgcaQi=1,..., n, (39)

where q; is the conservative flux

n
q = mi(‘ZDiAjVZj +Wi)~ (40)
j=1

The NumDwarf solver is based on the mixed-hybrid finite ele-
ment method with the semi-implicit approach for the time dis-
cretization. The main advantage of the mixed-hybrid finite element
method is that the scalar unknowns Z(t, X) and their fluxes q; are
approximated with the same order of accuracy [34]. This prop-
erty is not present in the finite volume methods where the ap-
proximation of the fluxes is less accurate [35]. In the derivation
of the NumDwarf solver, the authors assumed that the scalar un-
knowns Z(t, x) are continuously differentiable with respect to time
t, weakly differentiable with respect to spatial vector x, and fluxes
q; belong to the function space H(div, €2) [36]. Let K}, is the spatial
discretization of the computational domain 2. On each element
K € K, the solver approximates q; in the lowest order Raviart-
Thomas-Nédélec space RTNy(K) [34,37]. Furthermore, the ith equa-
tion of (36) is discretized using a finite volume approach to obtain
the averages of Z; over K € K,

1
i /k Z;(t.x)dx, (a1)

where |K| is the measure of element K. The resulting system of
ODE:s is discretized in time using the finite differences
dZix  Zix(tee1) = Zjx (&)

e At (42)

forj=1,..., n. A semi-implicit approach for the time dicretization
is adopted. In the time step from level t; to f;, . the unknowns
Z; in rj; are evaluated from level ¢4, in a;; from time level . In
each time step, a single sparse system of linear equations is ob-
tained and solved using a suitable direct or iterative solver. Here,
the UMFPACK solver [38] is used. For more details the reader is
referred to [26].
As the primary unknowns, we choose

Zy =P, Zy =wy, Z3=Tf, 24 =T, (43)

Zig(t) =

i.e, the pressure, the mass fraction of the water vapor, the tem-
perature of the fluid, and the temperature of the zeolite, respec-
tively. With these primary variables, the system of Eqgs. (1)-(4) can
be written in the form of Eq. (36), if the non-zero coefficients in
(36) are chosen as

) ) )
¢ P Par 0
N=] O bpy 0 0 . (44)
0 0 Ppscy 0
0 0 0 (1-®)pcs
0 o0 0 0 o5
_ 0 PV 0 0 _|Pr
““lo 0 cquo O m={5] 43
0 0 0 o0 1
L N 00 0 o0
p_ [0 Dm 0 0 o0 0o o
“lo o0 k o 1o o B8 -8
0 0 0 k 0o 0o -8 8

3.2. Numerical solution with the source/sink terms

In the second step of our numerical method, Eqgs. (33)-(35) are
solved in time interval [t;, t;,1] using the fourth order Runge-Kutta
method [39]. With time step n, the method iterates the solution
using

q(t +1.%) = q(t. x) + g(kg” +2k7 + 2k + kD), (47)
Wi+ 10,20 = Wi (6.0 + (K + 2k + 2K + k), (48)

Tt + 1,30 = T + ¢ (kY + 2K + 2k + k). (49)

Denoting the right-hand-side of the Eqs. (15), (2), and (4) by

FO@ww. ) = kipe (" — @), (50)
FO(q W, Ty) = — a- ¢)Psk(%f(¢ - Q)Mw’ (51)
FO g, Ty = LN @O o)
s
respectively, the coefficients k}“ are calculated using
kY = FO(q. ww. To). (53)

kD = fO(q+ k(D /2. wy + nki? /2. T, + 1k 12), (54)
kP = FO(q+nksD /2. wy + nk$? /2. T + 1k 2), (55)

k9 = FO(q+nksD. ww + nk$? . T + k). (56)

for i =1,2,3. We start our computation with step size n = At. If
wyw (t +1,X) <0, the computation step is discarded and the step
size is adapted using

6

Wy .
(2) (2) (2) (2)
K 4 2k 4 2k + K

n=- (57)

The computation continues until t =t; 4.
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Table 1 Table 3
Parameters in the balance equations. Meshes and corresponding time steps
used in the computation study.
parameter value
- 0.35 ID number of elements At [s
ber of el
Dy [m2 57! 1.9.10°°
K"irrllzl ] 1010 o 4107
1 [Pa's] 1.8205.10-5 § ?go f'}g,z
R[] mol-1K-] 8.3144621 1 200 5 : 10-4
M, [kg mol—-1] 0.02897 )
My [kg mol-1] 0.018
Cya [J kg™t K] 718
o kg K! 1460 . . .
C:'awuukgg,l 1(*']] 1005 perscript indicates which mesh was used) are measured in L; and
CP:W kg ' K] 1870 L, norms which are defined as
¢ [J kg™ ' K] 880
ke [W m-! K1 30.10°3 @ _ (@) _ g(exact)
v [[w m 1<*']] x errory) = sup /ﬂ [s9 . x) —s (t. x)|dx, (58)
d [m] 2.103 e<[0.tma]
ps [kg m~3] 1152
g[ms?] 0 1
; . 2 2
errorg> = sup (/ [s9 (. x) — s@D £, x)| dx) , (59)
Table 2 te[ 0.t ] N2
Parameters of the kinetic X . . X X .
model for the zeolite 13X. where () is the exact solution. As this solution is not avail-
Data taken from Gaeini et al. able, the solution on the finest mesh is used as the reference so-
[16]. lution. Having the errors measured, the experimental order of con-
parameter value vergence EOC can be determined as
1 kg! 19 i— i
G [mol kg™ . Inerror%~Y —Inerror¥
by [Pa] 4.002 Eoc® — L L (60)
AE [J mol-1] 65 572 i In2 .
no [-] 2.976
al-] 0.377
* 1
ks ’ List of symbols
Latin:
. b parameter of the kinetic model
3.3. The fu” algorlthm cy specific heat of fluid at constant volume
cp specific heat of fluid at constant pressure
In this section, we summarize the essential steps of our numer- [ specific heat of solid
ical method: Dpm diffusive coefficient
ds diameter of zeolite particle
0. Let a final time tg,,;, time step At, and initial and boundary EAO; ?XPer“F‘e}‘:tal °rfdedr of convergence
conditions be given. Set the iteration counter n = 0. o :S;::t?f'z d:;tpfios sorption
1. Solve system (1)~(4) from time level t; to time level f,1 using kLI"F thermal conductivity of fluid
the numerical procedure defined in Section 3.1. ks thermal conductivity of solid
2. Solve system (33)-(35) from time level t, to time level t,,; us- L lenght of computation set
ing the numerical procedure defined in Section 3.2. Set the ini- ’:’W ;‘)f,;é?:fifivﬁf hv
. e . . T 1 1
tial conditions to the previously calculated values on time level Nu Nusselt number
thyt- P pressure
3. If ty,1 = tgya, terminate algorithm. Otherwise, set n =n+ 1 and Pr Prandtl number
go to Step 1. q water vapor adsorbed in zeolite
q equilibrium state
qmax maximum amount of water vapor adsorbed in zeolite
4. Results Re Reynolds number
t time
In this section, we present simulated results using the model Lfinal final time of simulation
described in Section 3. The numerical values for the coefficients T temperature of fluid
. . . T temperature of solid
used in Eqs. (1)-(4) are presented in Table 1. The numerical values v velocity
needed for the kinetic model are provided in Table 2. These values Wy water mass fraction
are used for both adsorption and desorption processes. Greek:
In our numerical study, the axial flow is neglected, therefore, o E""':"t‘ﬁerf"f k‘“;‘? "‘fde‘
a 1D model is satisfactory and the computation set 2 is an inter- fﬂ bzin d;arr;s:fréoe clen
val Q = (0,L). In the examples below, we use L = 0.5 m. A graph- P porosity
ical schematic drawing is depicted in Fig. 1. Two processes will oy density of fluid
be studied: the charging and the discharging process. During the Ps density of zeolite
charging process, hot air is drying the zeolite and the water vapor T tortuosity
dsorbed in the zeolite is being desorbed. During the dischargin, : fime step
adsorbed 1 " Z ! 1 ng . 1 .g X ging Q computation domain
process, humid air is supplied, the water vapor is being adsorbed Subscripts:
in the zeolite, and the heat is released. In both cases, a computa- f fluid
tional study is performed. Four different meshes and correspond- S 50]‘;1
ing time steps are used. The individual time steps and meshes are 2’ ::‘: er

presented in Table 3. The errors of the numerical solution s9 (su-

146




Clnek v International Journal of Heat and Mass Transfer

6 T. Smejkal, J. MikySka and R. Fucik/International Journal of Heat and Mass Transfer 148 (2020) 119050
at x=0: at x=0.5:
charging: w,, = 0.009 [-] P =10’ [Pa]
T, =423.15[K]
‘X, ‘)('2 ’X] 'X,z
0.1 0.2 5

0.0 .
w,, = 0.01131 [-]
T, =295.15 K]

discharging:

0.4 0.
x[m] P =10 [Pa]

Fig. 1. A schematic drawing of the thermo-chemical battery with the Dirichlet boundary conditions during the charging process (red color) and during the discharging
process (green color). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

4.1. Charging process

In the first part of the computation study, the charging of a hy-
pothetical thermo-chemical battery is modelled. The charging pro-
cess is carried out by drying the zeolite with hot air. In our simu-
lation, the temperature of the air is 423.15 K (150 °C). Since we do
not have any experimental data, the results from this example will
be used as the initial condition for the modelling of the discharg-
ing process. The initial conditions are set to

ptin) — 105 pa, (61)
wiin) — 0.00468, (62)
Tf“"“ =294.65 K, (63)
10" = 294.65 K, (64)

g™ =17.5 molkg'. (65)

The boundary 02 consists of two points x=0 and x =L. The
Dirichlet boundary conditions are

P® — 105 Pa, for x = L, (66)
wiP = 0.009, for x =0, (67)
Tf(”) =423.15 K, for x = 0. (68)

The Dirichlet boundary conditions are also depicted in Fig. 1. The
value of the water vapor represents a relative humidity of approxi-
mately 52% at 20 degrees Celsius. At P(t, 0), we prescribe Neumann
boundary condition for the flux

gp -0 = v IO — 0311814 kgs ' m=3,  (69)

where n is the outward normal with respect to the corresponding
part of the 0. This flux numerically represents the airflow rate
of 1liter per second in a tube with a diameter of 0.07 m. In all
other cases we prescribe zero Neumann boundary condition. The
computation time is set to tfj,q = 12 h. During the charging pro-
cess, the amount of water vapor in the zeolite is decreasing and
after approximately 11 h the system is in equilibrium. The result-
ing water vapor q adsorbed in the zeolite profile after 12 h is given
in Fig. 2. Furthermore, the time developments of the water vapor
adsorbed in the zeolite g, the water fraction wy, and the tempera-
tures Ty, Ts at chosen points are depicted in Fig. 3a-d, respectively.
The chosen points are x; = 0.01 m, x, =0.11 m, x3 =0.21 m, and
X4 = 0.41 m. The temperature steadily rises in all points as the hot-
ter air is being pushed inside the tube. From the time development
of the mass fraction of the water (Fig. 3b), one can observe the

5.9 . . . : . . 3
N
5.8 E 3
E ~ E|
BTE > E
| T E ~ E|
£ E '~ El
3 56F o~ E
=1 E ~ E
St ~ %
=55 F N E
E N E
= ~ . 3
5.4 E ~ E
E iR
5.3 E L 1 L 1 L 1 L 1 L E|
0 0.1 0.2 0.3 0.4 0.5
z [m]
Fig. 2. Water vapor q in the zeolite after the charging (drying) process at the final
time t =12 h.
Table 4

Errors and experimental order of convergence of chosen
variables during the charging (drying) process. The errors
and experimental orders of convergence (EOC) are defined
by Egs. (58)-(60).

Ty

mesh ID  error L; error L, EOC! EOC?
1 8.49 - 102 4.90 - 10!

2 3.82 . 102 2.21 .10 1.15 1.15
3 130102 754 155 155
Ts:

mesh ID error L; error Ly EOC! EOC?
1 8.35 . 10% 4.82 - 10!

2 3.72 - 10? 2.15 - 10! 117 117
3 125 - 10? 7.24 1.57 1.57
q:

mesh ID  error L; error L, EOC'  EOC?
1 3.54 - 10! 2.05

2 1.54 - 10! 8.89.10°! 1.20 1.20
3 5.11 2.95.10°! 1.59 159
Wy

mesh ID  error L; error L, EOC'  EOC?
1 2.63.10°! 1.52-1072

2 1.25.10"" 7.20.10°3 1.08 1.08
3 4.42-102 2.55.10°3 150 150

strong increase of the water vapor in the first hours of the pro-
cess. This increase is caused by the drying process when the water
vapor is being desorbed from the zeolite and transported in the
fluid. The most interesting is the time development of the water
vapor adsorbed in the zeolite. In the first point x; = 0.01 m, the
zeolite is dry in about 3 h. In other points the process is slower. In
the last point x4 = 0.41 m, the drying process is finished after ap-
proximately 11 h. The convergence test, which was described at the
beginning of this section, is presented in Table 4 where the errors
of numerical solutions and experimental orders of convergence are

147




Clanek v International Journal of Heat and Mass Transfer

T. Smejkal, J. MikySka and R. Fucik/International Journal of Heat and Mass Transfer 148 (2020) 119050 7

0.035
0.03

— 0.025
ap
= o 0.02
3
£ < 0.015
Sl
0.01
0.005 - 7
I I I I | 0 1 1 I I |
0 2 4 6 8 10 12 0 2 4 6 8 10 12
time [h] time [h]
a) g b) wy,
440 440
420 420
400 400
_ 380 380
= <
. 360 ., 360
&~ &~
340 340
320 [ 320
300 300
280 1 1 1 1 | 280 1 1 1 1 1
0 2 4 6 8 10 12 0 2 4 6 8 10 12
time [h] time [h]
c) Ty d) T,
Fig. 3. Time development of the given primary variables at chosen points during the charging (drying) process using the finest mesh (mesh 4).
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Fig. 4. Time development of the difference in temperatures Ty — T; at chosen points during the charging (drying) process using the finest mesh (mesh 4) (left). The magnifi-

cation of the first hour of the process (right).

calculated. In all cases, the experimental order of convergence is
more than one. Therefore, the convergence of our method is veri-
fied. In Fig. 5, the comparison of the solutions on different meshes
is presented. The time developments of the fluid temperatures Ty at
different points are depicted. One can observe that the most signif-
icant changes are in the first point x = 0.01 m. In other cases, the
time developments are almost identical. However, in all cases, the
numerical solutions on the coarse mesh are underestimated.

As we are using a two-temperature model, we can study a tem-
perature difference between the fluid and zeolite temperatures. In
Fig. 4, the time development of the difference Ty —Ts of chosen
points is depicted. One can observe that the difference is always

non-negative, therefore, the fluid temperature is always higher
than the temperature of the zeolite. The most significant differ-
ence is at the left boundary (point x; = 0.010 m) where the value
is up to 9.5 K. This is mainly caused by the boundary condition
T;(t,0) = 423.15 K which forced the temperature of the fluid to
remain at this value at the left boundary. In the other chosen
points, the difference is also positive with a higher difference in
the first hour of the drying process. The difference at the begin-
ning is caused by the desorption of the water vapor in the zeolite
when the zeolite is cooled down. After approximately six hours,
the difference in temperatures is negligible because the desorp-
tion process is almost finished. This is in agreement with Fig. 3a
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Fig. 5. Comparison of the numerical solutions Ty during the charging process on different meshes.

where the amount of adsorbed water vapor g in the zeolite is
depicted.

4.2. Discharging process

The second part of our numerical study is the discharging pro-
cess when the zeolite adsorbs water vapor and its temperature
rises. This is caused by the relatively wet air which is brought
into contact with the zeolite. The discharging process will be stud-
ied in two cases. First, with the diameter of the zeolite particles
ds; = 0.002 m. Second, we increase the diameter to ds = 0.01 m.

As an initial condition for the water vapor adsorbed in the ze-
olite g, the resulting state after the charging process is taken, see
Fig. 2. Other initial conditions are set to

P(in) = 10° Pa, (70)
wim = 0.00468, (71)
T;i”i) =294.65K, (72)
T = 294.65 K. (73)

The boundary conditions have identical form as in the charging
process, only the numerical values for the temperature and water
mass fraction are different:

wiP = 0.01131, for x = 0, (74)
Tf(D) =295.15 K, for x = 0. (75)

The mass water fraction represents the relative humidity of ap-
proximately 65% at 20 degrees Celsius. At P(t, 0), we prescribe
same Neumann boundary condition as in the charging process. The
flux is set to

Qp-n= u“"f’ﬂw)p}""f"’W) =0311814 kgs'm™3,  (76)
The computation time is set to tf;,q = 8 h. First, we present com-
putation results with diameter ds = 0.002. Similarly to the charging
process, Figs. 6a-d show the time developments of the water vapor
adsorbed in the zeolite, the water mass fraction, the fluid tempera-
ture, and the zeolite temperature, respectively at chosen points. As
the water vapor is being adsorbed, the temperature of the zeolite
and consequently the temperature of the fluid steady rise and ap-
proach toward the maximum, which is approximately 350 K. After
the adsorption is finished, the system is in the equilibrium, and the
temperatures start to decrease. In the case of point x, =0.11 m,
the temperature returns to its initial value in approximately two
hours. These time developments of the temperatures are in agree-
ment with the time development of the water vapor q in the ze-
olite (see Fig. 6a). At all points the water vapor adsorbed in the
zeolite increases to its equilibrium value 16.81 mol kg~! and re-
mains on this level until the end of the computation. In Fig. 6b, the
time development of the water mass fraction is depicted, showing
that for almost 5 h, the air leaving the area is completely dry since
all water vapor is adsorbed in the zeolite. Only after 4 h the ad-
sorption on the right side of the computation domain is completed
and the leaving air starts having a higher mass water fraction. In
Table 5, the errors and the experimental orders of convergence are
presented. It can be observed that all orders of convergence are
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Fig. 6. Time development of the given primary variables at chosen points during the discharging (wetting) process with d; = 0.002 m using the finest mesh (mesh 4).

Table 5

Errors and experimental order of convergence of chosen
variables during the discharging (wetting) process with
ds; =0.002 m. The errors and experimental orders of con-
vergence (EOC) are defined by Egs. (58)-(60).

Ty

mesh ID  error L, error L, EOC'  EOC?
1 2.12.10% 1.22 - 10?

2 1.15 . 10° 6.63 - 102 0.89 0.88
3 4.48 . 10° 2.59 - 10! 1.36 1.36
T,

mesh ID  error L; error Ly EOC'  EOC?
1 2.10 - 10° 1.21 - 10?

2 1.13 . 10° 6.52 - 10! 0.89 0.89
3 436-102  252-10' 137 137
q:

mesh ID  error L; error L EOC! EOC2
1 1.40 - 102 8.10

2 6.23 . 10' 3.60 117 117
3 2.11 - 10! 1.22 1.56 1.56
Wy

mesh ID  error L; error L, EOC!  EOC?
1 2.04.10°! 1.18.102

2 9.65.102 5.57-1073 1.08 1.08
3 3.40.102 1.96.10-3 1.51 1.51

around one. In the worst case 0.89, in the best case 1.56. The con-
vergence is also illustrated in Fig. 7, where the time development
of the fluid temperature at different points is depicted. It can be
observed that the use of a coarse mesh leads to an overestimation
of the solution. This property can be observed in all time develop-

ments. The most visible case is at the point x; = 0.01 m. This over-
estimation is more significant than the underestimation observed
during the charging process (see Fig. 5). Moreover, the errors dur-
ing the discharging process are higher in comparison to the errors
during the charging process.

In Fig. 8, the time development of the difference between the
fluid and zeolite temperature during the discharging process is
depicted. Two phenomena can be observed. The first one is the
positive difference (T; > Ts) in the first hour of the process. This
is caused by the rapid adsorption of the initial water vapor. A
closer examination of the data reveals that the initial water vapor
wy = 0.00468 immediately decreases everywhere to an approxi-
mate value wy, = 107>, The released heat is then transported by
convection and creates this difference. The other one is the neg-
ative difference (Ty < Ts), which happened at each point in a dif-
ferent time. These are caused by the adsorption from the humid
air which is prescribed by the boundary condition. Similarly to
the charging process, the difference is the highest (2 K) at the
left boundary where the boundary condition Tf(t,x) = 295.15 K
fixes the fluid temperature. The temperature difference at the other
points is at the maximum after approximately 1.5, 3, and 5 h,
respectively. This time scale is in agreement with the adsorption
time development. From the time development of the water vapor
adsorbed in the zeolite (Fig. 6a) one can observe that the process
at the chosen points is the fastest during the negative peaks in
Fig. 8. When the adsorption is not in progress, the difference of
the temperatures is negligible and a local thermal equilibrium can
be assumed.
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Fig. 7. Comparison of the numerical solutions Ty during the discharging (wetting) process with ds = 0.002 m on different meshes.
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Fig. 8. Time development of the difference in temperatures T; — T; at chosen points during the discharging (wetting) process using the finest mesh (mesh 4).

Second, we present the results computed using the diameter
of the zeolite ds = 0.01 m. In Figs. 9a-d, the time developments
of the water vapor adsorbed in the zeolite, the water mass frac-
tion, the fluid temperature, and the zeolite temperature, respec-
tively, are depicted. In comparison to the time developments with
a smaller diameter, no significant changes are observed. In Table 6,
the errors and the experimental orders of convergence are pre-
sented. In comparison to the values with smaller diameters, the
errors are lower and the experimental orders of convergence are
always higher. The minimum value of EOC is 0.99, the maximum
is 1.59, indicating that that numerical scheme is convergent. In

Fig. 10, the time developments of the temperature of the fluid Ty at
different points are presented. Similarly to the discharging process
with ds = 0.002 m, in all time developments, an overestimation of
the solution on the coarse mesh can be observed. In Fig. 8, the dif-
ference of temperatures at chosen points on the finest mesh is de-
picted. The development has a similar progress. At the beginning,
the positive differences (Ty > Ts) are observed. Then, the negative
differences (T; < Ts) during the adsorption process are detected. At
the end of the simulation, when the adsorption process is finished,
the difference of the temperature is negligible. However, in com-
parison with the setting of d; = 0.002 m, one can observe more
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Fig. 9. Time development of the given primary variables at chosen points during the discharging (wetting) process with d; = 0.01 m using the finest mesh (mesh 4).

Table 6

Errors and experimental order of convergence of chosen
variables during the discharging (wetting) process with
d; =0.01 m. The errors and experimental orders of con-
vergence (EOC) are defined by Egs. (58)-(60) .

Ty

mesh ID  error L, error L, EOC'  EOC?
1 8.44 . 10% 4.87 - 10!

2 3.97 . 102 229 - 10! 1.09 1.09
3 139 - 10? 8.05 1.51 1.51
T,:

mesh ID  error L; error Ly EOC'  EOC?
1 8.68 - 10? 5.01 - 10!

2 437 . 10? 2.52 . 10! 0.99 0.99
3 163102 940 142 142
q:

mesh ID  error L; error L EOC! EOC2
1 1.17 - 102 6.74

2 5.05 - 10! 2.92 1.21 1.21
3 1.68 - 10! 9.71-10~! 1.59 1.59
Wy

mesh ID  error L; error L, EOC!  EOC?
1 1.50-10°" 8.66.103

2 691102 399103 112 112
3 2.40.10-2 1.38.10°3 1.53 153

significant differences. With a larger diameter of the particles, the
heat transfer coefficient has a lower value, and the difference be-
tween the temperatures is, therefore, larger (approximately by the
order of ten). The most significant difference is again in the vicinity

of the left boundary, where the temperature difference is greater
than 15 K.

5. Conclusion

In this work, we presented a two-temperature mathematical
model of adsorption and desorption of water vapor in the zeo-
lite 13X. The mathematical model consisted of four balance equa-
tions and one kinetic equation based on the Linear Driving Force
model and Langmuir-Freundlich isotherms. As we used the two-
temperature model, the local thermal equilibrium was not as-
sumed. The mathematical model was solved using the mixed-
hybrid finite element method implemented in a numerical library
NumbDwarf. To handle the source/sink terms, the operator splitting
technique was adopted. The computational study verified conver-
gence in both charging and discharging processes. The experimen-
tal orders of convergence were between 1 and 1.5.

In the computational study, we investigated the behaviour of
individual temperatures. During the charging process, when hot air
was brought into contact with moist zeolite, the difference was
only observed in the first hour of the process. During the discharg-
ing process, when humid air was brought into contact with dry ze-
olite, higher differences between the temperatures were observed.
When the adsorption process was the most rapid, the maximum
difference was approximately 2 K and was observed in the vicin-
ity of the boundary. This high value was caused by the Dirichlet
boundary condition. At other points, the difference was at maxi-
mum approximately 0.7 K. However, with a parameter adaptation,
the difference between the temperatures can be more significant.

152




Clnek v International Journal of Heat and Mass Transfer

12 T. Smejkal, J. MikySka and R. Fucik/International Journal of Heat and Mass Transfer 148 (2020) 119050
350 - 7 350 - 7
340 - 7 340 4
10 il
=, mesh 3
— = mesh 4 -
— - — - —mesh 1 & 320
— — — —mesh 2
mesh 3 | 7] 310 b
mesh 4
7 300 7
200 I I I I I I I 200 I I I I I I I
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 8
time [h] time [h]
a) x; =0.010m b) x2 =0.110m
350 7 350 - 7
— = —mesh1
340 — - — - —mesh 1 B 340 - ————mesh2 | |
— — — —mesh 2 mesh 3
330 mesh 3| — 330 mesh 4
ﬁ mesh 4 ﬁ
& 320 T £ 320
310 7 310
300 7 300
200 I I I I I I I 200 I I I I I I I
0 1 2 3 4 5 6 7 1 2 3 4 5 6 7 8
time [h] time [h]
¢) x3=0.210m d) x4 =0.410 m

Fig. 10. Comparison of the numerical solutions T; during the discharging (wetting) process with d; = 0.01 m on different meshes.

We showed a computation study of the discharging process with
an increased value of the diameter of zeolite ds = 0.01 m (the orig-
inal value was ds = 0.002 m). The resulting temperature difference
was approximately ten times larger. The maximum (approximately
20 K) was observed in the vicinity of the left boundary, where the
Dirichlet boundary condition was prescribed.
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We propose a novel and efficient numerical approach for solving the pseudo two-dimensional multiscale model of the Li-ion cell
dynamics based on first principles, describing the ion diffusion through the electrolyte and the porous electrodes, electric potential
distribution, and Butler-Volmer kinetics. The numerical solution is obtained by the finite difference discretization of the diffusion
equations combined with an original iterative scheme for solving the integral formulation of the laws of electrochemical interactions.
We demonstrate that our implementation is fast and stable over the expected lifetime of the cell. In contrast to some simplified
models, it provides physically consistent results for a wide range of applied currents including high loads. The algorithm forms a
solid basis for simulations of cells and battery packs in hybrid electric vehicles, with possible straightforward extensions by aging

and heat effects.

1. Introduction

Modern Li-ion batteries possess advantages making them
a popular choice in many different applications. Their light
weight, low self-discharge rate, and performance especially
matter for power storage in hybrid electric vehicles (HEV).
There are ongoing efforts to optimize the control strategy
of the HEV powertrain in order to improve not only the
range of the vehicle, but also the total useful battery capacity
during its lifetime. Mathematical models of Li-ion cells based
on first principles provide insight into the dynamics of the
battery cycling and the information from the computational
simulations can be used during the design of the control
algorithms.

The basic reference for simulating Li-ion cell dynamics is
the isothermal model proposed by Newman and Tiedemann
[1] and Doyle et al. [2]. For the model with thermal effects
included, we refer the reader, for example, to Cai and White
[3], Kumaresan et al. [4], or Gu and Wang [5]. The aging
effects of Li-ion batteries are discussed, for example, by
Ramadass et al. [6, 7] or Ning et al. [8, 9].

Recently, several approximate techniques were success-
fully applied to reduce the computational complexity of these
models. In [10, 11], Subramanian et al. used perturbation
techniques. Model reduction and Chebyshev polynomial
methods were used by Bhikkaji and Séderstrom in [12]. In
Smith et al. [13], the residue grouping method was used. Cai
and White [14] developed a reduced-order model by means of
orthogonal decomposition.

In our work, we strive to create a robust yet compu-
tationally efficient algorithm for predicting the state of Li-
ion batteries subject to intense and variable loading over
extended time periods. We adopt the full-order pseudo two-
dimensional model of Li-ion cell dynamics describing ion
diffusion through the electrolyte, charge flow, and the Butler-
Volmer kinetics, as summarized in [15]. We propose a novel
approach to the solution of electrochemical interactions by
means of integral reformulation of the governing equations
and an iterative scheme for their solution. As a result,
our algorithm remains stable for a wide range of applied
currents. The simulations are fast enough to cover the

156




Clanek v Mathematical Problems in Engineering

Positive electrode Separator Negative electrode
Q Q, Q3

Xa Xp Xc Xd

FIGURE 1: One-dimensional representation of the lithium-ion cell.

long term behavior of the battery while still resolving both
the macroscale diffusion processes across the cell as well
as position-dependent microscale dynamics in the porous
material of the electrodes (in contrast to the single-particle
models; see, e.g., [16, 17]).

The paper is structured as follows. In Section 2, we
present the summary of the mathematical model. Section 3
is dedicated to the derivation of the integral solution of
electrochemical interactions, leading to the formulation of
an iterative algorithm. In Section 4, we shortly comment
on the implementation of the algorithm so as to be able
to explain some further ideas. In Section 5, we first use
our model to replicate the study by Subramanian et al. [18]
and Dao et al. [15] and discuss the obtained outcomes.
Further on, we proceed with the analysis of the effect of the
numerical algorithm parameters. We draw conclusions about
the applicability of the proposed approach for long term

simulations.

2. Summary of the Mathematical Model

2.1. Geometrical Setting. As shown in Figurel, the one-
dimensional representation of the lithium-ion cell computa-
tional domain Q = [x,, x4] is divided into three parts such
that Q = Q; U Q, U Q;, where O, = [x,, x;] is the positive
electrode, Q, = [x3, x.] is the separator, and Q3 = [x,, x,] is
the negative electrode. Any single point x,, € Q corresponds
to a cross section through the real three-dimensional cell by
the plane x = x,,. Neither the area nor the shape of this cross
section are known or needed in the 1D model. All respective
quantities such as the applied current density I,,, and the
mass fluxes are calculated per unit cross section area.

In the following text, the quantities corresponding to
the solid electrodes and electrolyte are indexed by s and e,
respectively, and the quantities defined in Q; are enumerated
by the appropriate subdomain index k € {1, 2, 3}. The values
of all quantities depend on time ¢ which lies within the
interval # = (0, t5,,1)-

2.2. Diffusion of Li* in the Electrolyte. Depending on the
mode of operation (charge/discharge), the lithium ions are
extracted (deintercalated) from the porous material of one
electrode, transferred through the electrolyte across the
separator by diffusion, and finally intercalated into the porous
material of the other electrode. Based on [15], the governing
equations for diffusion read

oc,, 0 ( 0c, i

erk§)+(17t$)akjk inQ, x 7 ()

for each k € {1,2,3}. The meanings of the symbols in (1) are
as follows.

ot  ox

Mathematical Problems in Engineering

¢, [molm™] denotes the concentration of Li* in the
electrolyte.

€, [1] is the material porosity (void fraction).

D, [m?s7'] is the diffusion coefficient of Li* in the
electrolyte.

7 [1] is the tortuosity factor of the porous medium
given by the Bruggeman relationship [19] 7, = ezmggk,
where ¢ [1] is the porosity of the medium and
brugg; [1] is the Bruggeman coefficient.

ti [1] is the transference number of Li* in the elec-
trolyte.

Jk [mol m™s™!] denotes the (de)intercalation flux of
Li* from the internal surface of the porous material

into the electrolyte per unit surface area (j, = 0
as no lithium ions are stored in the material of the
separator).

ay [m™!] is the internal surface area of the porous
material per unit volume.

Equation (1) is accompanied by a number of boundary
conditions. First, the lithium ions cannot leave the outer
boundary of the cell which implies

ac,
ox

_ ace,S

=0. (2)

X=X, 0x

x=x,4
The other boundary conditions ensure continuity of the con-
centration in the electrolyte at the interdomain boundaries

C5,2|x:xh = Ce,1|x:xh >

(3)

Ce,3|x:xc = Ce,zlx:xc >

as well as the continuity of the interdomain concentration
fluxes

0, oc,

Dt =D,1, -2 R
<2 ox X=xp+ ot ox x=xp—
5 5 4)
C, C.
D,y =2 =D, =2 .
o7 ox X=X+ <2 ox X=X~
The initial conditions are given by
Cokleo = S in O, VK € {1,2,3}. )

2.3. Diffusion inside the Porous Electrodes. The electrodes are
made of porous material, that is, a mixture of void space (filled
with electrolyte) and a solid continuum. At the microscopic
level, the solid matrix is modeled in the form of small spheri-
cal particles releasing (deintercalating) or absorbing (interca-
lating) lithium ions through their surface. Lithium then dif-
fuses through each particle in the radial direction according
to the current concentration distribution.

The material balance for lithium in a single active solid
material particle in the positive or negative electrode is
governed by FicK’s second law in spherical coordinates [3, 15]:

aCs,k 7%2( 2
ot r?or

0¢, g
or

) in Qe x Y x 7 (6)
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for each k € {1,3}. The distance from the center of the
spherical particle r lies in the interval Q. = (0, R).

R, is the radius of the solid particles in the electrode
Q.

ok [mol m™?] is the concentration of lithium in the
particle.

D, [m%s™!] is the diffusion coefficient of lithium in
the particle.

The initial concentration distribution in a particle is given
by

0o .
Cs,kl::o =Cop N Qparyge X Qe (7)

At the center of the particle, the boundary condition

oc,
S oor

=0 (8)
r=0

imposes zero flux of lithium. On the particle surface, the
flux is equal to the consumption/production rate of Li* due
to the electrochemical reaction occurring at the solid/liquid
interface; that is,

oc,
S oor

-D = Ji- )

r=R;)

2.3.1. Scale Coupling. For each x € Q, the number of spher-
ical particles per unit cross section area and in the range (x,
x +dx) is

l—ek—ef’k

g = — %
R,

(10)

The solid matrix occupies a volume fraction 1 — €, — €7,
because apart from electrolyte, there can be some amount
of inert material (filler) with the volume fraction €k [15].
According to (10), the number of spherical particles per unit
volume at x € () is

l—ek—eﬂk

B n

My

All such particles are assumed to have the same radial
distribution of concentration ¢ ;. In particular, we denote the
concentration at the particle surface as

Cs,surf k (x> t) = Gk (Rs,k’ X, t) . (12)

The total surface area of these particles per unit volume

3 (1 — € — ef,k)
Rs,k

@ = mAnR:, = (13)

is a material property. Its values for some porous materials
can be found in literature [20], allowing the calculation of
the radius of the respective spherical particles R, from
13).

2.4. Electrochemical Interactions. Equations (1) and (6) deter-
mine the chemical state of the cell provided that the fluxes j,
and j; are given. The connection between the concentrations
of lithium ions and the respective mass fluxes comes from the
modeling of the electrochemical interactions in the cell which
also allows the calculations of other quantities such as the cell
voltage. Whereas the diffusion equations in Sections 2.2 and
2.3 are readily prepared for numerical solution by standard
tools (e.g., the method of finite differences), the equations
summarized below require nontrivial treatment.

By the end of Section 2.4, the equations do not contain
partial derivatives with respect to t and r. For any function f :
Q. x 7 — R, k €{1,2, 3}, we therefore simplify the notation
of Jox to f'.

2.4.1. Electrical Potential in the Porous Electrodes. The charge
continuity equations in the solid electrodes placed at (; and
Q; are given by Ohm’s law [15] as

o' ¢l = aFjy in O x 7, k € {1,3} (14a)
with the boundary conditions
0110, (%) = Ly (14b)
~05"¢l, (%) =0, (14¢)
03y, (x) =0, (14d)
057615 (x4) = Ly (14e)
b5 (xa) = 0, (14f)

where

¢.x [V] is the solid phase electrical potential,
F [Cmol '] is Faraday’s constant,
Lpp [A m™?] is the current density applied to the

electrode (I, > 0 corresponds to chargingand I, <

0 to discharging),

Fji [Am™] denotes the charge flux in terms of Li*
ions from the internal surface of the porous material
into the electrolyte per unit surface area,

Uiﬁ [Sm™'] is the effective electronic conductivity
defined as

ot = (1 —€ — efyk) O (15)

0}, [Sm™'] is the electronic conductivity.

2.4.2. Electrical Potential in the Electrolyte. Based on [15], the
charge continuity equation in the electrolyte is given by

. 2RT o)
(Kkﬂ¢;,k), =4+ — (1-1)) <Kkﬁik> (163)

Ce,k

in Q x 7, kef{1,2,3}
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with the boundary conditions

—5"¢n, (%4) = 0, (16b)
T () = 5T, (%) = Ly (160)
5T, (k) = K57l (%) = Ly (16d)
595 (x) = 0, (16e)
et (x5) = §en (%) (16f)
bep (%) = e (%) (16g)

where
¢ [V]is the electrical potential in the electrolyte,
R [Jmol ™' K] is the universal gas constant,
T [K] is the temperature,

K,iff [Sm™] is the effective ionic conductivity of the

electrolyte given by ¥ = 7, that accounts for
the tortuous path of the porous medium, where
K [S m].

For the reference ionic conductivity «;, we use the empirical
correlation reported in [15]:

Ky = 412531077 +5.007 - 10~'¢, . — 4.7212

10 3

107¢2, +1.5094 - 1077, - 1.6018 a7)

(107, ke {1,2,3}.

2.4.3. Butler-Volmer Reaction Kinetics. Lithium is conserved
and its fluxes from the solid particles and into the electrolyte
are both equal to ji. The charge transfer Fjj is proportional
to the mass transfer and is subject to Butler-Volmer reaction
Kkinetics [6, 7, 15, 21] in the form

SIS SORNE)
Jk = Ok | €Xp RT Mk €xp RT e | |> (182)
k=1,3,
with

12 12 12

6k = Kk (Cs,max,k - Cs,surf,k) Cs,surf,k ek * (18b)

The meanings of the symbols in (18a) and (I18b) are the
following:
K [mol 2m*?s71] is the reaction rate coefficient,

o, and e [1] are the anodic and cathodic transfer
coeflicients of electrochemical reaction,

Comax [Mol m™]is the saturated concentration of Li*

ions in the solid phase,

. [V] is the intercalation overpotential described as

M = Psie = Peie = Ure (19)

Mathematical Problems in Engineering

In (19), U, [V]is the open circuit potential determined by the
following empirical correlations:

_ —4.875+ 5.8396, - 1.5076; + 0.5316;
' 6, —1.005

>

(20)

0.00778
Uy = 0.15 - 0100, + ===,
3

where ek = s,surf,k/cs,max,k’ k=1,3.

3. Integral Solution of
Electrochemical Interactions

For a given time ¢, the flux ji, k € {1,3}, can be calculated
by the solution of the system of two differential equations
(14a) and (16a) and the algebraic equation (18a) for the
unknowns ¢, x, ¢ > 1i> and ji, together with the respective
boundary conditions (see Section 2.4). It turns out that this
set of equations can be transformed into a system of two
ordinary differential equations (ODEs) for #; and J;, where
by Ji we denote the integrated mass transfer function defined

Ji () = J- Je @ dE, Vx € [xpp x4, ke {13}, (21)

Xe,

and x,;, x, represent the left and right boundary coordi-
nates of (), respectively.

3.1. Derivation of the Differential Equations. In order to derive
the ODE for 1., we first integrate (14a) with respect to x over
the interval (x,,x) € O, k € {1,3}. Using the boundary
conditions (14b) and (14d), we obtain

r_&F Lpp
b1 = e - UTE’ Vx € Q, (22a)
asF
¢;,3 = 03?]3’ Vx € Q. (22b)
3

Similarly, by integrating (16a) for k € {1,2,3} and using
the boundary conditions (16b), (16¢), and (16d), we arrive
at

!

! alF 2RT 0y Ce1
¢, = e I+ = (1-12) o Vx € Q, (22¢)
2RT ¢, 1
I ER (o f0) 2 P
9= (1-£)) P Vx € Q,, (22d)
a,F_ 2RT a1
.3 app

(pl —_ 3 ]3 2= (- tO el ,

e3 gff F ( +) Cos Kgff (22e)

Vx € Qs.

159




Clanek v Mathematical Problems in Engineering

Mathematical Problems in Engineering

Subtractions of (22¢) from (22a) and (22e) from (22b) allow
expressing the derivative of #; defined by (19) as

| eff
gy, —Iﬁ——ZRT@—tO)CLI
M= abh ff R +
01 Ky 0y Ce,1 (23a)
—U{,
| eff '
- F]M Iapp_ﬂ(l_to)cﬂ
3= B3~ F o o F +
03 K3 K3 %3 (23b)
- U,

The ODE for J, is given directly by the Butler-Volmer
reaction kinetics (18a) in the form

et fon (S00) e 25
k = Ok | €XP RT 3 P RTﬂk >

k=1,3.

(249

Differentiating (24) with respect to x and plugging in #7; from
(23a) and (23b), respectively, lead to a single second-order
ODE for J;. The corresponding boundary conditions follow
from the definition of J; given by (21) and evaluation of (22a),
(22b) at x = x;, and x = x, together with the boundary
conditions given by (14c) and (14e). They read

]1 (xa) = 0>
I, (25a)
J1 (%) = aIP;»
]3 (xc) = 0’
T (x4) = Lo o

>
a;F

and they complete two well posed problems for the unknowns
J, and J;.

However, in the following, we use (23a) and (23b),
(24), and (25a) and (25b) and transform them into integral
equations that can be solved iteratively by means of numerical
integration.

3.2. ODE System in General Form. Assume a general coef-
ficient form of ODEs ((23a) and (23b)) and (24) in the
following compact form:

(%) =a(x)](x)+B(x), (26a)
J' (x) = B(n(x),x), (26b)
where
B (17(x),x) = 8 (x)
6¢)

- (exp (¥ () 71 (x)) — exp (-ey (%) 1 (%)) »
for all x € (x;, x,) with the following boundary conditions:
J(x) =0, (26d)

J(x,)=¢ (26e)

where x; = X, X, = X, &, = &, &, = &, the coefficients
8§ = § are given by (18b), and & = &, f = By, and e = ¢,
correspond to the following domain-defined coefficients
(denoted by the indices k = 1 and k = 3):

oy + 5T

eff
01K

o =aF

0y + 1T

eff >
O3K3

a3 = azF

app
=- -— t,)—-U,
By o F e 1
U
2RT [
app 0\ %3 1
Bs eﬁ_T(l_t+)L_U3’
K3 e,3 (27)
F
"R
F
¥R
e = Lipp
! aF’
aF

3.3. Derivation of the Integral Equation. Integrating (26a),
(26b), (26¢), (26d), and (26¢) from x; to x € [x;, x, ], we obtain

) = A+ j «QJQO+BOA,  (sa)

x

160 = [ BO©.04, (28b)

X
where, in (28a), A = #(x;) is the unknown integration
constant and in (28b) the boundary condition given by (26d)
was already employed.

Equations (28a) and (28b) can be combined into a single
integral equation in two different ways:

x ¢
1=+ [« @[ BO®.HAE+ O @9

or

x ¢
J(x>=j %(mj a(6)1(6)+ﬁ(6)d&5)d5. (30)

X

3.4. Equation for . 'The integral equation given by (30) allows
determining the value of the unknown integration constant A
since the remaining boundary condition given by (26e)
implies

X, C
e=J %<A+I a(5)1(5)+ﬁ(5)d5,5>d(. (3D

X1
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Under the assumption of constant temperature T, y
becomes constant in (26¢). As a result, (26¢) and (31) can be

combined to obtain
e= A", - NI, (32)

where A = exp(yA) denotes the term with the unknown
parameter A and the coefficients I, and I, read as

1

a

X ¢ (33a)
- 6<<:>exp(«xuyj a(E)I(E)+ﬂ(E)dE)dC,

X X

x, ¢ (33b)
- 6<c>exp<—acyj a(E)J(€)+I3(€)d€>dC

X

If , = «, (32) is easily resolved by

e+ +4L,1

A% = A% = (34a)
21,
that is,
1 e+ /e +4l1
A=-Inf —— (34b)
4 21,

In general, (32) is a highly nonlinear equation that needs to
be solved numerically.

3.5. Iterative Scheme for Solving the Integral Equation. We
propose the following iterative scheme for solving the integral
equation given by (30):

Tn+1 (x)
x ¢ (35)
- | %<An+j vc(f)fn(f)+/3(€)d5,(>df,
Jorr (%) = (1= @) J,, (%) + @],y (%), (36)

where A, is the solution of (32) which has to be updated at
every iteration step for given J,,n=10,1,2,...,and w € (0,1]
is a relaxation coefficient that serves as a tuning parameter
allowing control of the convergence of the iteration scheme.
Note that, with values of w close to 1, the iterative scheme
given by (35) diverges rapidly because of the exponential
functions in (26¢). As the initial guess in (35), we choose
Jo = 0in the first call to the iterative solver and the previously
calculated value of J in the subsequent calls. The iterative
process is terminated when the norm of J,.,, is below a given
threshold 9. The values of w and 9 are discussed further in
Section 5.2.

3.6. Computational Algorithm for Solving the System of ODEs.
Let us summarize the algorithm that allows computing the
electrolyte and the solid phase electrical potentials and the
respective charge fluxes. The steps of the computational
algorithm are as follows:

Mathematical Problems in Engineering

(1) In the given time step, use the prescribed profiles of

Ceje and ¢ i and the value of I, to solve (26a),
(26b), (26¢), (26d), and (26e) using the iteration
scheme given by (35) to obtain the integrated charge

fluxes J; and J;.

(2) Compute the intercalation overpotentials #; and #;
using (28a).

(3) Compute the fluxes j, = ]1' and j; = ]; from (26b);
that is, j;(x) = By, (x), x), and j3(x) = B(#y;(x), x),
respectively.

(4) Compute ¢, by integrating (22b) and using the
boundary condition given by (14f).

(5) Compute ¢,; by integrating (22e) and using the
boundary condition that follows from (19) as

¢e,3 (xc) = ¢s,3 (xc) -3 (xc) - U3 (xc) . (37)

(6) Compute ¢,, by integrating (22d) and using the

boundary condition given by (16g).

(7) Compute ¢,, by integrating (22c) and using the
boundary condition given by (16f).

(8) Compute ¢, by integrating (22a) and using the

boundary condition that follows from (19) as

bo1 (%) = e (%) =111 (%) = Uy (%) (38)

(9) The value of ¢, (x,) represents the external apparent
voltage of the cell.

4. Implementation of the
Numerical Algorithm

There are two diffusion processes on different time and spatial
scales in the model. They are both solved by the implicit Euler
scheme of the finite difference method [22] with generally
different time steps. In Q, (1) is solved on a grid of N
uniformly spaced nodes x, ..., x,_; and the positions of the
individual grid nodes determine their correspondence to the
domains Q, k € {1, 2, 3}. This grid is also used for numerical
integration in the algorithm described in Section 3. For each
node x; € O, k € {1,3}, another mesh of M nodes exists
that discretizes the interval [0, R, |, where (6) is solved. The
algorithm uses multiple time scales to update the individual
quantities. It carries out the diffusion in the solid particles for
each x; with a constant time step At. After a given number of
time steps, the integral solver is called, which updates the val-
ues of j; for each x;. For the time period between the updates
of ji, the macroscopic diffusion in the electrolyte governed
by (1) and the microscopic diffusion in the spherical particles
governed by (6) are completely independent. This allows a
suitable multiple of At to be used as the time step for the
diffusion in the electrolyte.

5. Simulation Results

In this section, we demonstrate the capabilities of our algo-
rithm and investigate its behavior depending on the settings
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TaBLE 1: Model parameters based on literature values [15, 18].

(a) Global parameters

Parameter Unit Value

I [1] 0.363

F [Cmol™] 96487

T K] 298.15

x, [pm] 0

X [pm] 80

Xe [pm] 105

X4 [pm] 193

D, [m?s7'] 7.5x 10710
(b) Domain-specific parameters

Parameter Unit Positive electrode Separator Q, Negative electrode Q,

k 1 2 3

oy [Sm™] 100 100

€k (1] 0.025 0.0326

€ [1] 0.385 0.724 0.485

brugg, [1] 4 4 4

Ay (1] 0.5 05

Ak (1] 0.5 05

Comaxk [kmol m ] 51.554 30.555

Ry [pm] 2 2

Ky [mol™** m**s7'] 2.3444 x 107" 5.0307 x 107"

D, [m?s7'] I1x107 39x107"

oy [kmol m ] 0.4955 - €, pnaxt 0.8551 * a3

cfk [kmol m™] 1 1 1

of the numerical solver parameters. For all simulations, we
use the model parameters taken from [15, 18], as summarized
in Table 1.

5.1. Single Discharge Cycle. We compare the results of our
algorithm to those described in [15, 18]. In Figure 2(a), the
evolution of cell voltage during one discharge cycle with low
discharge currents (0.5C, 1C) is shown. Our results coincide
almost completely with the simulations using the full-order
finite difference model by Subramanian et al. [18]. There is
also a fair agreement with the results of the simplified and
reduced model proposed by Dao et al. [15]. The notable excep-
tion is the initial part of the evolution where Dao et al. observe
no voltage drop because of loading.

The situation changes for higher discharge currents (2C,
3C, and 4C), as plotted in Figure 2(b). In this case, the results
of the simplified model are completely different from ours.
Again, the simplified model does not account for immediate
voltage drop due to an increased load. On the other hand,
the voltage readings at t = 0 based on our model form an
almost perfectly linear dependence on the applied current, as
can be seen in Figure 3. This is in correspondence with the
usual representation of battery cells in DC electrical circuits
where a constant internal resistance is considered.

The above arguments indicate that the reduced model
ceases to be valid for higher currents while our proposed

model continues to provide expected and consistent results
(see also the model comparison in [17]). Unfortunately, the
results of the full-order model from [18] are not available for
currents above 1C, although the authors state that they are
able to simulate such situations. The insufficient information
contained in the reduced model can also be demonstrated on
Li* concentration profiles in the electrolyte. Significant differ-
ences occur even for low currents, as can be seen in Figure 4.
In Figure5, the concentration profile comparison with
another implementation of the full-order model [3] is pro-
vided. Qualitatively, the agreement is satisfactory. However,
complete match of the curves could not be achieved due to the
lack of information about the model parameters in [3].

5.2. Properties of the Numerical Solver. We are interested
in the influence of the numerical solver parameters on the
accuracy and speed of the simulation. Several tests were
performed, involving the parameters explained in Section 4.
As the test vehicle, the voltage curve of a single discharge cycle
with various values of the applied current was used.

(i) We tested several grid resolutions in the spatial
domain ), ranging from N = 20 to N = 800.
For each value of N, uniform grids from M = 20
to M = 400 were utilized for diffusion inside the
spherical particles. For the 1C applied current and M
fixed, the solution is almost independent of the value
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FIGURE 2: Cell voltage evolution during one deep discharge cycle. (a) Discharge currents 0.5C and 1C; comparison of our results (thick solid
lines in the background) with Dao et al. ([15], dashed lines) and Subramanian et al. ([18], dotted lines). (b) Discharge currents 2C, 3C, and
4C; comparison of our results (thick lines) with Dao et al. ([15], thin lines). The same line styles correspond to the same discharge current.
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35

0 0.5C 1C
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of N provided that N > 50. For different values of
M, there are slight differences mostly in the final part
of the voltage curve, as demonstrated in Figure 6. As
M increases, the differences between the subsequent
cases become smaller, which suggests convergence
of the numerical method. No rigorous convergence
tests (such as measuring the experimental order of
convergence [23]) were performed, though. With
higher applied currents, the value of N also affects the
shape of the voltage curve. For the 2C applied current,
the differences in the results become negligible for
any combination of M and N satisfying M > 200,
N > 200.

The simulation of the whole 1C discharge cycle with
M =N =100,At =10""s, w = 0.05,and 9 = 107"
can be performed in less than 10 seconds on a single
core of an Intel i7-6700K @ 4 GHz CPU, which is 350x

FIGURE 3: The almost perfectly linear dependence of the cell voltage on the applied current. The solid line connects the subsequent data points;
the dashed line connects the first and the last point.

faster than the real discharge process on average. Our
computational tests indicate that decreasing M and N
below approximately 50 nodes (and losing accuracy as
seen in Figure 6) is not necessarily beneficial for the
computational time.

(ii) As explained in Section 4, the integral solver need

not be called in every time step. We performed some
computations with a fixed (and unnecessarily small)
time step At = 107 s. The integral solver was set to be
called in the intervals m-At, for several different values
of m € N. In addition, the diffusion in electrolyte was
also solved using the time step 1 - At. All the results
were virtually identical. The numbers of iterations of
the integral solver for all these cases are summarized
in Figure 7. As expected, the number of iterations in
both Q; and Q; is higher when the solver is called less
frequently because the previous solution is used as the
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FIGURE 4: Comparison of the spatial profiles of ¢, at selected time levels. Thick lines represent our results, thin lines are the results from [15].
The same line styles correspond to the same time ¢. Discharge current 1C.

1400

1300

1200 4

1100 4

1000 4

o
=3
S
1

800

c (mol-m‘a)

700 4

600

500 4

Q, xpi Qy ixc Qy x4

400 2@

300 T T T T T T T T T
0 20 40 60 80 100 120 140 160 180

2 (um)

FIGURE 5: Comparison of the spatial profiles of ¢, at the end of 1C
discharge cycle (t = 3500s). The solid line represents our results;
the thick dashed line is the result from [3].

initial guess for the next iteration. In fact, calling the
solver in long time steps brings little computational
time savings, as demonstrated in Figure 8.

(iii) Next, the influence of the relaxation parameter w
was investigated. The maximum value of w sufficient
for the convergence of the integral solver depends
on the applied current and other settings (e.g., the
approximate bounds are w < 107" for 1C discharge

and @ < 2 x 1073 for 4C discharge). However,
once such value is found, it is undesirable to further
decrease w as it only leads to prolonged computational
times. Provided that the integral solver converges, its
accuracy is only controlled by the value of 9 and is
independent of the setting of w.

For long term simulations with other included effects
such as battery aging, the basic version of the algorithm
has to be stable over extended time periods. We performed
a stability test by simulating over 1000 constant current
charge/discharge cycles in the prescribed voltage range. The
results in Figure 9 testify that the algorithm not only exhibits
excellent stability, but also allows long simulations as its
computational time is many hundreds of times shorter than
the real duration of the simulated processes.

6. Conclusion

We have developed an efficient numerical algorithm for the
solution of the full-order version of the well known model of
Li-ion cell dynamics, as used by [15, 18]. For low to moderate
applied currents, the obtained simulation results are in good
agreement with the studies performed in both [15, 18]. For
higher discharge rates, our algorithm proves to maintain
physically consistent behavior in contrast to the simplified
model by [15]. Moreover, its implementation is fast and
stable enough to enable cycling simulations over the expected
lifetime of the cell. These properties justify the choice of
the full-order model for our ongoing efforts to simulate the
behavior of both individual cells and battery packs installed in
hybrid electric vehicles. The proposed numerical algorithm is
a convenient basis for such efforts, as it allows straightforward
generalizations in order to incorporate heat effects and aging
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FIGURE 6: The voltage curves for one 1C discharge cycle in simulations using different mesh resolutions for the discretization of the spherical
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FIGURE 8: Computational times of one discharge cycle depending
on the frequency of the calls of the integral solver. Discharge current
1C; time step At = 107%s. Computed on an Intel i5-2500 @ 3.3 GHz
CPU.
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FIGURE 9: Algorithm stability test during 1C constant current
discharge/charge cycling within the voltage range from 3.4V to
4.5V. A total 0f 1043 cycles in the physical time period of 4.41x10° s
(51 days) have been simulated. The voltage curve is plotted by the
solid line for the first four cycles and by the thick dashed line for the
last four cycles. In addition, the cycle numbers and cycle durations
are indicated. Numerical parameters: N = 100, M = 50, At = 10" s,
@ =0.05,and 9 = 107"*. The integral solver was called in every time
step. The computation took less than 3 hours on a single core of an
Intel i7-6700K @ 4 GHz CPU.

phenomena in the scope of the models found, for example, in
[3,6-9].
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GROUNDWATER OF GEOLOGIC FORMATIONS

This section focuses on dispersion, a primary process that contributes to the trans-
port of dissolved chemicals (solutes) in porous media. The specific porous medium
that is of focus is the upper water-bearing zones of subsurface geologic formations.
This part of the subsurface is bounded by the ground surface as the upper boundary,
where the intergranular spaces of the soil are only partially filled with water with
the rest of the pore spaces occupied by air. This zone is referred to as the unsatu-
rated, partially saturated or vadose zone of the aquifer. When water, the wetting fluid,
and air, the nonwetting fluid, occupy the same pore space, the surface tension at the
water/air interfaces results in the water pressure to be less than the air pressure (neg-
ative gauge pressure). The bottom boundary of the unsaturated zone below which the
pores are filled with water is the water table. In the absence of fluid interfaces, the
water pressure is higher than atmospheric pressure (positive gauge pressure). This
aquifer zone is referred to as the saturated zone. When water-soluble chemicals enter
unsaturated or saturated zones of aquifers, they are transported through two primary
mechanisms, namely advection and dispersion. The process of advection that is a
result of water flow was discussed in Chapter 11. A second process that contributes
to the transport of dissolved chemicals both in the unsaturated and saturated zones of
aquifers is associated with hydrodynamic mixing, resulting from the velocity varia-
tions that occur at the microscopic pore scale. This process is parameterized through
a relationship that contains the pore-water velocity and a parameter that is referred
to as dispersivity. In most practical field situations, the dispersivity cannot be mea-
sured at the pore scale. The dispersivity values that are estimated from field-scale
observations or tracer tests depend on the spatial variability of soil characteristics in
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space and the scale of the measurement. Hence, the dispersivity is considered to be
scale-dependent.

The outline of the material to be presented is as follows. The physical process
that contributes to hydrodynamic dispersion and how the process is parameterized at
the macroscopic scale is reviewed. A summary of existing knowledge on the scale
dependence of dispersivity is presented. This will be followed by a discussion on how
the parameter is estimated in the field using various field testing methods. Finally, two
example applications will be presented to demonstrate how this process is modeled.

15.2 TRANSPORT PROCESS: DIFFERENTIAL ADVECTION

Consider two fluids of equal viscosity and equal density. One of the fluids is displacing
the other one from a porous medium. Initially, also assume that the flow is one-
dimensional. The mean position of the front of the second fluid will evolve according
to the mean advective velocity. However, as the displacement progresses, both fluids
will mix due to diffusion and mechanical dispersion.

Mechanical dispersion is the tendency for fluids to spread out from the flow lines
that they would be expected to follow according to the advective hydraulics of the flow
system. This spreading process results from microscopic velocity variations, causing
fluid particles to move at various velocities through the tortuous paths of the medium.
There are three basic mechanisms producing these pore-scale velocity variations: (1)
the variability in pore lengths, which causes fluid elements starting at a given distance
from each other and proceeding at the same velocity not to remain the same distance
apart, (2) friction along soil grains and viscous shear forces, yielding a smaller veloc-
ity at the border of a pore, and a maximum velocity at its center, and (3) the variability
in pore sizes, which results in a variability of pore-scale velocity. Mechanical disper-
sion is a nonsteady and irreversible process, as initial fluid distributions cannot be
recovered by reversing the flow direction.

Figure 15.1 describes the classical laboratory column experiment used to deter-
mine mechanical dispersion. Steady-state flow is established in a column packed
with a homogeneous granular medium. A nonreactive tracer at concentration Co
[ML~3] is continuously introduced at the upstream end of the column from time
to [T]. If the column is initially solute-free, the tracer input can be represented
as a step-function (Figure 15.1b). The relative concentration C/Cy [—] of the col-
umn outflow is plotted as a function of time (Figure 15.1c). This type of curve is
called a breakthrough curve. If there is no mixing of any sort, the plot of C/Cy is
a step change from O to 1 at r = f,, where #,, corresponds to advective transport
through the column. If the only mixing process taking place is molecular diffusion,
sharp concentration gradients will be smoothened out and the plot of C/Cy will
slightly spread. In real situations, mechanical mixing will cause a significantly larger
spreading of concentration distributions. An early breakthrough will be observed for
t < ty as a result of microscopic velocities larger than the mean velocity. Recip-
rocally, the concentration distribution will also exhibit a long tail for # > t;,, due
to fluid particles moving along slow-velocity flow lines. When diffusion can be
neglected, the plot of C/Cy is therefore a representation of the pore-scale velocity
distribution.
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FIGURE 15.1 One-dimensional column experiment: (a) Sketch of the column device;
(b) step-function input of tracer; and (c) Relative tracer concentration at column outlet and
the effect of advection, diffusion, and dispersion. (After Freeze, A.R. and Cherry, J.A. 1979.
Groundwater, Upper Saddle River, Prentice Hall, NJ.)

When the transport problem is multidimensional, even if the flow system remains
one-dimensional, a solute plume originating from a point source will disperse both lon-
gitudinally and transversely to mean flow direction. Transverse dispersion is caused
by the fact that the flow paths can split and branch out to the side to bypass soil grains
as a fluid flows through a porous medium. This will occur even in the laminar flow
conditions that are prevalent in groundwater flow.

15.3 TRANSPORT THEORY
15.3.1 HybprODYNAMIC DISPERSION AT THE MICROSCOPIC PORE SCALE

As the effect of dispersion is similar to that of diffusion, the dispersive solute flux is
classically represented using a diffusion-like or Fickian law:

Jm = —0DpnVC, (15.1)

where Ji, [ML™2T1] is the dispersive solute mass flux in direction, 6 [—] is the
volumetric water content, and Dy, [L2T~!] is a fictitious diffusion coefficient called
mechanical dispersion. As mechanical dispersion is mathematically analogous to dif-
fusion at the microscopic scale and as both processes cannot be separated from each
other in flowing groundwater, they are usually combined into a single parameter called
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hydrodynamic dispersion coefficient:
D = Dy, + Dy, (15.2)

where Dq [L2T~!] an effective diffusion coefficient. In a three-dimensional system,
the hydrodynamic dispersion coefficient is a second-order tensor that takes the form

Dw D, D,
D=|Dy Dy, Dy, (15.3)
sz Dyz Dzz

In a uniform flow field, if the principal directions of the dispersion tensor are aligned
with the principal directions of the velocity flow field, the dispersion coefficient tensor
can be reduced to

D=|0 Dt 0 1. (15.4)

where D [L?T~!isa longitudinal hydrodynamic dispersion coefficient, and Dty and
D1y [L*T~!] are horizontal and vertical transverse hydrodynamic dispersion coeftfi-
cients, respectively. When horizontal and vertical transverse dispersion coefficients
are equal, one defines Dt = Dty = Dry.

The relative contribution of mechanical dispersion and diffusion to solute transport
is evaluated using Peclet numbers. A Peclet number is a dimensionless number that
relates the effectiveness of mass transport by advection to the effectiveness of mass
transport by diffusion or dispersion. Peclet numbers have the general form

vd vL
Pe=— or Pe = —.
Dy Dp

v = q/O[LT~!] is the average pore-water velocity and ¢ [LT~'] is the specific dis-
charge of water through the porous medium, or the Darcy velocity. d [L] is a
characteristic grain size and L [L] is a characteristic transport distance. For low Peclet
numbers, Dp and Dt are both equal to the effective diffusion coefficient. At larger
Peclet numbers, longitudinal and transverse coefficients of hydrodynamic dispersion
are found to depend strongly on the average pore-scale water velocity. The exact rela-
tionship between pore-scale dispersion and velocity can obtained from theoretical
considerations for simple or hypothetical pore systems (Saffman, 1959). Except in
the case of very simple conceptual models, one can generally find that the coefficients
of hydrodynamic dispersion are linearly related to velocity

Dy = Dgq +apv, (15.5a)
Dty = D4 + atnv, (15.5b)
Dty = D4 + arvv, (15.5¢)
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the dependence of dispersivity to soil sedimentological properties.

15.3.2 GOVERNING EQUATIONS

yields

a6C
ar =V.(6D -VC—-C-q),

be obtained by separately solving the unsaturated flow equation.
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where ar , oy, and oy [L] are characteristic lengths called longitudinal dispersivity,
horizontal transverse dispersivity, and vertical transverse dispersivity, respectively.
Since dispersivities quantify mechanical dispersion resulting from pore-scale velocity
variations, they are characteristic properties of a medium. Field-studies have shown
that Equations 15.5a through 15.5¢c are also valid at large scale, for typical groundwater
flow conditions. For example, Klotz et al. (1980) investigated a more general relation
Dy = AvB + Dy and found that exponent B should be close to 1. They also showed

Equations 15.5a through 15.5c have been shown to accurately model dispersion
in saturated porous media and for a stationary flow in unsaturated media. In transient
conditions, however, the relationship between hydrodynamic dispersion coefficients
and velocity becomes more complicated. In unsaturated media, the water content of
the soil changes with the water flux. Hence, the structure of the water-filled pore
space also changes with the water flux. The flow field, and therefore the distribution
of pore velocities, depends on the saturation of the medium (Flury et al., 1994). As a
consequence, dispersivity coefficients are strongly impacted by the volumetric water
content. Usually, dispersivity is found to increase when the water content decreases as
aresult of the larger tortuosity of solute trajectories and a disconnection of continuous
flow paths (Vanclooster et al., 2006). In some cases, especially when the activation
of macropores significantly enhances pore-water variability, dispersivity is found
to increase with volumetric water content. Currently, there is no unique validated
theoretical model available for dispersivity in transient unsaturated flow.

Combining advective flux and Fickian hydrodynamic dispersive flux, and applying
the principle of mass conservation over a representative elementary volume of soil

where the specific discharge of water through the porous medium depends on the
volumetric water content of the medium. Equation 15.6 is the governing equation for
solute transport in unsaturated porous media. It is usually referred to as the advection—
dispersion equation (ADE) or the convection—dispersion equation. The initial and
boundary value problem obtained by combining the above second-order PDE with the
initial concentration distribution in the medium and appropriate boundary conditions
is solved to obtain space—time distributions of solute concentrations. It must be noted
that specific discharge and volumetric water content to be used in Equation 15.6 must

In unsaturated medium, especially at low water content, the liquid phase is not
fully connected, and therefore not fully participating to the flow. In such a situation,
Equation 15.6 must be augmented by a sink term that accounts for mass exchange by
diffusion toward stagnant zones. This type of model is usually referred to as a mobile—
immobile model, or a two-region model (Coats and Smith, 1964; van Genuchten and
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Wierenga, 1978).

00, C, 00;m C;
rgt m n lrgt im _ . BmD - VCim — Ci - g(6m)), (15.7)

where 0., [—] and 6;,, [—] are the volumetric fraction of mobile and immobile water,
respectively. Cp [ML73] and Cim [ML 73] are solute concentrations in the mobile
and immobile zone respectively. In this case, D refers to hydrodynamic dispersion in
the mobile zone. As an additional unknown appears in Equation 15.7, an additional
relationship is required to solve the problem. Usually, it comes from the assumption
of linear nonequilibrium or rate-limited mass transfer (Coats and Smith, 1964)

9Cim
at

= o(Cm — Cim), (15.8)

where o [T~'] is a mass transfer rate coefficient (see Part 2). A one-dimensional
diffusion model can also be used (Rao et al., 1980). Breakthrough curves computed
from Equation 15.7 are characterized by a significant tailing and longer times to reach
a unit relative concentration as a result of slow diffusion exchange of solutes between
the mobile and the immobile zone.

15.3.3 HyprobyYNAMIC DISPERSION AT THE MACROSCALE

The traditional approach to modeling transport in natural formations is to assume that
the advection—dispersion equation also holds at large scale. However, field investiga-
tions show in a consistent manner that the values of dispersion coefficients derived
under laboratory conditions do not apply to large scale transport. Whereas typical val-
ues of dispersivity from column experiments range between 0.01 and 0.1 m, values
of macroscopic dispersivity (or macrodispersivity) are in general three to four orders
of magnitude larger (Gelhar et al., 1992; Lallemand-Barres and Peaudecerf, 1978). It
has also been widely observed that field-scale dispersion coefficients increase with
distance and with time (Sauty, 1980).

The main key to understanding this scale effects is heterogeneity. Dispersion is an
advective process, as it is caused by variations in fluid velocity. However, variations in
fluid velocity do not only take place at the pore scale, but also occurs at larger scales,
ranging from macroscopic to megascopic. At the field scale, commonly encountered
geological structures influence contaminant transport drastically, leading to velocity
variations over several orders of magnitude. This includes the effects of stratifica-
tion and the presence of lenses with higher or lower permeability. At the megascopic
scale, differences between geologic formations also cause nonideality in solute trans-
port. As the flow path increases in length, a solute plume can encounter greater and
greater variations in the aquifer, causing the variability of the velocity field to increase.
Because dispersivity is related to the variability of the velocity, neglecting or ignor-
ing the true velocity distribution (i.e., by replacing the heterogeneous medium by an
equivalent homogeneous one) must be compensated for by a corresponding higher
apparent (or effective) dispersivity, leading to what is commonly called the scale
effect of dispersion.
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15.3.4 UpscALING MODELS FOR DiSPERSION COEFFICIENTS

can usually be categorized into deterministic or stochastic methods.

2005, 2007; Guven et al., 1984; Marle et al., 1967; Mercado, 1967).

2

be understood as a characteristic length of heterogeneity.

IS
af (00) = G%YT’
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During the past three decades, a number of theoretical studies have been carried out to
describe field-scale dispersive mixing as a function of soil heterogeneity and develop
upscaling methods for the estimation of macrodispersivities. These upscaling methods

Deterministic upscaling methods require the spatial variability of the hydraulic
conductivity of the soil to be fully characterized. Flow and transport are solved for
a given set of initial and boundary conditions, either using analytical or numeri-
cal methods. Macroscopic mixing properties of the heterogeneous medium are then
obtained by assuming that the solute plume is migrating in an equivalent homogeneous
medium. Historically, deterministic upscaling models turned out to be mostly applied
to compute macrodispersion coefficients of perfectly stratified aquifers (Berentsen,

The idea behind stochastic models is that soil properties cannot be practically fully
characterized. To a certain extent, the hydraulic conductivity exhibits random patterns,
which result in a statistical uncertainty of concentration distributions. Stochastic anal-
ysis enables the variability in flow and transport to be related to the variability and
the spatial structure associated to hydraulic properties of the heterogeneous medium
considered. Let us define Y as the natural logarithm of the hydraulic conductivity
K, and assume that Y is normally distributed. This assumption accommodates the
large hydraulic variations that can be found in the field and excludes negative val-
ues, which is consistent with the physical requirement that permeability is positive.
The distribution of Y is fully characterized by its mean and its covariance function.
The covariance function describes the variability of Y, based on two parameters: The
variance oy [—] and the correlation length X\ [m]. The variance is a measure of the
degree of variability of Y, whereas \ quantifies its spatial variability. A large value of
X indicates that Y values are correlated over large distances. On the contrary, a small
value of \ indicates that there is no particular spatial structure for Y. \ can therefore

Stochastic upscaling theories are found to be attractive since they allow the
estimation of macrodispersion coefficients based on a statistical description of
soil heterogeneity. They also allow the demonstration of the scale-dependence of
macrodispersion coefficients. For large scale, stochastic theories usually predict the
convergence of macrodispersion coefficients toward constant asymptotic values. For
example, the asymptotic value of longitudinal macrodispersivity af for a saturated
isotropic medium with o, < h is given by (Dagan, 1984; Gelhar and Axness, 1983)

where y [—] is a flow factor accounting for the dependency of effective permeability on
dimensionality. In two-dimensional situations, y = 1, whereas in three-dimensional
situations, y = exp(c%/ 6). It must be noted that Dagan (1984) states that y should
be kept equal to 1 in all situations. Equation 15.9 shows that macrodispersivity is
directly linked to the structure of the log-hydraulic conductivity field, and increases
when the variability of Y increases. Similar analytical expressions can be obtained
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for transverse macrodispersivity o}

3

ok (00) = c%{O‘LJFT“T(zD), (15.10a)
% or, + 4ar

ok (00) = a@TyZ@D), (15.10b)

where Equations 15.10a and 15.10b are applicable to two-dimensional (2D) and
three-dimensional (3D) plumes, respectively. As for longitudinal macrodispersivity,
transverse macrodispersivity is thus found to depend on the dimensionality of the
problem considered. Equations 15.10a and 15.10b also show that when local mixing
can be neglected, heterogeneity does not produce any macroscale transverse spread-
ing. Gelhar and Axness (1983) have computed exact expressions for o and o} under
various conditions. Time-dependent analytical solutions of of in two- and three-
dimensional isotropic media are given by Dagan (1988). Other authors have derived
analytical expressions in other specific cases (see the reviews by Dagan, 1989; Gel-
har, 1993; Rubin, 2003). Stochastic theories are typically limited to c%, « 1 and to
situations where \ is much smaller than the scale of the problem.

The authors have also applied stochastic methods to situations where hydraulic
conductivity is not log-normally distributed. Rubin (1995) and Stauffer and Rauber
(1998) propose analytical expressions for macrodispersion coefficients in aquifers
made of two materials of different hydraulic conductivity. Stochastic methods have
also been applied to situations where heterogeneity cannot be characterized using a
single finite correlation scale (Di Federico and Neuman, 1998; Rajaram and Gelhar,
1995; Zhan and Wheatcraft, 1996).

Most of the results presented above are related to solute transport in saturated
heterogeneous media. In the vadose zone, the variability in water saturation usually
contributes to enhance the variability in water velocity, and therefore solute spreading
(Russo, 1998). However, it has been shown that macrodispersion coefficients for
solute transport in unsaturated soils characterized by strong stratification are usually
smaller than saturated values, especially at low water content (Harter and Zhang,

15.4 ESTIMATION OF TRANSPORT PARAMETERS

Although the theoretical studies reported in previous section have generated some
important answers to key questions regarding scale effects, the estimation of disper-
sivities from the practitioner’s point of view still faces a lot of difficulties. Stochastic
upscaling methods for dispersivities require a significant amount of data to deter-
mine the statistical characteristics of hydraulic conductivity variations for a given
site. Considering the costs of field investigation, it is generally rare to find a site that
has enough data points for this kind of statistical evaluation.

Currently, the only practically viable method to obtain a priori estimates of disper-
sivities is by means of empirical approaches, which are based on regression curves
fitted on dispersivity data. In this section, major compilations of existing data on
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dispersivity are reported, and regression laws are provided as rule-of-thumb estima-
tions of core- and field-scale dispersivity coefficients. Then, laboratory methods to
determine longitudinal and transverse dispersivity are described. Finally, field-scale
tracer testing methodologies are presented. Indeed, sound field-scale modeling of
solute transport cannot rely only on bulk a priori values or laboratory-scale estimates
of solute transport parameters. In situ tracer tests must be conducted in order to
understand site-specific advection and dispersion processes.

The methods reported below all assume that the medium under investigation is
homogeneous. Hence, the methods allow the estimation of effective dispersivity coef-
ficients at the scale of interest. However, for the sake of simplicity, the notation ap,
will be used throughout this section, instead of af .

15.4.1 REeGRessiON LAws TO ESTIMATE DisPERSIVITY COEFFICIENTS

There are currently large controversial views regarding the interpretation of compiled
field data to obtain universal scaling laws for dispersivity coefficients. Whereas some
authors say that a single universal regression line would ignore the fact that different
aquifers may have different degrees of heterogeneity at a given scale (Gelhar et al.,
1992), others state that, on average, all aquifers have a similar behavior at a give scale
and individual departures from the universal scaling rule must be viewed as local
fluctuations around the mean behavior (Neuman, 1990). Moreover, uncertainty is
often attached to field dispersivity values. Numerous factors, such as actual injection
conditions, solute density effects, or even temporal variations of the advective flow
regime or biased interpretation techniques, are likely to be interpreted as dispersion.
Even at the laboratory scale, Bromly et al. (2007) showed that dispersivity values were
highly dependent on the type and on the size of experimental device. The empirical
laws presented in this section should therefore be used with extreme caution.

Table 15.1 reports several empirical laws to estimate core-scale dispersivities based
on other physical properties of the soil, such as porosity n [—], median grain size dsg

TABLE 15.1

Regression Laws for Core-Scale Dispersivity Coefficients (mm)
Regression Law Applicability Source

ar, = 1.75dsg Perkins and Johnston, 1963
ap, =3.49Cy—1.41 Xu and Eckstein, 1995

ap = —3.514+441Cy Glass beads Xu and Eckstein, 1997

ap, = —25.47+12.40/n Glass beads Xu and Eckstein, 1997

arp, = 0.46 + 0.85d5 Glass beads, Cy = 1 Xu and Eckstein, 1997

ap, = —3.15+0.85d59 +3.55 Cy  Glass beads, Cy < 2 Xu and Eckstein, 1997

ay = —2.1740.81d59 +2.73 Cy ~ Glass beads, Cy < 3 Xu and Eckstein, 1997

ap, = —2.75+4.08 Cy Glass beads, Cy < 4 Xu and Eckstein, 1997

ap, = 1.25dspSy 2 Glass beads, Sy > 0.8 Haga et al., 1999

ap, = L11dspSy>! Glass beads, Sy < 0.8  Haga et al., 1999

aL = d50a’1S;02 a = 6a*/n* 4+ 0.015 Sato et al., 2003

at = 0.055ds59 Perkins and Johnston, 1963
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[mm] or coefficient of uniformity C, = deo/d10 [—]- Mean grain size and uniformity
of grain size are usually considered as the two most important factors affecting grain
size. For relatively uniform materials, dispersivity is directly proportional to median
grain size. For less uniform materials, the shape of the particle size distribution is the
dominant factor for dispersivity and o is directly proportional to the coefficient of
uniformity. Dispersivity is also found to be inversely proportional to porosity.

In unsaturated media, the estimation of pore-scale dispersivity is complicated by
its additional dependence on the saturation degree Sy, [—]. The saturation degree is
the volume of water per unit pore volume of the medium. It is usually related to the
capillary pressure. In an isolated unsaturated soil pore, a curved interface appears
between air and water phases and a pressure difference exists across the interface.
This pressure difference depends on the interfacial forces between air and water and
on the radius of the pore. Following standard conventions, the capillary pressure is
defined as the difference between the pressure in the air phase and in the water phase.
At the continuum scale, there exists a relationship between capillary pressure and the
saturation of the porous medium. A porous medium consists of a distribution of pores
with different radii. If an increasing macroscopic capillary pressure is applied to a
porous media, the air phase would invade the larger pores and the water phase would
be present in smaller pores. The larger sized pores could not support the capillary
pressure and would release water. Thus, the larger the capillary pressure, the smaller
amount of water will be present in the porous medium. The relationship between
capillary pressure and the water phase content is referred to as the capillary pressure
curve or the retention function, which is an intrinsic property of a porous medium. A
well-known model for the retention function of a porous medium is the model of van
Genuchten (van Genuchten, 1980, 1991). It is characterized by two parameters a*
[cm~!] and n* [—]. a* is related to the threshold capillary pressure required to start
draining the porous medium. Hence, it is also related to the smallest pore size of the
medium. n* is related to the distribution of pore size. A small value of n* reflects a
large distribution of pore size, while a small value of n* would apply to a relatively
uniform porous medium (Lu and Likos, 2004). In the model of Sato et al. (2003), the
pore-scale dispersivity is expressed as a function of the van Genuchten parameters and
as a function of effective saturation degree (see Table 15.1). The effective saturation
degree Swe [—] links with the saturation degree using Swe = (Sw — Swr)/(1 — Swr),
where Sy [—] is the residual saturation degree. The longitudinal dispersivity tends
to increase when the saturation of the medium decreases. For example, the equations
provided by Haga et al. (1999) reported in Table 15.1 predict that dispersivity is 1.8
times larger at a saturation degree of 80% as compared to full saturation, 4.3 times
larger ata saturation degree of 60%, and 15.2 times larger at a saturation degree of 40%.

Figure 15.2 shows one of the most recent compilations of longitudinal dispersivity
values in field-scale saturated-flow situations. The trend for o, to increase with scale
L is relatively clear. Field data typically range between 0.01 m and 5500 m at scales
of 0.75 m to 100km. Also, the values for porous (unconsolidated) and fractured
(consolidated rock) media tend to scatter over a similar range. At a given scale, the
longitudinal dispersivity typically ranges over 2-3 orders of magnitude. This degree of
variation can be explained in terms of stochastic macrodispersion theories presented in
Section 15.3.3. When the reliability of the data is accounted for, the scale dependence
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FIGURE 15.2 Field-scale longitudinal dispersivity coefficients as a function of scale.
[Adapted from Schulze-Makuch, D. 2005. Longitudinal dispersivity data and implications
for scaling behavior. Ground Water 43(3): 443-456.]

of longitudinal dispersivity is less obvious: There are no high-reliability points at
scales larger than 300 m. This reflects the fact that large-scale oy, values are almost
exclusively obtained from contamination plume simulations or environmental tracer
studies. As large-scale controlled tracer experiments require a very long period of
time, such experiments have not been conducted.

Scaling relationships for longitudinal dispersivities are usually described using
power laws of the form

ar = cLY, (15.11D)

where ¢ [L'79] is a characteristic property of the medium and d [—] a scaling expo-
nent. Early attempts to fit a regression law on compiled field data yielded a simple
rule ap, = L/10 (Lallemand-Barres and Peaudecerf, 1978). Later, Neuman (1990)
found ap = 0.175 L4, valid for L < 3500 m. He also fitted two separate regression
lines for L < 100 m and L > 100 m. He found op, = 0.0169 L3 for L < 100 m
and o = 0.32L'83 for L > 100 m. Recently, Schulze-Makuch (2005) performed
regressions on field data accounting for their reliability. He found ap = 0.2 L0%
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using high-reliability dispersivity data only for unconsolidated sands. He also estab-
lished regression laws for consolidated rocks of various types. Other authors have
also provided other regression laws (Arya, 1986; Xu and Eckstein, 1995).

Gelhar et al. (1992) caution users routinely adopting oy, values from Figure 15.2
or from a linear representation of the data. Instead, users should favor the use of
dispersivity values in the lower half of the range at any given scale. If values in the
upper part of the range are adopted, excessively large dilution may be predicted and
the environmental consequences misrepresented.

Field data on transverse dispersivity are relatively scarce, and available data are
generally of a lower reliability compared to longitudinal dispersivity. Only Gelhar
et al. (1992) provide a compilation of atg and aTy values, but they do not provide
regression laws. Typically, values of aty are found to be about one order of magnitude
smaller than oy, while values of aty are about two orders of magnitude smaller than
ar . The smaller values of aty reflect the roughly horizontal stratification of hydraulic
conductivity in permeable sedimentary materials. Small ary values also imply that
contaminant plumes will potentially show very limited vertical mixing with high
concentrations at given horizons. The trend for transverse dispersivity coefficients to
increase with scale is usually less clear due to the low reliability of larger-scale data,
generally based on contaminant events, for which sources are ill-defined.

15.4.2 LABORATORY METHODS FOR THE DETERMINATION OF DISPERSIVITY
15.4.2.1 Methods for Column Tests

Pore-scale longitudinal dispersivity can be determined in the laboratory using columns
packed with the porous media under investigation. The device is similar to that
depicted in Figure 15.1 for saturated flow experiments. Under unsaturated flow con-
ditions, flow boundary conditions must be adapted. Usually, the column is placed
vertically, with an irrigation system on top, imposing a constant discharge. One
appropriate analytical solution to the advection-equation is (Kreft and Zuber, 1978)

C lrf L — vt 1 vL R L+ vt 15.12
¢~ 2° °<2m>+2e"p<m>erc(2m)’ (12
where, in unsaturated conditions, v = v(6) and Dy = Dy (0). erfc is the comple-
mentary error function. It assumes as initial condition C(x,0) = 0, and as boundary
conditions C(0,¢7) = Cp and C(oo,t) = 0. Fitting of this solution (e.g., using a
least-square criterion) onto observed breakthrough curves allows the simultaneous
determination of Dy, and v.
For high Peclet numbers, the second term in Equation 15.12 can be neglected.
Rewriting this equation for saturated conditions using the number of pore volumes
U = vt/L [—] as temporal variable yields

1 1-U

— = —erfc (15.13)
C() 2 2 UDL
vL
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corresponding to C/Cp = 0.5. The value of Dy, is found from

vL 2
Dy = §(10.84 —Jo.16)"s

concentration, respectively.

the estimated values of dispersivity (Novakowski, 1992).

15.4.2.2 Device for Transverse Dispersivity

measurements at the laboratory model outlet.
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This equation has several properties that render the estimation of v and D, eas-
ier: The plot of the outlet concentration curve as a function of J = (U — 1)/ JU
corresponds to a normal probability distribution with a mean py = 0 and a stan-
dard deviation 6; = 4/2Dr /vL. The plot C/Cy versus J on normal probability paper
should therefore be linear. The mean pore velocity is estimated using v = L/ty, tm

where Jo 16 and Jg g4 are the values of J corresponding to 16% and 84% of relative

This method is typically valid when effluent concentrations are measured. When
using a measurement device that allows the measurement of pore-water concentra-
tions, other boundary conditions apply to the advection equation and Equation 15.12 is
not valid anymore (Kreft and Zuber, 1978; van Genuchten and Parker, 1984). Attention
must also be paid to experimental artifacts arising from specific laboratory devices.
For example, if injection is performed in a volume of water outside of the column
(like a device to maintain the piezometric head), the actual injection condition is not
an instantaneous step variation. Due to mixing with the volume of water, the injection
is actually exponential. Not accounting for such effects can result in a serious bias in

Existing methods to estimate transverse dispersion are usually based either on tracer
tests or on dissolution tests. Dissolution tests generally imply groundwater flow along
a stagnant zone containing constant concentration gas (Klenk and Grathwohl, 2002;
McCarthy and Johnson, 1993), NAPL (Oostrom et al., 1999a; 1999b; Pearce et al.,
1994) or solid (Delgado and Guedes de Carvalho, 2001; Guedes de Carvalho and
Delgado, 1999; 2000). Transverse dispersivity can then be inferred from the rate
of dissolution of the third phase that is obtained through solute breakthrough curve

Most of laboratory tracer tests designed to determine transverse dispersion coeffi-
cients are performed in a uniform flow at constant mean velocity. Blackwell (1962),
Hassinger and von Rosenberg (1968), and recently Frippiat et al. (2008) used the so-
called “annulus-and-core” approach, in which the inlet and the outlet cross-sections
of a column are divided into two concentric zones. The concentration of the solution
flowing in the inner inlet zone (the core) is rapidly increased, while the solution in the
outer inlet zone (the annulus) is kept solute-free. Transverse dispersivity is computed
by comparing steady-state concentration of effluent solutions in the outlet annulus and
core zones. Divided inlets were also adopted in several other column studies involving
intrusive local concentration measurements (Bruch, 1970; Grane and Gardner, 1960;
Han et al., 1985; Harleman and Rumer, 1963; Perkins and Johnston, 1963; Zhang
et al., 2006). Other authors preferred point injection (Pisani and Tosi, 1994; Robbins,
1989). A few specific devices imply nonuniform flow: Cirpka and Kitanidis (2001)
and Benekos et al. (2006) investigate flow and transport in a helix and in a cochlea
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to determine transverse dispersivity. Kim et al. (2004) determined local longitudinal
and transverse dispersivities in a laboratory aquifer model with a local recharge zone.

15.4.3 FieLb METHODS FOR THE DETERMINATION OF DISPERSIVITY COEFFICIENTS

In theory, velocity and dispersivities can be estimated from virtually any test where
tracer is added in a controlled way to the groundwater. However, a few standard
tests are generally preferred because simple procedures are available to interpret the
results. The choice of which test configuration to adopt then results from practical or
economical constrains, from the duration of test, to the number of observation wells,
to the spatial scale to investigate.

Standard tracer tests are typically used at relatively small field scales. Estimates of
dispersivity at scales larger than several hundred of meters usually rely on different
methods, either using historical contamination data or exploiting natural variations in
the chemistry of natural recharge of the aquifer. However, estimates of advection and
dispersion based on data from contaminant plumes or environmental tracer measure-
ments are less reliable than field tracer tests, since there is a larger uncertainty in the
location and the intensity of source zone. Often, there is also an inadequate number
of sampling points.

15.4.3.1 Natural Gradient Tests

The natural gradient test involves monitoring a small volume of tracer as it moves
down the flow system. The resulting concentration distributions provide the data nec-
essary to determine advective velocities, dispersivities, but also chemical parameters.
This type of test is usually considered to be of a high reliability. When the test is
performed in a supposedly homogeneous formation using a fully penetrating well,
a two-dimensional analytical solution of the advection—dispersion equation can be
used (Domenico and Schwartz, 1997):

C V/b (_ x—vt)? 2 )

- — 15.15
4Dy t 4Dtt ( )

Co B 47tN/Dy Dt xp
in which it is assumed that the injection well is located at the origin of the coordinate
system and that velocity is constant and aligned with the x-axis. V [L?] is the volume
of tracer solution injected and b [L] is the thickness of the aquifer. When the injection
well is screened on a very small portion of its length, the three-dimensional solution
of the advection—dispersion equation must be used (Domenico and Schwartz, 1997):

C 1% (x — vr)? y? 7
—_ = exp| — — - . (15.16)
Co  8(mt)32/DiDtaDrv 4Dyt 4Dyt 4Dyt

Dispersivity coefficients can be estimated by fitting Equation 15.15 or 15.16 on con-
centration data monitored in observation wells. Other analytical solutions are also
available when the lateral extent of the source cannot be neglected or for sorbing or
decaying tracer species (see, e.g., Domenico and Schwartz, 1997).
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15.4.3.2 Forced Gradient Test

et al., 2005; Tiedeman and Hsieh, 2004).

15.4.3.2.1 Single-Well Injection or Withdrawal Test

injection phase can be fitted using (Gelhar and Collins, 1971)

C r2 _ R*Z
— = —erfc s

172
@ 2\ (B ke -R))

R* [L] being the mean radial position of the tracer front

be relatively reliable (Gelhar et al., 1992).

to be of a lower reliability.

15.4.3.2.2 Single-Well Push—Pull Test
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Forced gradient tests are conducted using injection and/or pumping wells, locally
increasing hydraulic gradients at levels significantly larger than those naturally occur-
ring in aquifers. The advantage is that test duration is greatly diminished. Compared
to a natural gradient test of the same duration, the tested volume of the aquifer is
also usually larger. As a result, due to the unavoidable heterogeneity of the soil, dis-
persivities obtained from forced-gradient tests are also usually larger than the values
obtained from natural gradient tests performed in the same aquifer (Fernandez-Garcia

The single-well injection test involves pumping at a constant rate. In case an obser-
vation well is located close to the injection well, observed concentrations during the

and r [L] is the radial position from the injection well, ry, [L] is the radius of the
well, QO [L3T~ ] is the injection rate and b [L] the thickness of the aquifer. Values of
longitudinal dispersivity determined using this type of test are usually considered to

In the single-well withdrawal test, a radially converging steady-state flow field
is established by pumping at a constant rate in a well. A fixed amount of tracer
is injected in a second well. A solute plume develops and starts to migrate toward
the pumping well. Analytical solutions for concentration in the pumping well under
such conditions are not straightforward to evaluate and often imply semianalytical
expressions with power series (Chen, 1999; Moench, 1989). Simplified solutions
are given by Sauty (1980), and Welty and Gelhar (1994). One of the advantages
of the single-well withdrawal test is that it allows the simultaneous estimation of
longitudinal and transverse dispersivities. However, since the converging flow field
tends to counteract spreading due to longitudinal dispersion, oy, estimates are thought

This type of test involves two distinct flow phases. First, tracer is injected in a well
at a constant flow rate. The tracer is moving radially from the well. After a certain
period of injection, flow is reversed and the tracer is pumped out of the soil at the same
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rate. The tracer is moving radially toward the pumping well. The single-well push—
pull test does not require any observation well: Concentrations are monitored at the
well during the recovery phase. Measured data can be analyzed using the analytical
solution developed by Gelhar and Collins (1971):

C 1
— = —erfc . (15.19)

1/2

Co 2 16 v\ 2T\
(1= 22
3 R* Vi

where V; [L?] is the total volume of water injected in the aquifer during the first phase,
and V, =V, (1) [L3] is the volume of water withdrawn from the aquifer at time ¢ of

The single-well push—pull test is a small-scale test and is generally found to have
a limited applicability in estimating macrodispersivities. The dispersion process in a
single-well push—pull test is significantly different from that of unidirectional flow:
Macrodispersion near the injection well results from differential advection caused by
vertical variations in hydraulic conductivity. As a result, the tracer travels at different
velocities as it radiates outwards. But it will also travel with the same velocity pattern
as it goes back to the production well. This means that the mixing process is partially
reversible and that the dispersivity might be underestimated compared to that of
unidirectional flow.

15.4.3.2.3 Two-Well Tracer Test

In the two-well test, water is pumped from one well and injected into the other at
the same rate to create a steady-state flow regime. The tracer is added in the injec-
tion well and monitored in the withdrawal well. Also, dispersivity estimates can be
improved by adding more observation wells between the pumping-injection doublets.
In general, these tests can be performed over several hundreds of meters in sandy for-
mations. Analytical solutions are provided by Grove and Beetem (1970) and Maloof
and Protopapas (2001).

Dirac input should be preferred rather than step input. A potential problem with the
step input test configuration is that the breakthrough curve is not strongly influenced
by dispersion except in the early stages, when concentrations are low. For this rea-
son, tests based on this approach are generally considered to produce low-reliability
dispersivity data.

15.5 EXAMPLE CALCULATIONS

LABORATORY ESTIMATION OF ot FORAN UNSATURATED MEDIUM SAND

Problem description: Figure 15.3 shows the results of two one-dimensional lab-
oratory test performed by Sato et al. (2003). The porous medium consists of a
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FIGURE 15.3 Experimental breakthrough curves for Toyoura sand and fitted solutions
of the advection—dispersion equation. (After Sato, T., Tanahashi, H. and Loaiciga, H.A.
2003. Solute dispersion in a variably saturated sand. Water Resources Research 39: doi:
10.1029/2002WR001649.)

repacked sample of Toyoura sand, a medium sand characterized by a median grain
size dso = 180 wm and van Genuchten parameters a* = 0.036 cm~! and n* = 4.2.
The column has an internal diameter of 5cm and a length of 12 cm. Steady-state
unsaturated flow was established by injecting water at the top of the column at a
constant rate and draining water at the bottom of the column. Controlled air suction
was applied at the bottom of the column to suppress boundary effects and estab-
lish a constant vertical profile of water content through the column. Two tests are
reported: Test 1 was performed at a saturation of Sy, = 49.4%, and Test 2 was per-
formed at a saturation of Sy, = 88.4%. A pore-water velocity of 0.5 cm/min was used
for each test.

Question: Determine experimental values of longitudinal dispersivity from the
time series of concentration recorded during each column test.

Solution: For ahomogeneous medium with a constant saturation degree, Equation
15.12 can be used to analyze the experimental data. Fitting of this equation to the
data (e.g., by minimizing the sum of the squared residuals between the equation and
the data) yields experimental dispersivity values of ap = 0.4 cm and o, = 0.06 cm
for Test 1 and Test 2, respectively. The corresponding column Peclet numbers are
Pe =30 and Pe =195 for Test 1 and Test 2, respectively. These values are large, so
the use of Equation 15.13 instead of Equation 15.12 yields relatively similar results.
Using the van Genuchten parameters of the saturation curve, the value of parame-
ter a was used in the empirical law established by Sato et al. (2003) is a = 0.066
(see Table 15.1). The empirical values of longitudinal dispersivity are then 0.27 cm
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and 0.08 cm for Test 1 and Test 2 respectively, which is reasonably close to actual
values.

15.5.2 ANALyYSIS OF SINGLE-WELL WITHDRAWAL TESTS IN A
2D HETEROGENEOUS MEDIUM

Problem description: Chao et al. (2000) carried out intermediate-scale tracer experi-
ments in a two-dimensional horizontal laboratory tank (244 cm x 122 cm x 6.35 cm).
The tank was packed with five different sands, in order to create a heterogeneous
medium with well-defined statistical properties. The sands used were crushed silica
sands. The heterogeneous packing was designed to simulate a lognormal distribu-
tion of saturated hydraulic conductivity (K) using five different sands. The resulting
In K distribution had a mean value of 4.75, a variance of 1.81, and an isotropic
correlation length of 10cm (Figure 15.4). Convergent tracer tests were performed,
using potassium bromide as a conservative tracer. A total of 36 tracer tests were
carried out, in order to investigated the effect of (1) pumping rate; (2) distance
between injection well and pumping well; and (3) direction between injection well
and pumping well.

N16 N12

NW NE

W12

W18 E18

SW SE
S12 Pumping port

S16

¥: Pumping port ) : Injection ports
W:#70 B:#50 36 [:#16 []:#8

FIGURE 15.4 Experimental representation of the two-dimensional laboratory tank, showing
the heterogeneous pattern of the hydraulic conductivity field and the locations of injection and
pumping ports. Each block has dimensions of 6.1 x 6.1 cm. The sands are referred to using
their respective sieve size. (From Chao, H.-C., Rajaram, H., and Illangasekare, T.H. 2000.
Water Resources Research 36(10): 2869-2884. With permission.)

© 2011 by Taylor and Francis Group, LLC

187




Kapitola v Handbook of Chemical Mass Transport in the Environment

432 Handbook of Chemical Mass Transport in the Environment

Question: Determine experimental values of longitudinal dispersivity from the
time series of concentration recorded during each tracer test.

Solution: The breakthrough curves from the tracer tests were analyzed using a
two-dimensional analytical solution provided by Welty and Gelhar (1994):

(15.20)

where R [L] is the radial distance between the injection well and the pumping well. The
mean transit time * [T] can be computed using Equation 15.18. A least-square crite-
rion was adopted to determine oy, by fitting Equation 15.20 onto experimental data. As
summarized in Table 15.2, the dispersivity estimates ranged from 0.065 to 0.953 cm.
The high variability of oy reflects the variability of the hydraulic conductivity field.
Even at the same scale, different tracer tests in the same heterogeneous medium yield
widely different estimates of transport parameters. The estimated dispersivities at the
same scale varied by a factor of 2-6.

Chao et al. (2000) also performed a one-dimensional tracer test in their tank. They
obtained a longitudinal dispersivity of 12.0 cm. The theoretical value computed using
Equation 15.9 is 18.1 cm. Several factors account for this discrepancy:

TABLE 15.2
Dispersivity (cm) Estimates from Radial Flow
Tracer Experiments

Injection  Radius

Port (cm) Q=25mL/min Q=50mL/min Q = 75mL/min
NE 254 0.207 0.201 0.140
NW 25.4 0.182 0.245 0.146
SE 254 0.116 0.109 0.065
SW 254 0.329 0.370 0.399
El12 30.4 0.362 0.363 0.485
W12 30.4 0.439 0.333 0.225
S12 30.4 0.392 0.465 0.369
NI12 30.4 a 0.482 0.499
E18 45.7 0.741 0.567 0.395
W18 45.7 0.658 0.777 0.953
S16 40.6 a a a
N16 40.6 0.368 0.439 0.303

Source: From Chao, H.-C., Rajaram, H., and T.H. Illangasekare. 2000. Water
Resources Research 36(10): 2869-2884. With permission.
4 Unreliable data.
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» Dispersivity is actually scale-dependent, and the theoretical value computed
using Equation 15.9 is a large-scale asymptotic value, whereas the exper-
imental value corresponds to a finite displacement of about 22 correlation
lengths.

* The presence of lateral no-flow boundaries tends to decrease the overall
variability of flow, and therefore the macroscale value of dispersivity.

» The tracer test was carried out in a single realization of the heterogeneous
hydraulic conductivity field. There are number of other realizations satis-
fying the same statistical properties, each potentially yielding different o,
values. Since Equation 15.9 yields a theoretical value that represents the
average over all possible realizations of the K field, one could expect the
value of a single realization to be different.

The main reason for the discrepancy between the one-dimensional tracer test and
the radial tracer test lies in the dimension of the source zone. One-dimensional
tracer tests are characterized by a large source zone (i.e., the full cross-section of
the medium), whereas convergent tracer tests have a point source. In the latter case,
solute plumes do not sample the full variability of aquifer properties, and therefore
undergo smaller dispersion processes. This mostly highlights that, even if theories are
available to predict macroscale dispersion coefficients, they are bounded to certain
limitations which could make them unsuited to given situations.
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PART 2 MASS TRANSFER COEFFICIENTS IN PORE-WATER
ADJACENT TO NONAQUEOUS LIQUIDS AND PARTICLES

Organic chemicals and hydrocarbons with very low aqueous solubility remain a sep-
arate phases or as nonaqueous phase liquids (NAPLs) for long periods of time in the
subsurface contributing to soil and groundwater contamination. Ata very fundamental
level, the mass transfer occurs at the NAPL—water interfaces within the pores. How-
ever, when the NAPLs enter the soil, they produce complex entrapment morphologies
and architecture that makes the mass transfer process complex. The morphologies of
entrapment at the pore scale and the spatial distribution that defines the architecture
are controlled by many factors that include the spill configuration, type, and physical
and chemical properties of NAPL and the subsurface heterogeneity. Uncertainty asso-
ciated with all these controlling factors contributes to the prediction uncertainty of
how much dissolved mass flux is generated from source zones of NAPL-contaminated
sites. The focus of this section is to discuss and present modeling methods that are
used to predict mass transfer from entrapped NAPL sources taking into consideration
the various entrapment morphologies and architecture that occur at naturally hetero-
geneous field sites. To be of practical value, methods have to be developed to up-scale
this mass transfer process from smaller measurement scales (laboratory) to the field.

The outline of the presented material is as follows. The mass transfer that occurs at
the NAPL—water interfaces at the pore scale is generally approximated using a linear
model based on film theory. In extending this formulation to the representative ele-
mental volume (REV) scale in porous media, it is necessary to define an overall mass
transfer rate coefficient. The theoretical development of phenomenological models
that are used to estimate these overall mass transfer coefficients is presented. Methods
to up-scale these REV scale models to field scale are presented. A set of examples
based on intermediate-scale laboratory tests is presented to demonstrate the use of

15.7 DISTRIBUTION AND MORPHOLOGY OF NAPLs IN

Nonaqueous phase liquids are classified into two groups depending on their specific
gravity. Hydrocarbons and petroleum products that are less dense than water are
referred to as light nonaqueous phase liquids (LNAPLs). Solvents, cold tar, wood
preservatives that are heavier than water are referred to as dense nonaqueous phase
liquids (DNAPLSs). They are classified as nonaqueous phase liquids because of their
very low solubility. They stay as a separate fluid phase when in contact with water
for a very long period of time. When introduced on to the ground surface because of
accidental spills, improper disposal or leaking from storage systems, NAPLs migrate
through the unsaturated zone of the subsurface where the wetting water phase partially
occupies the pore space. Because of surface tension, the water pressure stays at less
than atmospheric (capillary suction). During migration, the NAPL that behaves as a
nonwetting fluid in the presence of water displaces the nonwetting air phase. After the
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NAPL front has propagated, a fraction of the NAPL remains entrapped within the soil
pores. Before reaching the water table (where the water pressure is at atmospheric), the
NAPL front will penetrate the zone that is referred to as the capillary fringe where the
pore water is close to saturation but is under less than atmospheric pressure. The NAPL
front will penetrate the capillary fringe and reaches the water table. After reaching
the water table, the behavior of NAPL depends on the relative density compared to
water. Lighter than water LNAPLs tend to float on the water table and the dense
DNAPLSs will penetrate the water table and enters the saturated zone of the aquifer
where the water pressures are higher than atmospheric. Depending on the conditions as
determined by the spill volume, rate, fluid, and porous media properties, the DNAPL
behaves unstably and will migrate preferentially as fingers (Held and Illangasekare,
1995). Laboratory and theoretical studies suggest that, even in the most homogeneous
of porous media, the infiltration and dissolution of dense NAPL solvents into the
saturated zone will tend to occur as a number of scattered fingers and not along
one uniform plug or front. Once a sufficient amount of NAPL accumulates and the
NAPL solvent enters the porous medium, downward movement will continue until
all of the NAPL solvent is present as suspended fingers, ganglia, and/or as pools of
NAPL accumulated on lower-permeable layers. Because fingers tend to have small
dimensions in the saturated zone (usually occupying single pore throat), significant
fraction of NAPL mass in the saturated zone may be present as NAPL pools (Anderson
etal., 1992). However, deep penetration of downward moving fingers and subsequent
formation of new pools of NAPL flowing through the finger result in a complex spill
morphology and thus the prediction of finger penetration into the porous medium is
also important (Illangasekare et al., 1995).

The entrapped NAPL, both in the unsaturated and saturated zones produce fluid—
fluid interfaces through which mass transfer occurs. The unsaturated zone NAPLs
produce NAPL—-water and NAPL—air interfaces. Water infiltrating through the unsat-
urated zone picks up the dissolved mass and transports the solute to the saturated
zone. The mass transfer that occurs through the NAPL—air interface contributes to the
vapor migration through the air phase. In the following sections, we will only focus
on the mass transfer that occurs at NAPL—water interfaces, thus focusing only on the
problem of groundwater contamination by NAPLs.

15.8 CONCEPTUAL MODELS OF MASS TRANSFER

A variety of models exist to describe mass transfer phenomena among phases in a
multiphase system. Here, an overview from simple dispersion model (Johnson and
Pankow, 1992) to solute mass flux models (Miller et al., 1990; Powers et al., 1992;
Geller and Hunt, 1993; Imhoff et al., 1993), including various models for Sherwood
transfer rate number is presented in this section.

15.8.1 ONEe-DIMENSIONAL VERTICAL DISPERSION MODEL

Johnson and Pankow (1992) presented a simple analytical model for dissolution of
pools of a NAPL by treating the mass transfer to be a vertical transport process.
The general two-dimensional mass transport equation can be simplified by assuming:
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governing equation is given by

aC b 92C
v— = _—
dx T2

15.5b or Equation 15.5¢.

is given by

_ 2/
C(Ly,2) = Cserfc (2m> ,

to complete dissolution T, will be given by

o rpLS/zﬁ
P~ c/ADy’

area averaged mass transfer across the pool length.

15.8.2 LINEAR DRIVING MODEL FOR INTERPHASE MASS TRANSFER

linear relationship is given by

J =ki(Cs—C),
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(1) the time required for total pool dissolution is exceedingly longer in comparison
with the contact time between the pool and the flowing groundwater, therefore, a
steady-state form of the advection—dispersion equation can be used, (2) sorption is
not important at steady state, and (3) groundwater flows with the velocity v in the
horizontal direction. Thus, a two-dimensional steady-state equation can be used. The

where C[ML ™3] is the concentration of NAPL, v [LT~!] is the groundwater velocity
in the horizontal direction, z[L] is the vertical distance above the pool and x[L] is the
horizontal distance along the length of the pool with the origin at the beginning of
the pool. The vertical dispersion coefficient Dt [L2T~!] is given either by Equation

Hunt et al. (1988) presented the analytical solution of Equation 15.21 with
the boundary conditions C(x,+00) =0 and C(x,0) = C; for all x € (0,L;,) and
C(0,z) =0forall z € (0,Lp), where Ly, is the length of the pool. Based on this solu-
tion, the vertical concentration profile at the downgradient edge of the pool (x = Lj)

where Cs [ML ™3] is the solubility limit of the dissolving NAPL component. Based
on the above solution, the time for complete dissolution of the pool can be estimated.
If a pool consists of constant thickness with a thickness/length ratio r, then the time

where p [ML~3] is the density of the NAPL. The above derivation assumes a surface

A common concept implicit in many mass transfer theories is to describe the mass
transfer across two phase boundaries through a mass transfer rate coefficient. The
driving force in this case is determined by the difference in the concentration at the
phase boundary (e.g., NAPL surface) and the bulk phase (e.g., water or air). This

where JIML~2T~!] is the mass flux rate from the NAPL, k; [LT ] is the mass transfer
rate coefficient, C; [ML ™3] is the aqueous phase concentration under conditions
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D —

Flow velocity v '

! » C(zx)

x=0 Pool ’ x=L
Concentration profile at x = A

FIGURE 15.5 Dissolution of a NAPL pool.

when the NAPL is in thermodynamic equilibrium with the solute in the aqueous
phase (solubility limit of NAPL in water) and C [ML~3] is the aqueous phase solute
concentration in the bulk solution. The subscript I denotes that the driving force acts
along the longitudinal direction normal to the direction of flux. Note that this model
does not assume the presence of a porous medium.

15.8.3 STAGNANT FiLM MODEL

A conceptual model that describes mass transfer across two phases is assumed to
occur through a stagnant aqueous film adjacent to the interface has been adopted
for porous media applications. A schematic illustration of the process that occurs is
shown in Figure 15.6.

As there is no mass storage within the film, the concentration gradient has to
be linear. Applying Fick’s law, an expression for steady mass flux J [ML=2T~!] is
obtained as

J=-0% P o) (15.25)
- ldl - 6 N ’ .
A
l
C Aqueous phase
:_“_
Stagnant film

Solute

FIGURE 15.6 Stagnant film model.
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J =ki(Cs—C).

mass rate J' [ML~3T~!] then takes the form

J =K. (C; — O).

K, are related by

A
K. :klvn»

15.9 EMPIRICAL MASS TRANSFER RATE COEFFICIENTS

given as

b (#) Rel/3gcl/3 (E)
3T 4/3) R
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where D; [L2T~!] is the diffusion coefficient in free liquid and 3 [L] is the thickness
of the assumed stagnant film. By introducing a mass transfer coefficient k; = D;/3
[LT~!] an equation similar to the linear driving model can be written as

The macroscopic groundwater flow equations are written at the representative elemen-
tal volume (REV) scale. As (A) is defined as the pore scale (NAPL—water interface
within a pore) and cannot be measured, a lumped mass transfer coefficient defined
at the REV scale is used (Pankow and Cherry, 1995). Hence, a linear driving force
model similar to Equation 15.24 can be used to describe mass flux from entrapped
NAPL sources in porous media. This is accomplished by introducing a lumped mass
transfer rate coefficient K, [T~!] (Miller et al., 1990). The mass rate equation for

The pore-scale mass transfer coefficient k; and the lumped mass transfer coefficient

where A,, [L?]is the total NAPL™~ water surface area within the REV of volume V [L?].
As A, cannot be measured or estimated in practical situations in involving ground
water contamination, K, is treated as an empirically determined parameter.

As was explained in the previous section, the lumped mass transfer rate coefficient
needs to be empirically determined because the basic parameters that describe the
mass transfer process cannot be measured for porous media systems. However, an
insight to the processes that contribute to mass transfer can be obtained by studying
simple settings, where the governing equations can be solved to obtain closed form
analytical solutions. Chemical engineering literature provides number of examples of
such closed form solutions (e.g., Bird et al., 1961). By identifying the driving forces
and mechanisms that contribute to mass transfer, the terms that appear in these closed
from solutions can be arranged into dimensionless groups. One example has relevance
to understanding dissolution from a pool and entrapped NAPLs, it is the case of the
dissolution of the wall when the water flows through a tube of length L and internal
radius R (Figure 15.7). The flow through the tube is assumed to be laminar.

The closed-form solution for the advection—dispersion equation expressed in
dimensionless group that is referred to as the Graetz—Nusselt problem solution is
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o 4:>—T—- |

Water flow

; I
Wall (NAPL) / i

FIGURE 15.7 Dissolution of wall during laminar flow.

where I' is the gamma function, Re [—] is the Reynolds number, and Sc [—] is the
Schmidt number. The dimensionless Sherwood number Sh [—] is related to the mass
transfer coefficient k; as Sh = k;d,/D;, where d,, [L] is the geometric mean particle
diameter. The relationships such as the one given by Equation 15.29 are referred to
as Gilland—Sherwood models.

Saba and Illangasekare (2000) proposed a model for two-dimensional flow con-
ditions. This model introduced a dissolution length along the flow path. Also, the
appearance of a tube radius allows for the introduction of the volumetric NAPL con-
tent into the phenomenological model. Conceptually, as the NAPL gets depleted, the
effective radius of the flow tube changes. The Gilland—Sherwood model that was
proposed by Saba and Illangasekare (2000) is of the form

(15.30)

n
Sh’ = a ReP Sc® <M> ,

L

where Sh’ [—] is a modified form of Sherwood number used for porous media
applications defined as

2
Kd;
D’

Sh' = (15.31)

The terms a, B, a, and n are empirical coefficients [—], T [—] is the tortuosity factor
of the flow path, L [L] is the dissolution length, dsg [L] is the mean grain size, and
8, [—] is the volumetric NAPL content. The mass transfer coefficient K [T~!] that
appears in Equation 15.31 is the lumped mass transfer coefficient and it contains the
NAPL/water interface area as introduced in Equation 15.28.

The correlation based on Equation 15.30 that was fitted to NAPL dissolution data
obtained in a two-dimensional dissolution cell by Saba and Illangasekare (2000) is

0.d 1.037
Sh' = 11.34Re®? §¢033 <—n 50) :

15.32
<L (15.32)

Gilland—Sherwood correlations were developed for a number of test systems and
configurations by anumber of investigators. These correlations are listed in Table 15.3.
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TABLE 15.3
Gilland-Sherwood Correlations Reported by Different Investigators
Reference Correlation Valid Range
dp \33
Estimated from Sh' = 70.5Re! 36751/ g=2/3 (l) 0, € (0,0.056)
Geller and Hunt m Re €(0,0.014)

(1993) in Imhoff
et al. (1993)
Miller et al. (1990)  Sh’ = 12(¢ — 6,,)Re07390-605¢0:5 0, €(0.016,0.07)
Re € (0.00015,0.1)

Est. from Parker Sh’ = 1240(¢ — 6,,)Re0-7360-60 6, €(0.02,0.03)
etal. (1991) in Ree(0.1,0.2)
Imhoff et al. (1993)

Powers etal. (1992)  Sh' = 57.7(¢ — 6,)*-61Re%61 4254 /941 Re € (0.012,0.21)

X —0.31
Imhoff et al. (1993)  Sh’ = 340Re07190-87 (d—) 0, € (0,0.04)
/4

(¢ —6,)Re € (0.0012,0.021)
x/dsg € (1.4,180)

Powers et al. (1994) Sh' = Re € (0.015,0.023)

0673
413 Re0-598 (@) 170369 <9i P
dp ! Oni

p=0518+0.114 (@> +0.1U;
dP
Note: 6y [—] is the NAPL content, ¢ [—] is the porosity, Sy; [—] is the initial NAPL saturation, dp [L]
is the diameter of the porous media mean particle, d,; [L] is the mean value of the initial NAPL
ganglia, dsq [L] is the particle diameter such that 50% of the porous media are finer by weight
(median particle size), U; [—] is the uniformity index, and x/d), [—] is the dimensionless distance
into the region of residual NAPL.

The correlation by Geller and Hunt (1993) was developed for variable volumetric
content, that is, S, or n are not constant. The phenomenological model for mass
transfer was based on the correlation developed by Wilson and Geankoplis reported
by Imhoff et al. (1993) with an assumed spherical shape of NAPL ganglia. In that case,
it was necessary to choose the initial NAPL saturation Sy,; and the initial NAPL ganglia
diameter d,;, which are not needed in other models, since a shrinking NAPL ganglia
was examined in this study. In the development of the correlation by Miller et al.
(1990) the residual NAPL within the porous medium was established by mechanical
stirring glass beads, water, and NAPL. The laboratory created NAPL ganglia were
more spherical and smaller in size than that obtained by the displacement mechanism
as in the correlation by Powers et al. (1992), who explain that dissolution is fast in the
work of Miller et al. (1990) because these relatively small spherical NAPL ganglia
have larger interfacial contact area for an equivalent NAPL volumetric content. A
constant volumetric NAPL content and a steady state dissolution experimental data
were correlated. In a study by Parker et al. (1991) the residual NAPL distribution was
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created by mechanical mixing of sand and NAPL. This technique results in a similar
residual NAPL morphology as in the previous case, that is, likely small spherical
NAPL ganglia with different structure than in the case of natural NAPL displacement
mechanism. As in the case of (Miller et al., 1990), a constant volumetric NAPL
content and steady-state dissolution were considered. To develop the correlation by
Powers et al. (1992), the residual NAPL distribution was achieved by an immiscible
displacement process: NAPL first flooded a water saturated medium and then it was
followed by water flush to displace the mobile NAPL. This process creates NAPL
ganglia in a similar way they are created under natural conditions, that is, the ganglia
are nonuniformly displaced and variously shaped. Imhoff et al. (1993) used a different
regression techniques based on the Gauss—Newton nonlinear least-squares algorithm
and linear least-squares regression. The authors conclude that the simplest model
which adequately described TCE dissolution for the porous medium is that obtained
by nonlinear regression of power law, where the exponential variation of Sh with x/d,,
was suggested. The major difference between this and other models (see Table 15.3)
lies in the inclusion of the x/d, coefficient in the correlation of the mass transfer rate.
The correlation by Powers et al. (1994) included the uniformity index U;. Since the
shrinking of the NAPL blobs is considered in this model, the modified Sherwood
number correlation includes the initial volumetric NAPL content 6,,;.

Saba and Illangasekare (2000) compared some of the models listed in Table 15.3
based on one-dimensional testing systems and demonstrated that the correlation based
on two-dimensional data result in significant errors. This finding suggested that the
flow dimensionality has to be taken into consideration when upscaling the models
based on one-dimensional systems to multidimensional flow systems in the field.

Saenton and Illangasekare (2007) proposed a method to upscale the mass transfer
rate coefficient for numerical simulation of mass transfer in heterogeneous source
zones where NAPLs are entrapped. The basic approach involves the use of geo-
statistical parameters of the heterogeneity and the statistics that describes how the
NAPL saturation is distributed in the source zone. Through numerical experiments the
authors demonstrated that the mass transfer is most sensitive to the vertical smearing
of the NAPL that is represented by the second moment of the saturation distribution.
The upscaled mass transfer correlation is given by

A @5
— A @3 M
Sh = Sho(1 +02)% 1+ 22 Tz ) (15.33)
Y N %
4 M]],z

where Sh is the up-scaled Sherwood number containing the effective mass transfer
rate coefficient, c%, is the variance of the In K field, Az is the vertical dimensions of
the simulation grid, X, is the vertical correlation length and the last set of terms is the
dimensionless second moment of the vertical saturation distribution. This method of
upscaling was validated using data from an intermediate scale tank experiment.

15.10 EXAMPLE PROBLEMS

A cleanup of a contaminated porous medium by complete dissolution is one of the
many applications of the presented models. Based on different geometrical entrapment
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FIGURE 15.8 Illustration of two-dimensional complete dissolution problem.

of the NAPL, the Graetz—Nusselt model given by Equation 15.29 or the Powers et al.
(1994) model (see Table 15.3) for the Sherwood number Sh is used.

The contaminated sand is initially assumed to contain NAPL at its residual satu-
ration, that is, S,; = S,, and thus it cannot be cleaned otherwise than by dissolution.
Hence, the contaminated sand is put into a horizontally placed tube that contains clean
sand of the same properties as it is shown in Figure 15.8. Constant flux of water v, is
introduced to the inlet and only laminar Darcian flow is considered.

The dissolution of the entrapped NAPL system is modeled by the following two-
dimensional transport equation:

26,,C

a; + V(DVC) —vVC +J =0, (15.34)

where C [ML 3] is the solute concentration in water, 6,, [—] is the volumetric water
content given as 0,, ¢Sy, ¢ is the porosity, and S,, [—] is the water saturation related
to the NAPL saturation as S,, + S, = 1. D [L2T~!] is the hydrodynamic dispersion
tensor given as

| D+ vxag 0
D = |: 0 Dm:| , (15.35)

where v[LT~!] is the velocity of the horizontal flow of water, that is, v = (vy, 0), D),
[L2T!] is the mechanical dispersion introduced in Equation 15.1, a[L] the longitu-
dinal dispersivity introduced in Equation 15.5, and J [ML™2T~!] is the dispersive
solute mass flux given by Equation 15.24.

Since the saturation of NAPL changes during the dissolution process, the mass
conservation equation is added in the form

Sy
ot

Pn = SwJ, (15.36)
where p,[ML™3] is the NAPL density.

Equations 15.34 and 15.36 are supplemented by initial and boundary conditions.
Initially, the saturation of water and the concentration of NAPL are given as

1 in Q
S, = ¥ c—0 g (15.37ic)
1—-S, in Q)
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The boundary conditions are given as

Sy =1 onodQ (15.37.bcl)
ViC =0 onoQ2/I'p, (15.37.bc2)
C=0 onIp, (15.37.bc3)

where V,C denotes the derivative of C in the direction of the outer normal of the
boundary.

15.10.1 DISSOLUTION USING SPHERICAL BLoBS MODEL

Powers et al. (1994) considered a spherical TCE entrapment in a porous medium and
the respective model for the modified Sherwood number is shown in Table 15.3. In
order to correctly illustrate the dissolution process, dissolution of TCE in the Ottawa
sand used by Powers et al. (1994) is discussed in this section (refer to Table 15.4 for
fluid and sand properties).

15.10.2 DissoLuTION USING TuBULAR MODEL

As introduced in Equation 15.29, the Graetz—Nusselt closed-form solution for the
Sherwood number models dissolving walls of a single tubular TCE entrapment. In

TABLE 15.4
Ottawa Sand and TCE Fluid Properties

Symbol Units (SI) Value
Property of Ottawa Sand
Porosity ¢ - 0.37
Median particle size D5 m 71x1074
Medium particle size dp m 2x 1074
Darcian velocity Vv ms~! 9.796 x 1073
Initial NAPL saturation Sni - 0.01
Uniformity index U; - 1.21
Property of TCE
Density on kg m—3 1470
Solubility limit in water Cs kgm™3 1.27
Molecular diffusivity Dy, m2 s~! 8.8 x 10710
Longitudinal dispersion oy, m 1
Dynamic viscosity Wn kg m- 1! 59x 1074
Property of Water
Density Pw kg m—3 1000
Dynamic viscosity (Vo kgm™! s 0.001

Source: Based on Powers, S.E., Abriola, L.M. and W.J. Weber Jr. 1994. Water Resources Research 30:

321-332.
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order to extend the use of such a model to the macroscopic scale, mean tube length
L[L], outer radius Ry [L], and initial radius Rj,;[L] have to be chosen such that NAPL
can assumed to be uniformly redistributed in these tubes. If the number of the tubes,
mean length L and mean outer radius Ry, remain constant during the dissolution, the
following upscaled formula for the Graetz—Nusselt model can be used:

1
6

2 S -
Sh= (- |Re'"3Sc!PLV3 (R, — - (R2, —RZ)| . (1539)
< 3r (4/3) ) out Sn,ini out 1ni
TCE concentration, tubular model, t=1h TCE concentration, spherical model, £ =1h
0.5 l 1.5 0.5 I 1.5

1

N
0 -0.5
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. 0.5
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T 0 1 2 C (ke =3 -2 -1 0 2 e
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FIGURE 15.9 Concentration distribution in the domain after 1, 5, 9, and 13 h obtained by
tubular (left side) and spherical (right side) models for the Sherwood number Sh.
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FIGURE 15.10 Time evolution of the total integrated mass flux J (a) and total integrated
TCE saturation S, (b).

Trivial algebraic manipulations in Equation 15.38 reveal that only values of L/Rqy¢
and Rjni/Rout have to be known and, consequently, there are only two degrees of
freedom to determine. In the numerical simulations, the mean length of a tube is
given as L = d,,/100 and the last parameter Roy is chosen such that the Sherwood
number has the same value as in the case of the spherical blobs model by Powers et al.
(1994) in the previous section.

15.10.3 NUMERICAL EXPERIMENTS

The problem defined by Equations 15.34 and 15.36 together with the initial and
boundary conditions (15.37) is solved by the finite element method.

The concentration distribution for the spherical and tubular model are shown in
Figure 15.9. The evolution of the total saturation Sy, 1ot and the total mass flux Jio; of
the TCE is shown in Figure 15.10. The total saturation or the total mass flux is given
by the integration of S,, or J over the domain €2, respectively.
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same for both models as it is shown in Figure 15.10.
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Numerical simulation of hydrogeologic systems requires parameters char-
acterizing fundamental physical, chemical and biological processes as
model inputs. These processes at a very fundamental level occur within
the inter-granular pore spaces of the porous medium. In the traditional
applications in hydrogeology, the smallest scale where continuum for-
mulations are developed is the scale of representative elemental volume
(REV). The fundamental pore—scale processes that occur in a discontin-
uous space consisting of grains and pores do not get captured accurately
at the imposed REV scale. Some of the emerging problems related to
climate change and energy development require us to understand and
characterize basic processes and their interactions taking into account
physical and chemical heterogeneities and dynamics of mass transfer
at fluid interfaces within pores. Up-scaling research involves investiga-
tion, development and validation of methods to relate the parameters
that characterize these processes at the pore and macro-scale to the
grid—scale in field scale simulators. Emerging problems involving multi-
phase flow where up—scaling issues are of central importance is presented.
An example of how mass transfer that occurs at two fluid interfaces at
the pore-scale is characterized and up-scaled to field systems and how
multi-scale physical modeling approaches can be used for validation is
presented. Results demonstrate how pore—scale physics combined with
geologic parameters of field systems can be used to obtain effective field
scale.
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10.1. Introduction

One of the major challenges in hydrogeological sciences and reservoir en-
gineering is upscaling when field scale behavior, for example, needs to be
simulated using parameters obtained from laboratory scale cores or a lim-
ited number of in-situ field measurements. These parameters are often
included in numerical models with significantly larger grid sizes. However,
the nonlinearity of the hydrological processes and/or the variability across
measurement scales in the soil properties themselves lead to model predic-
tion error when parameters determined at much smaller scales are used in
larger models grid blocks. Knowledge gaps exist in the basic theoretical ap-
proaches needed for upscaling as well as selecting the best approach suited
for the type of application.

Hydraulic, geo—bio—chemical and thermal parameters of soils are usually
measured at the small scale and it has been long recognized (e.g., [1]) that
the natural variability of those parameters at the field scale is vast. The
question remains how information obtained from small scale measurements
can be used to predict large scale flow and transport behavior. The issue
of scale—transfer or moving across scales in the subsurface is very relevant
to many conventional hydrogeologic and geo—environmental problems as
well as emerging problems related to climate change and unconventional
energy development. These include the behavior of subsurface chemical
plumes, evapotranspiration, subsurface storage of CO5 and potential leak-
age, methane gas emissions from subsurface sources and loading to the
atmosphere, to name a few. All these problems, parameters characterizing
liquid and gas flow at the pore—scale must be transferred through upscal-
ing for field—scale modeling to be used in design, prediction and decision—
making. Even though many advances have been made in both the hydrolog-
ical sciences and energy/reservoir engineering, many challenges still remain
in developing and implementation of such upscaling methods. Specifically,
knowledge gaps exist in upscaling of multiphase fluid flow and processes
that couple the subsurface to the atmosphere.

A primary challenge of upscaling comes from factoring in the complexi-
ties of naturally present heterogeneity that is manifested at all length scales
from the pore to the field. This chapter discusses conceptual issues involved
in upscaling associated with the above mentioned problems and presents
an example of how mass transfer that occurs at water and non—aqueous
phase liquid interfaces at the pore-scale is characterized and upscaled to
field systems. Results demonstrate how pore-scale physics combined with
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geologic parameters of field systems can be used to obtain effective field
scale parameterizations.

A second example on soil water evaporation and gas flow is used to
highlight and discuss some challenges in upscaling processes controlled by
land /atmospheric interaction.

This section includes four other companion chapters focusing on a num-
ber of aspects of hydrogeological processes that are of central importance
in geosciences and engineering. A summary of these chapters is provided
here.

Chapter 11. Pore-Scale Chemical Reactions in Diffusion-Limited En-
vironments at the Pore Scale (D. Benson). This chapter addresses an issue
related to mixing at the pore scale and its contribution to chemical reac-
tions. This is of importance in many problems in the subsurface that involve
fluid flow and chemical reactions. Two examples that are of current interest
are groundwater contamination and mineralization of dissolved CO5 in ge-
ologic formations. The classical differential equations of chemical reactions
assume perfect mixing among reactants. This chapter presents a method
to rectify the problem associated with the well mixed assumption in both
theoretical and applied settings.

Chapter 12. Porosity in reactive geochemical systems (A. Navarre-
Sitchler, G. Rother, & J. Kaszuba). This chapter addresses the fundamental
issue of reactive fluids in pore spaces; reactive fluids can create a dynamic
system that affects the network of pores and hence the flow through the
system. The author makes the argument that many fundamental geologic
processes, the physical characteristics of pore networks in rocks in geologic
materials are not well understood due to their dynamic nature and features
at different length scales. Rock weathering and saprolite formation and
geochemical reactions within CO4y geologic sequestration are used as two
examples to demonstrate how geochemical reactions affect porosity. Both
of these examples have important implications for Earth Science.

Chapter 13. Quantifying the heterogeneity of hydrologic properties of
rocks in core floods (R. Pini & S. Benson). This chapter discusses the effect
of sub-core scale heterogeneities on multiphase flow by considering both
experimental and modeling studies. Novel experimental methods that allow
non-destructive measurements of core- and sub—core-scale hydrogeological
properties during conventional core—flooding tests are presented. These
methods allow for the measurement of porosity, permeability and capillary
pressure vs saturation relationships needed in multiphase flow modeling.
This approach represents a significant improvement from conventional core
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analysis to investigate complex hydrogeological flows in the subsurface.

Chapter 14. Monte Carlo Simulation of Distribution of Multiphase
Capillarity in a Porous Medium (B. Zeidman, N. Lu, & D. Wu). This
chapter presents an approach to determine the spatial distribution of var-
ious fluid components such as air, water, oil, or gas hydrate in multiphase
porous media systems. This method based on Coarse—Grained Monte Carlo
simulation is well-suited to handle complicated pore space geometries, ex-
ploiting the advances in imaging technologies such as X-ray micro CT for
obtaining high-resolution maps of pore space.

Chapter 15. Coupled Thermo—hydrogeologic Processes in Enhanced
Geothermal Systems (Y.-S. Wu, Y. Xiong, & H. Kazemi). Heat extraction
from fractured geothermal systems is subjected to complex interactions of
high temperature, multiphase flow, rock deformation and chemical reac-
tions. This chapter presents the formulation of a conceptual model of these
thermal-hydrological-mechanical-chemical interaction. A numerical model
based on this conceptualization is used to conduct an example simulation
of a prototype enhanced geothermal reservoir.

10.2. Issues of Upscaling in Emerging Problems

Climate change and unconventional energy development have highlighted
the importance of a number of porous media science and technology issues
with upscaling implications. In this section, climate and unconventional
energy development related problems are briefly introduced to identify the
fundamental issues related to pore—scale processes and upscaling for field
applications.

10.2.1. Carbon Capture and Storage

To address the technical challenge of reducing greenhouse gas loading to the
atmosphere from fossil fuel combustion, carbon capture and storage have a
large potential. The storage process involves the injection of captured COo
into deep subsurface formations such as depleted hydrocarbon reservoirs
and deep saline aquifers. The goal is to trap the CO5 gas in supercritical
liquid form (ScrCO3) in the pores of the formation that eventually dissolves
into the formation water and mineralizes, resulting in stable and long—term
sequestration.

During injection, the ScrCOs that is lighter than the formation water
migrates laterally below low permeability cap rock. Based on our under-
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standing of the behavior of non—-aqueous phase liquid (NAPL) in subsurface
formations, it can be conceptualized that in heterogeneous systems, the
ScrCO4 will preferentially migrate into higher permeability zones and pool
under the interface of the confining low permeability layers due to capillary
barrier effects (very high entry pressure needed for the non-wetting fluid
to displace the wetting fluid) [2-4]. The formation brine with dissolved
COg is heavier and will tend to migrate downwards resulting in unstable
finger development contributing to convective mixing [5]. This dissolution
process in the long—term is expected to contribute to permanent trapping
as a fraction of the dissolved COy mineralizes.

A related problem associated with geologic CO4y sequestration where
gas dissolution is of interest is when the CO4 leaks from the deep formation
either through caprock fractures, faults or defective casings in abandoned
wells. If the liquid SerCOs leaks, it will be carried upwards in the over-
laying formation until it encounters another confining layer. Again, the
possibility exists for the liquid to encounter other leakage points and flow
to shallow formations where the ScrCOq passes its critical point and be-
comes a gas or dissolves into the formation water due to its high solubility.
It has been shown in laboratory studies that when the water with dissolved
COs2 encounters texture transitions in the overlaying formations, the gas
exsolves and accumulates below low permeability layers in the shallow sub-
surface [6]. Gas bubbles tend to form due to accumulation of gas molecules
in the pores of the rock or rough surfaces of the solid grains where nucleation
of the bubbles mostly occurs [7]. Nucleation rate is a function of solubility
and cavity size distribution that controls the sizes of forming bubbles. Once
the gas phase is formed, it migrates upward due to buoyancy and expands
due to decreasing pressure until it encounters an impermeable layer. Accu-
mulated gas can then migrate laterally until it finds a preferential pathway
and continues to migrate upward reaching the shallow subsurface, thus po-
tentially affecting large areas of the aquifer and eventually the land surface.
When fresh water passes through these gas-entrapped zones, mass transfer
occurs across the gas/water interfaces contributing to COg gas dissolution.
The combined effects of gas trapping and dissolution help to attenuate the
leaking COs thus potentially reducing atmospheric loading. All processes
that are relevant to trapping, dissolution and gas migration occur at the
pore-scale and assessment of trapping efficiency and leakage risks in the
field require upscaling.
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10.2.2. Methane Gas Leakage

In unconventional energy development, methane gas and light oils stored in
the pores in shale are extracted through hydraulic fracturing. Gas extrac-
tion has the potential to create a secondary problem of leakage, resulting
in gas migration through the overlaying geologic media. Leakage can occur
through gas production sites, distribution pipelines, or natural fractures
in the geologic formation above the shale layer. The primary motivation
for understanding fugitive emissions is increased CH4 gas loading that con-
tributes to global warming with significant climate change implications.
The global warming potential of CHy is 72 times greater than CO5 for a
20—year time period and 25 times greater than COy over a 100-year pe-
riod [8]. Multiple field studies are assessing the local impacts of methane
leakage associated with hydraulic fracturing technology used for gas pro-
duction through air and water quality monitoring. Methane emission from
natural gas systems was estimated to be 221.2 million metric tons of COq
equivalent in 2009 [9]. Understanding the coupled process of gas migra-
tion in the shallow unsaturated zone of the subsurface and the atmospheric
boundary layer becomes critical in developing models for the assessment
of risk of atmospheric loading and development of effective leak detection
technologies. The pathways that carry the gas through the unsaturated
zone close to the land surface from the source (both point and distributed)
are developed through the air spaces of partially water saturated soil. The
spatial distribution of relative permeability of the gas/air phase that de-
pends on the soil-water saturation determines these connected pathways.
In natural media, the spatial distribution of soil properties has a direct
correlation to the distribution of the soil water saturations. One of the
driving forces that controls the gaseous flow rate in the shallow subsurface
is the pressure at the land—atmospheric interface. Hence, any pressure fluc-
tuations in the atmosphere can potentially affect the gas movement and
correspondingly the leakage signal that is detected near the land surface.
The effect of the wind speed and pressure fluctuations at the soil surface
and how air is transmitted through the soil pores is not well understood.
Many atmospheric and land surface conditions (e.g. micro topography,
surface roughness, vegetation etc.) contribute to this process. For exam-
ple, in the liquid phase, the primary mechanisms of advection, molecular
diffusion, and hydrodynamic dispersion contribute by different degrees to
mass transport in the gas phase. In some settings, small gradients in gas
pressure resulting from fluctuations in the pressure at the land-atmospheric
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interface can result in advective flux much larger than diffusive flux (e.g.
atmospheric pumping).

Poulsen and Mgldrup [10] evaluated the effects of wind—induced pressure
fluctuations on CO5 migration and emissions at a landfill site. They ana-
lyzed the impact of wind induced gas emission as a function of the standard
deviation in pressure variations. They found that the soil-air permeability
and the pressure fluctuation amplitude significantly affected gas emission
and that 40% of the total gas emissions flux came from wind turbulence-
induced gas transport. Maier et al. [11] also found that turbulence induced
pressure pumping reached up to 60% of the diffusive flux rates.

The upscaling related challenges of this problem come from first deter-
mining what pore—scale processes are important in coupling multi-phase
flow in the subsufrace with the free flow in the atmosphere. Second, how
these processes are properly upscaled when the soil conditions change both
laterally and vertically. The effects of topography of the land surface and
vegetation also have to be factored in.

10.2.3. Vapor Intrusion

Chlorinated solvents that are in the form of NAPLs when introduced to
the subsurface through accidental spills or improper disposal are prevalent
at industrial waste sites. These chemicals that are suspected or known car-
cinogens if ingested through contaminated water or inhaled as vapor results
in major health risks. After a spill, NAPL can persist as a separate phase in
the vadose zone and in the saturated zone below the water table entrapped
within the soil pores. The gas phase NAPL in the vadose zone can readily
disperse into air, into the air spaces within soil or underneath a structure,
leading to vapor intrusion, or the entry of a volatile chemical to indoor air
from underlying contamination in soil and groundwater [12]. It has been
reported that the average American spends more than 21 hours per day in-
doors and roughly 18 hours indoors for every hour spent outdoors [13]. Al-
though it is not conclusively known whether vapor intrusion is a widespread
problem with respect to long—term exposure at the very low levels expected
in enclosed spaces such as in buildings and basements, several cases have
received national attention. In a U.S. Environmental Protection Agency
(EPA) review article [14] state, due to difficulty in conclusively identifying
the soil-to—indoor pathway via indoor sampling, researchers have suggested
moving the focus of vapor intrusion investigations outside the home. The
processes that govern the vapor transport in the heterogeneous subsurface
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outside the home are complex, and the sampling to assess potential path-
ways is subjected to spatial and temporal variability. Spatial variability is
a result of a number of factors that include changing soil and soil mois-
ture conditions and temporal variability controlled by the transient heat,
wind, atmospheric pressure and a water flux boundary conditions at the
land—atmospheric interface. In addition, a number of physical and geo—
bio—chemical processes may attenuate the vapor in the subsurface along
the pathways from the sources to the building. The uncertainty resulting
from the lack of fundamental scientific understanding of these processes
and the inability to fully characterize the pathways through effective sam-
pling impact the prediction of exposure risks and design of effective mitiga-
tion strategies. Without an understanding of the partitioning between the
NAPL/water and NAPL/air interfaces in the vadose zone under realistic
conditions, site managers, for example, cannot generate accurate estimates
on remediation efficiency and/or source longevity. Understanding vapor
transport and attenuation in the unsaturated zone is paramount to our
understanding of the remediation alternatives of the subsurface and to our
ability to characterize risk to human health through exposure pathways.
The same issues of moving across scales from pore to field are of relevance
as the basic processes involved are related to flow of fluids in multiphase
systems with the added complexity of effects of heat and mass transfer
processes at the land surface that contribute to preferential vapor pathway
development in the subsurface.

10.2.4. Land Mine Detection

Countermine technology has become the subject of global interest for both
military and humanitarian mine—clearing operations. The United Nations
(UN) and the US Department of State declared landmines to be one of the
most widespread, lethal, and long lasting forms of pollution [15], costing
over $33 billion to clear the approximately 100 million landmines strewn
throughout 64 countries [16]. Although there is a wide range of sensors
available for the detection of buried landmines and many of the sensors
perform well, there is general agreement that none of the sensors can re-
liably detect landmines while also maintaining a low false-alarm rate [17].
One main reason for the high false alarm rate is the variety of landmines
that are used as well as the extreme variability of the environment in which
the mines are placed. Detecting small mines in large areas is especially
difficult when the area is highly heterogeneous with features that can mask
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the presence of the mine. Because landmine sensors (e.g. ground penetrat-
ing radar and thermal imagery) exploit soil and environmental conditions
to discern between mines and other objects, all current mine detection
technologies require that the spatial and temporal variability of key envi-
ronmental conditions such as climate, vegetation, soil type, depth of ground
water table, and topography be understood. If these factors and the ability
to model them in a variety of domains become well defined, then sensor
and algorithm simulations can more realistically be tailored to particular
operational scenarios and technologies [18]. However, research efforts on
mine detection are generally geared toward sensor development and sensor
fusion while very little effort has been made to evaluate the environmental
conditions that affect sensor performance [19-21]. Although many numeri-
cal and experimental investigations have been performed, they focus on the
response/effectiveness of the technology or neglect important parameters
like soil heterogeneity, and the temporal and spatial variability of the soil
moisture and/or thermal properties. Thus, there is a knowledge gap be-
tween the signal processing technique and fundamental processes that occur
in shallow subsurface zones as affected by near surface boundary conditions.
Increasing our knowledge of the effects of geohydrologic/thermal properties
and behaviors on the landmine signature is needed to fill the knowledge gap
in order to better understand, model /simulate, and predict the environmen-
tal conditions that are most dynamic to mine detection performance. The
shallow subsurface soil moisture processes as controlled by the mass and
heat flux boundary conditions at the land—atmospheric interface are cen-
tral to the problem of detection of land mines using sensing technologies.
Hence, in developing models for signal interpretation in the field, the issues
of multiphase flow parameter up—scaling in the shallow subsurface becomes
centrally relevant.

10.3. Multiphase Flow

Fundamental to the behavior of water, supercritical CO5, NAPLs and gases
in the systems that are of relevance to the problems introduced in the
previous section is the processes that govern multiphase flow in porous
media. In this section, the role of heterogeneity, continuum representation
and the governing equations of multiphase flow are first presented. This is
followed by the introduction of a commonly used constituative model and
a brief review of upscaling theories as applied to constitutive models.
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10.3.1. Heterogeneity

Much of the uncertainty in our understanding and parametrization of liquid
and gas flow through soils can be attributed to soil heterogeneity. Both field
and laboratory experiments have shown that the soil heterogeneity controls
the flow and transport, including preferential flow. As seen in Fig. 10.1,
most subsurface formations are heterogeneous with different spatial corre-
lations in all directions.

Figure 10.1(a) shows an example from a diesel contaminated site to
demonstrate how texture variability associated with mixtures of sands,
silts and clays results in subsurface heterogeneity. Figure 10.1(b) (from
a road cut) shows an alluvial formation where sands of different grain sizes
are deposited in layers creating heterogeneities and well-defined lithological
variations. When core samples are taken and the soil physical parameters
determined, the parameter values depend on the size of the sample. Using
porosity as a characterization parameter, how this variability is factored in
defining the representative elementary volume (REV) for continuum rep-
resentation of porous media flow is presented in Fig. 10.2. The porosity is
defined as

o(x0) = - [ xox (10.1)

Fig. 10.1. Heterogeneity manifested at field scale defined by lithological variations.

218




Kapitola v Pore Scale Phenomena: Frontiers in Energy and Environment

From Pore to the Field 173

where x(x) [—] is the void space indicator function and the volume V;. [L3]
is a sphere of radius 7 [L] centered around the spatial point x¢ [L]?. The
REV is such volume V, for which exist radii 7,i¢r0 and Tmgero Such that
the porosity given by Eq. (10.1) is independent of the radius r within
the range as shown in Fig. 10.2. The microscale description (r < Tsmicro)
focuses on the behavior of a large number of molecules of the present phases
(e.g., liquid and gas phases through the soil solid matrix). The equations
describing their flow are those of the continuum mechanics within the pores
(e.g. direct numerical simulations). The continuum (Fig. 10.2) or REV
scale is defined as the scale in which the mean is a constant deterministic
quantity and the variance approaches zero [22]. At this scale, individual
pores or phase interfaces are no longer noticeable. It is at this scale that
is referred to as macroscopic scale the Darcy equation is applicable. At
this macroscopic scale, the description of the flow of phases introduces new
equations which are the transposition of the mass balance, momentum and
energy microscale balances. For example, the equation of Darcy is the
momentum balance at the macroscopic scale which can be deduced from
Navier—Stokes equations. In these macroscopic equations appear effective
properties, as the permeability in Darcy’s law, the relative permeability and
capillary pressure in the multiphase case, etc. These effective properties
can be theoretically obtained from microscopic properties using upscaling
techniques.

The field scale (Figs. 10.1 and 10.2) is defined as the spatial dimension
where the soil properties become nonstationary [23]. Natural field scale
media are in fact generally heterogeneous and contributes to both spatially
and temporally non-linear multiphase flow behavior. At this scale, the soil
properties are rarely the same at every point of the medium. When solving
the governing equations of flow or transport using numerical schemes, where
the domain is discretized into computational blocks or grids, it is possible
to take into account the effect of these heterogeneities using block sizes
smaller than the characteristic size of the heterogeneities. As this may
not be feasible due to high computational demands, a second upscaling
stage is needed to describe the field scale properties from the macroscale
description.

10.3.2. Processes and Constitutive Models

Multi-phase porous media systems consist of fluids that exist in sepa-
rate phases in the inter—granular pore spaces. Figure (10.3) schematically
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Fig. 10.2. Porosity as a function of the volume mean radius r. Heterogeneity and scale.
Here the averaging of porosity over the different length scales from pore, homogeneous
continuum scale to heterogeneous field scale is shown.

shows such systems encountered in hydrogeological applications. Two—
phase problems of water flow in the unsaturated zone above the water
table associated with rainfall infiltration, aquifer recharge and irrigation
involve water and air as the wetting and non—wetting fluids, respectively.
Below the water table, the soil pores are fully saturated with water, thus
describing the flow as a single-phase problem. In industry, related problems
involving accidental releases of partially immiscible fluids (NAPLs) such as
industrial solvents, wood treating agents and petroleum products, the fluid
displaces some of the non—wetting air phase resulting in a three—phase sys-
tem. When NAPLs that are heavier than water penetrate the water table,
the non—wetting phase displaces some of the pore—water resulting in a two—
phase system. Interfacial tension at wetting/non—wetting fluid interfaces
within pores introduces additional force of capillarity that is not present in
saturated single—phase flow systems.

Each fluid in a multiphase system is characterized by its own pres-
sure state. The differences in pressure arise from imbalances of molecular
forces at fluid interfaces [24]. In a two—phase system, the capillary pres-
sure p. [M L~'T~2] that depends on the wetting phase saturation S, [—] is
defined as the pressure difference between wetting and non-wetting phases

Pe(Sw) = Prw = Pw (10.2)
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Fig. 10.3. Multi-phase porous media systems in hydrogeology.

where pn, [ML7'T72] is the non-wetting phase pressure and
pw [ML™'T72] is the wetting phase pressure. The relationship of cap-
illary pressure and fluid content is referred to as the capillary pressure
function (that is referred to as the retention function in unsaturated flow
systems). As given in Eq. (10.2), capillary pressure is usually expressed as
a function of the saturation of the wetting fluid. This relationship is an in-
trinsic property of a given porous medium and the two—fluid system. Data
on capillary pressure as a function of saturation are obtained experimen-
tally and fitted with mathematical functions to obtain constitutive models
for multiphase flow. Two commonly used constitutive models for capillary
pressure in soil physics and geohydrologic applications are presented by
Brooks and Corey [25] and van Genuchten [26]. The Brooks—Corey model
for the retention function is,

pc(Sw) :pdsj7 for De 2 Dd, (103)

where \ [—] is a fitting parameter, and py [ML~'T~2] is the pressure at
which the non—wetting fluid first enters the pores when the non—wetting
place builds up and is called displacement or entry pressure. The effective
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saturation S, is defined as,
Sw - Sr,w

Se = ,
‘ 1- Sr,w - Sr,nw

(10.4)

where S, ,, [—] and Sy . [—] are the residual or minimum saturation wet-
ting and non—wetting fluid, respectively.

When multiple fluid phases are present within the pore space, the ability
of the medium to conduct a given fluid within a pore will not depend on the
geometry of the pore space only, but also on fluid properties, geometry of the
fluid—filled part of the pore space and phases volume fraction. Darcy’s law
that was originally developed and applied for single phase flow is adopted for
multiphase flow through the use of the concept of relative permeability [27]
as,

kTQ SO{
g = —relalye ¢

Vpa — pag), for a=w,nw, (10.5)
Mo

where q, [LT71]3 is the apparent macroscopic velocity of the phase «,
to [ML7IT1] is the dynamic viscosity of the phase a, K; [L?]?*3 is the
intrinsic permeability tensor, k, o [—] is the a—phase relative permeability
function, p, [ML73] is the density of the phase a, and g [LT 23 is the
gravitational acceleration vector. The relative permeability &, . of fluid
phase « ranges between zero and one and depends on the fluid saturation
Sa.

By extension, the hydraulic conductivity tensor K [LT~!]3*3 also be-
comes a function of saturation of the phase «,

K — K(S,) = ralda)pagy (10.6)
22"
where g [LT~2] is the scalar gravitational acceleration constant.
The Brooks—Corey constitutive model for the relative permeabilities of
the wetting and the non—wetting phases are

_ 243X
kr,w - Se » s (107&)
24+
kr,nw - (1 - Se)2 (1 - Se_%> . (107b)

Darcy’s law for multiphase flow (Eq. (10.5)) and the mass balance for each
phase are combined to derive the governing equations for multiphase flow
in two-phase system as,

a aSa akroz
¢% -V (pu’Kz— (Vpa — pag)> = Fy,, (10.8)
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where F, [ML73T7!] is the source/sink term and fluid phase
a = w,nw. Equation (10.8) written for each phase in the multiphase flow
system, in combination with the constitutive models for capillary pressures
(Eq. (10.3)) and relative permeabilities (Eq. (10.7)) provide the full for-
mulation of the mathematical model to solve for the phase pressures and
saturations for given initial and boundary conditions and source terms.
These governing equations are derived for the continuum macro-scale (or
Darcy scale). The parameters that appear in these equations have to be
upscaled to computational grid scale when used in simulations. The upscal-
ing of constitutive models of capillary pressure and relative permeability are
discussed in the next section.

10.3.3. Upscaling Constitutive Parameters

It is well supported in literature that the highly non—linear distribution
of hydrologic processes often limits the ability to track interactions from
scale-to—scale and across space and time. The primary question driving
the upscaling problem is: can laboratory scale measurements successfully
be applied to properly describe larger scale flow and transport behavior?
We know that one can directly apply laboratory measured soil hydraulic
properties as inputs for lab scale studies and simulation models. However,
in developing upscaling methods, it is necessary to recognize that it is not
practical to take measurements at all points in the subsurface system to
determine the needed parameters. Hence, the development of theoretical
foundations for any upscaling method leads to a practical question: how can
soil hydraulic parameters determined for homogeneous samples collected at
a limited number of locations or the laboratory scale be used to determine
the parameters of the discretized grid blocks of models (grid-block scale)
that simulate the field scale behavior? One option is to spatially distribute
laboratory scale soil hydraulic properties across larger scales. Alternatively,
the lab or discrete in—situ scale properties can be used as initial estimates
and improved upon by using inverse modeling or during model calibration.
Inverse modeling attempts to minimize differences between observation and
simulation using analytical or numerical solutions that include constitutive
relationships that contain estimated parameters [28].

The texture variability that contributes to changes in porosity with
scale also affects the parameters that depend on the pore sizes and pore
size distribution. These include permeability and hydraulic conductivity in
saturated groundwater flow, soil-water retention and relative permeability
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in unsaturated flow and constitutive model parameters of multiphase flow
(Egs. (10.3) and (10.7)). These parameters are obtained using homoge-
neous test samples and defined at the REV scale to be used in continuum
modeling.

What we know as a single phase porous medium hydraulic conductivity
K [LT~'] is an effective property which can be induced from upscaling of
pore to the macroscale flow. In the simple case of the two-layered het-
erogeneity, the upscaled hydraulic conductivity is an average determined
using the two values of K of the two layers by simple application of Darcy’s
law. Any analytical solution method applicable for layered systems require
the knowledge of the K for each layer and their thicknesses, thus limit-
ing their practical utility in upscaling applications. More rigorous methods
have been suggested to determine upscaled hydraulic conductivity. An up-
scaled parameter of K referred to as the effective hydraulic conductivity
is estimated by considering the small-scale variation of K as a random
space function (RSF). The effective conductivity is estimated independent
of the boundary conditions from the spatial correlations and variances of
the RSF [29, 30]. These formulations assume statistical homogeneity of the
system that is modeled. Considerable knowledge exists on upscaling single
phase flow in porous media using effective parameters. Another approach
referred to as equivalent hydraulic conductivity assumes that the domain
to which the variations of K are upscaled to have an equivalent value of
K that preserves the mean flux of the heterogeneous formation for a given
head gradient [31]. As the equivalent K depends on the boundary condi-
tions that control flow, any uncertainty in the boundary conditions results
in non—unique estimates of the upscaled parameter. However, the equiva-
lent K value approaches the effective K value when the aquifer size is larger
than the correlation range of K [32].

Figure 10.4 shows the laboratory—simulated migration of a light NAPL
in a heterogeneous porous medium. The test tank was packed using five
highly characterized soils to represent a spatially correlated random field
with known geostatistical parameters (mean of log K, variance of K and
correlation lengths in the z and z directions) [35]. The migration of the non—
wetting fluid that occurs through the pores by displacing the wetting fluid
is controlled by the pore—scale soil parameters as well as the properties of
the wetting and the non—wetting fluids. The upscaling problem that needs
to be addressed is how the parameters of the multiphase systems affected
by the soil and fluid properties are properly represented in an example
grid—scale model shown and compared to a numerical model that uses such
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-

(a) Laboratory experiment (b) Numerical simulation

Fig. 10.4. Laboratory simulation of multiphase flow in a heterogeneous porous medium
(a) and numerical simulation using the upscaled parameters (b). The numerical solution
was obtained using the mixed hybrid finite element method described in Refs. [33, 34].

estimated upscaled parameters in Fig. 10.4.

At the REV scale, the multiphase system is characterized by the con-
stitutive relationships that include capillary pressure and relative perme-
ability as functions of saturation (Egs. (10.3) and (10.7)). The issue of
upscaling these constitutive models is common to the types of problems
in multiphase flow that were presented in Section 10.2. Parameter up—
scaling has been extensively studied by petroleum engineering as applied
to hydrocarbon reservoirs, soil physicists in irrigation water management
and geo—hydrologist for applications in subsurface remediation involving
solvents and petroleum wastes. Constitutive models are developed from
measurements made in the laboratory using small samples whose sizes cor-
respond to size of cores extracted during field investigations. The basic way
these parameters are upscaled in multiphase systems is very different from
single-phase flow, because in addition to the subsurface heterogeneity, the
non-linearities of the basic processes play a critical role [36]. These non—
linarites also contribute to different fluid retention behavior at different
length scales.

Early work on upscaling in unsaturated flow systems (water as wetting
and air as non-wetting fluids) based on small perturbations (e.g. [37]) is
not generally applicable when the size of the field domain is small compared
to the length scales of the heterogeneity. In the development of upscaling
for two—phase flow, some researchers adopted percolation network models
used in pore-scale investigations to upscale constitutive relationships at
the macro-scale [38-40]. In small samples that are used to get the reten-
tion function in the laboratory, the water content that corresponds to a
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given capillary pressure is fully determined by the capillary forces. The
basis for constitutive models such as by [25, 26] for retention and relative
permeability functions is capillary equilibrium. Desbarats [41] focused on
the upscaling of moisture retention curves in heterogeneous media under
conditions of capillary—gravity equilibrium. After assessment of many de-
velopments based on percolation approaches and subsequent work on the
topic, Desbarats [42] observed that to properly upscale constitutive rela-
tionships at the macroscopic scale, in addition to gravity and capillary
forces, the viscous forces that define the shear resistance to flow have to
be considered. This raises the question on whether the equilibrium based
constitutive models are valid at large scales where the water (wetting fluid)
distribution is not only controlled by the pore size distribution but also by
heterogeneity. To address these limitations, Desbarats [42] used a three—
dimensional numerical model to simulate viscous forces in addition to grav-
ity and capillary forces to identify averaging processes that produced the
upscaled retention functions from local functions. The author concluded
that the model used to determine upscaled constitutive relationships could
not be represented by the same parametric model representing the small—
scale constitutive relationships. The slope of the relative conductivity curve
in the small water content range was interpreted as an upscaled pore—size
distribution parameter (inverse is an upscaled capillary length). The main
finding of this study where viscous forces were included in the analysis was
that the upscaled pore—size distribution parameter can be approximated by
a spatial power average of the corresponding small scale values distributed
in the flow domain. Using the same assumption of steady flow, Liu et
al. [43] used a practical formulation to determine the large-scale (upscaled)
retention curve using the small-scale curves assuming spatially uniform
capillary pressure exists in the larger upscaled domain. The expression for
the upscaled capillary pressure-saturation relationship was given as

fs(pc)dv
LI e A— 10.9
00 =y (10.9)
4
where S [—] and s [—] are the water saturations at large and local (mea-

surement) scales, respectively, V [L?®] is the total medium volume, p,. is
the capillary pressure, and ¢ — is the spatially variable porosity defined in
Eq. (10.1). These authors pointed out that Eq. (10.9) imply that in both
small and large scales, the relationships are determined by the pore—size dis-
tribution and are independent of correlation length scales of heterogeneity.
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The upscaled hydraulic conductivity was given as

K(p) = %/k(pc)“dv, (10.10)
14

where, K [LT~!] and k [LT~!] are the upscaled and sample scale hydraulic
conductivities, respectively, and w [—] is a constant scalar parameter. This
expression assumes that even though the sample scale relative permeability
primarily depends on the pore—size distribution, the upscaled conductivity
does not. This approach, even though practical, is limited to steady—state
unsaturated flow in porous media with large air entry values. In petroleum
engineering, the problem of upscaling constitutive models was posed in the
context of managing the computing efficiency by using large grid blocks.
The upscaling methods used pseudo—functions [44] that accounts for the
heterogeneity within the large grid—block to replace the multiphase effec-
tive permeabilities and capillary pressures [45]. The goal was to use large
grid dimensions to utilize available computing power manageable levels and
with minimum loss of accuracy due to simplified representation of the het-
erogeneity. Use of this method still requires fine—grid simulations of a rep-
resentative reservoir section to determine the appropriate pseudo—functions
for the selected parameters. Even though some computing efficiencies have
been achieved, these methods were considered to be without strong theo-
retical foundation [42].

Other techniques have been proposed and used for upscaling two—phase
flow. In homogenization [46, 47], stochastic representation of conservation
laws in porous medium are used to get non—linear effective equations that
are considered to govern the flow behavior of the homogenized equivalent
of the randomly heterogeneous porous medium. Another method referred
to as the large—scale volume averaging (e.g. [48]), the flow equations and
the properties at a larger scale are calculated by averaging from a lower
scale. This method has been demonstrated to be more efficient than meth-
ods based on pseudo—functions that require full simulations using fine-grid
model [45]. The volume averaging technique has been extensively used to
predict the macro—scale transport properties for many processes including
transport in heterogeneous porous media [49], two-phase flow [50], two—
phase inertial flow [51], reactive media [45, 52], solute transport with ad-
sorption [53] multi-component mixtures [54], and coupled heat and mass
transfer with Soret effect [55, 56].

The question of using a one- or two-equation model is raised when
modeling two phase (or region when working at the Darcy’s scale) flow in
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porous media. The one-equation equilibrium model consists of a single
transport equation for both phases (or regions). When the two fields in
the two regions are close enough, the transport equations that represent
the two-equation model can be added to produce this model. In other
words, the principle of local-scale equilibrium is valid. If the local equi-
librium assumption does not hold, two separate upscaled equations should
be solved. However, for many initial boundary—value problems, the two-
equation model shows a time—-asymptotic behavior that can be modeled
with a non—equilibrium one-equation model [57, 58]. The domains of va-
lidity of these three different models, which depend mainly on the Péclet
number and a characteristic time, have been already explored [50, 59].

Davarzani et al. [55] showed that for moderate property contrast be-
tween phases, the local-equilibrium can predict the flow very well, and the
model is not very sensitive to boundary conditions or initial conditions.
For higher contrasts, the local-equilibrium model fails during the transient
period. While, at steady—state, the local-equilibrium model offers again a
very good prediction [55].

10.4. Dissolution in Multiphase Systems

10.4.1. Mass Transfer and Rate Coefficients

The mass transfer that occurs at fluid-fluid interfaces at the pore level is
generally approximated using a linear model based on stagnant film theory
as shown in Fig. 10.5. As there is no mass storage within the film, the
concentration gradient between the source and the solvent can be assumed
to be linear. The mass transfer across the interface between two fluid
phases is (based on the linear film theory) generally described through a
mass transfer rate coefficient. The rate of mass flux is defined through a
linear relationship given by

J = ke(Cy — C), (10.11)

where J [M L~2T~] is the mass flux rate from the dissolving phase (can be
considered to be the non—wetting phase), k, [LT 1] is the mass transfer rate
coefficient, Cy [M L~3] is the aqueous phase concentration under conditions
when the dissolving phase is at solubility limit in water and C' [ML™3] is
the aqueous phase solute concentration in the bulk solution. The subscript
¢ denotes that the driving force acts along the longitudinal direction of flux.

When upscaling the stagnant film model to the representative elemen-
tal volume (REV) scale in porous media, it is necessary to define an over-
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Fig. 10.5. Stagnant layer model with linear concentration profile between the NAPL
source concentration Cs and the concentration C' the in the bulk phase.

all mass transfer rate coefficient. By extending the single film theory, a
linear driving force model similar to Eq. (10.11) can be used to describe
mass flux from entrapped non-wetting phase (NAPL, ScrCOs or COq gas
plume) sources in porous media. This is accomplished by introducing a
lumped mass transfer rate coefficient K. [T~!] [60]. The interface mass
rate J' [ML73T~'] in porous medium takes the form

J =K. (Cs - C). (10.12)
The pore—scale mass transfer coefficient ky and the lumped mass transfer
coefficient K. are related by
Anw
G
where A, [L?] is the total NAPL-water surface area within the REV of
volume V' [L3]. As A,,, cannot be directly measured, in practical applica-

tions in porous media, K, is treated as an empirically determined parameter
for a specific multiphase system.

K. =k

(10.13)

10.4.2. Gilliland—Sherwood models

Phenomenological models that are used to predict the mass transfer rate
coefficient ky or the lumped mass transfer coefficient K. are referred to as
Gilliland—Sherwood models and are represented by dimensionless Sherwood
number Sh and modified Sherwood number Sh’. The Sherwood number Sh
is related to the mass transfer rate coeflficient k; as
dp

h=k
S ZDea

(10.14)
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where d, [L] is the geometric mean of particle diameter and D, [L*T 1] is
the diffusion coefficient in the free liquid. The modified Sherwood number
Sh’ that involves the lumped mass transfer rate K, and is suitable for use
in porous media applications is defined as

d2

Sh' = K.-2. 10.15

- (10.15)

Therefore instead of K., the dimensionless Sherwood number Sh’ is de-

termined empirically in order to describe the mass transfer process under
various physical and chemical conditions in the porous media.

Building on the concept of upscalable Gilliland-Sherwood model for

porous media, an empirical model for REV scale mass transfer was pro-

posed by Ref. [61] in a general form

S = aRePsc ( fno 5 10.16
= aRe”Sc (7‘L> , (10.16)
that involves four dimensionless fitting parameters a, 3, 7, and 9, dimen-
sionless Reynolds and Schmidt numbers Re [—] and Sc [—], respectively,
dissolving NAPL content 0,, [—], dso [L] is the particle diameter such that
50% of the porous media are finer by weight (median particle size), 7 [—] is
the tortuosity factor of the flow path, and L [L] is the dissolution length.
The corresponding model that was fitted by Saba and Illangasekare [61]
to dissolution data obtained in a two—dimensional flow configuration in a
small scale test tank is « = 11.34, g = 0.28, v = 0.33, § = 1.037. Saba and
Nlangasekare [61] compared other Gilliland—Sherwood models that have
appeared in literature and showed that the dimensionality of water flow
has to be taken into consideration when upscaling the models based on
one—dimensional systems to multi-dimensional flow systems in the field.
An overview of other Gilliland-Sherwood models for the modified Sher-
wood number Sh’ applicable for various dissolution configurations within
the porous medium is given in [62]. Liu et al. [63] developed a Gilliland—
Sherwood model for a synthetic porous medium consisting of random-size
spheres and solving the groundwater flow and mass transfer at the pore—
scale using a multi-physics simulator COMSOL Multiphysics®. This model
is given as

Sh = 3.81Re%57Sc-33, (10.17)

As the flow is laminar and the kinematic viscosity is constant and the mass
transfer is dependent on advection and diffusion, [63] was able to represent
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Fig. 10.6. TCE concentration (a) and cumulative TCE content depletion (b) temporal
profiles compared to laboratory measured data (dotted lines), [64].

the Sh number as only a function of the Péclet number Pe as
Sh = 0.094Pe’-%6, (10.18)

Petri et al. [64] investigated a complete volatilization of a volatile organic
compound (VOC) pool in the context of generation of contaminant vapor
plumes in heterogeneous porous medium. In the experiment, an immo-
bile NAPL pool of trichlorethylene (TCE) was created in the source zone
placed inside a small tank. In one of the scenarios, the pool was exposed
to the flowing 100% humidified air under four different velocities studied.
A numerical model was developed and used to determine the Gilliland—

Sherwood model hypothesized in the general form proposed by [61] in the
form

9.\ 02
Sh’ = 0.0011Pe"? (91‘7”‘) dy©®, (10.19)
n
where 0" [—] is the initial NAPL content in the source zone. The small

exponent of the Péclet number suggests that the velocity of the flowing
air has a negligible effect on the rate of volatilization. In Fig. 10.6, the
experimentally measured effluent concentration and the cumulative TCE
content depletion are compared to the results of the mathematical model.

10.4.3. Upscaling of Mass Transfer Rate Coefficients

The upscaling of dissolution of trapped non—aqueous phase (NAPLs) has
been studied for applications in remediation of sites contaminated with
solvents and petroleum waste [62, 65].
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The goal of upscaling dissolution is to determine what parameters of
the field systems have to be included to determine the effective mass trans-
fer rate coefficient. Saenton and Illangasekare [66] hypothesized that as
the mass loading to the flowing water occurs at the pores where NAPL
is entrapped, the total mass loading at the grid—scale will depend on the
saturation distribution of the NAPL. They quantified the distribution (or
spread) through a dimensionless second moment My . [—]. The mass that
gets loaded is transported within the grid block by the flowing water and
the net mass generation is a result of mixing within the block. This velocity
driven mixing was captured through the use of geostatistical parameters of
the heterogeneity field and the size of the grid block. Using synthetic data
from numerical simulations where various NAPL entrapment architecture
were created in correlated random fields, Saenton and Illangasekare [66]
obtained an expression for the upscaled mass transfer correlation as

G Az 72 MII z .
Sh = Shq(1 + 0%)%* <1 + )\Z) (M}}Z (10.20)
where Sh [—] is the upscaled Sherwood number containing the effective

mass transfer rate coefficient, 0% is the variance of the log K field, Az [L]
is the vertical dimensions of the simulation grid, A, [L] is the vertical corre-
lation length and the last set of terms is the dimensionless second moment
of the vertical saturation distribution. This method of upscaling was vali-
dated using data from an intermediate scale tank experiment [62] shown in
Fig. 10.7.

The example of upscaling of a mass transfer that occurs at the pore—
scale to grid scale provides the framework for developing upscaling methods
for problems in carbon sequestration. The method was developed for a
two-dimensional flow case and validated in a two-dimensional test system.
As was discussed earlier, heterogeneity and flow dimensionality will play
a critical role in the upscaling process. Hence, further study is needed
to evaluate the effects of the third spatial dimensions and use of other
parameters of the geologic formations when the assumption of stationarity
that is built into the geostatistical parametrization is not valid. Also, the
issue of how the dissolved mass diffuses into low permeability formations
and how the process gets upscaled needs further study and development
[67].
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Fig. 10.7. Upscaling of NAPL dissolution: (a) Comparison of observed mass flux and
mass flux estimated using the small-scale dissolution model, (b) comparison of observed
mass flux and mass flux estimated using the upscaled dissolution model (system 2-5
refer to different grid sizes used in the simulations) [62].

10.5. Land/atmospheric Interactions

A variety of coupled processes and feedbacks between thermal, hydrolog-
ical, geochemical and biological processes occur at the land-atmospheric
interface. These coupled processes and feedbacks significantly influence
the energy and mass balances and hence environmental conditions. Under-
standing heat, mass and momentum fluxes at the land surface at all relevant
scales remains a major scientific challenge. Understanding mass and heat
fluxes across the land surface at all relevant scales from laboratory to field
remains a major scientific challenge. One such exchange process is evap-
oration, an important process that affects the water and energy balance
in the soil and atmosphere, and consequently changes the local and global
climatic behavior. In this section a review of the efforts to understand and
upscale the processes associate with evaporation are presented.

10.5.1. Processes and Modeling

As conceptually shown in Fig. 10.8, the rate of soil evaporation is affected
by atmospheric conditions (e.g. humidity, temperature, thermal radiation,
wind velocity and turbulent flow regime), and thermal, and hydraulic prop-
erties of soil (thermal and hydraulic conductivity, porosity), all of which are
strongly coupled. This strong coupling between processes leads to highly
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dynamic interactions between the atmosphere and soil resulting in dynamic
evaporative behaviors [68]. It is recognized that the most important pro-
cess that determines the coupling between the soil water and heat is the
transport of latent heat (the result of phase change) by vapor flux in the
unsaturated soil pores and at the interface between the soil and the atmo-
sphere [69]. Models that incorporate these processes have been developed,
g., [70]; however, as Bittelli et al. [69] note, a detailed experimental verifi-
cation of vapor movement above the soil surface (i.e., atmospheric boundary
layer) has not been conducted. Bittelli et al. [69] suggest that the errors in-
troduced in the vapor flow calculations are due to a number of factors that
include lack of proper coupling of the thermal and mass flux processes,
deficiencies in the constitutive relationships (e.g. thermal and hydraulic
conductivities and soil water content) and difficulty in determining the re-
sistance parameters at the land (soil)-atmospheric interface. For example,
a prevalent modeling approach is to derive the aerodynamic and soil sur-
face resistance terms based on semi-empirical or empirical approaches and
to adjust the predicted evaporation based on true conditions that depend
on ambient conditions such as soil moisture, roughness, and wind speed.

Free Flow Medium (Stokes flow) &
W
§°

&
. : < &
Wind Heat transter and Multi- e
components mass transport
Shear stress Turbulence
RN Heat and mass Cr CrCn
exchanges

Multi-phase heat and
mass transport

Porous Medium (Darcy flow)

Fig. 10.8. Schematic of the land/atmospheric interaction configuration.
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Traditionally, the influences of atmospheric conditions are applied at the
soil surface and aerodynamic resistance is applied on the border between the
air flow and permeable media (e.g. [69, 71-73]). In these cases, evaporation
rate £ [M L=2T~1] can be given as

E=——((p)pm — (po)11). (10.21)

s+ Ty

where r, [L~!T] is the soil surface resistance for water vapor transport,
7y [L71T) is the aerodynamic resistance for water vapor, (py)pm [ML73] is
the vapor density immediately below the soil surface (in porous medium)
and (py)fs [ML73] is the vapor density immediately above the soil sur-
face (in free medium). The vapor density above the soil surface is calcu-
lated from measurement of relative humidity on the boundary of the porous
medium domain in the free low medium.

In Eq. (10.21), the aerodynamic resistance for vapor transport depends
on surface roughness properties and wind speed [69, 74]. The soil surface
resistance depends on soil surface water content. The relationship between
aerodynamic resistance to vapor transport and soil water content is typi-
cally expressed in an exponential form; there are many exponential empir-
ical functions used to describe this relationship [71, 73]. Although this ap-
proach is widely used, modeling comparison studies have shown significant
variation between model parameterizations and evaporative fluxes [75-78].
Recently, with the goal of addressing the issue of coupling the land to
the atmosphere, [77] evaluated three different modeling approaches of bare
soil evaporation formulated with different land surface boundary conditions
and compared modeling results to laboratory generated experimental data.
Results demonstrated that no one approach could be deemed most ap-
propriate for every situation, demonstrating that further work focusing on
the land /atmospheric interface, properly incorporating the complex inter-
actions between the land and the atmospheric boundary layer is needed to
increase the understanding of the processes that control shallow subsurface
soil moisture flow that controls bare soil evaporation.

The modeling of non—isothermal single—phase (two—component) trans-
fer in the atmosphere and two-phase (two—component) transfer in porous
media have been separately investigated by many authors (e.g. [79-81]).
Recently, numerical advances have been made in the coupling of free
flow (Navier-Stokes) with porous media flow (Darcy flow) [82-87], how-
ever, these models were not adequately validated with experimental data.
Mosthaf et al. [85] extended the classical single-phase coupling to two-phase
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flow in porous media and one phase in the free flow. Their model is based
on the continuity of fluxes at the porous medium-free medium interface
and use of the Beavers—Joseph boundary condition [85]. Baber et al. [83]
focused on the numerical concept and its implementation into a local mod-
eling toolbox. The numerical parametric study showed that the proposed
model can predict the evaporation phenomenology correctly. They con-
cluded that the variation of permeability influences the duration of the
capillary—driven evaporation regime whereas the variation of temperature
affects the magnitude of the evaporation rate. They also showed that the
choice of the Beavers—Joseph coefficient has a negligible influence on the
evaporation rate across the interface [83].

It is well known that a no-slip condition at the free flow and porous
domains surface is not a satisfactory assumption requiring the need to con-
sider a slip boundary condition. The slip boundary condition was first
obtained experimentally by Ref. [88]. They proposed that the tangential
component of the normal stress of the flow at the free flow and porous
medium interface is proportional to the jump of the tangential velocity
across the interface [88]. The coupling condition was further studied by
Saffman [89] who concluded that the filtration velocity in porous media
was much smaller than the free-flow velocity and can be neglected. There
exist several other formulations for a slip boundary condition to include
(a) using a shear stress jump condition by means of the non—local form
of the volume averaging technique with an experimentally determined fit-
ting parameter [Ochoa-Tapia and Whitaker, 1997], or (b) using the inertia
and boundary effects [90]. Alzami and Vafai [91] compared five different
interface conditions between the porous medium and adjacent fluid layer.
They concluded that the velocity field is more sensitive to variation in the
boundary condition than the temperature field [91]. They showed similar
results for all five interface conditions.

10.5.2. Knowledge of Gaps and Challenges

Water and energy fluxes in the vadose zone are coupled at the soil sur-
face, which serves as the interface between the land and the atmosphere.
Currently, most available upscaling procedures ignore the effects of the
land—atmospheric interface [92] resulting in a need to develop upscaling
approaches that account for climatic excitations under natural field con-
ditions. Accurate prediction of water distribution and fluxes within the
vadose zone is critical for quantifying vapor and energy exchanges between
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the land and atmosphere during the process of evapotranspiration, as-
sessing groundwater recharge rates, and optimizing water management for
agricultural purposes. Despite the importance of these predictions, stan-
dard models have limited capabilities to predict water or gas fluxes, flow
pathways and water distribution. Even common practices such as under-
standing evaporation dynamics from homogeneous soils or water distribu-
tion after a heavy rainfall has proven to be difficult with standard models
(e.g. [77,93-96]). This can be partially attributed to models not capturing
the physical behavior through proper system description/parameterization.
As our computational capabilities continue to improve, our ability to de-
scribe the added complexity of physical systems should also improve rather
than continuing to rely on the standard methods. By understanding the
relative contribution of processes at various scales and how the processes
can best be implemented at different scales to more accurately predict en-
vironmental behaviors remains a challenge. The challenges associated with
upscaling mass transport through soil pores close to the land surface comes
from the need to parametrize processes that couple Darcian flow in the
soil to Stokes flow in the atmosphere. Practical and theoretical limitations
of modeling efforts are often magnified at the land—atmosphere interface,
where water and energy fluxes are highly dynamic and dramatically in-
fluenced by changes in thermal and moisture gradients and direction of
flows [97]. However, for most conventional models and practical applica-
tions involving vadose zone, the strong coupling between the land and the
atmosphere is rarely considered. This is due to the complexity of the prob-
lem in field scenarios and the scarcity of field or laboratory data capable
of testing and refining energy and mass transfer theories. For most subsur-
face models, the soil surface serves as the upper boundary to the porous
medium domain and is characterized using prescribed flux terms that serve
as sources or sinks. Similarly, in most atmospheric models, the vadose zone
serves as a lower boundary with prescribed fluxes. Such an approach is a
simplification of the interaction processes above and below the soil surface.
Although widely used due to its simplicity and ease of use, such an ap-
proach has been shown by both atmospheric and hydrogeological scientists
to misrepresent flux conditions, resulting in model prediction errors [98].
When considering heterogeneous soils, this is particularly relevant. Het-
erogeneous soils result in complex flux conditions due to water fluxes from
coarse to fine textured soils [94, 99]. This is not captured when prescribing
a constant flux over the entire soil surface boundary. In addition, vari-
ations in soil surface conditions (e.g. soil type, texture, vegetation) can
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result in highly dynamic infiltration and evaporation conditions. Surface
heterogeneities can affect the air velocity conditions [100], ultimately af-
fecting infiltration rates during rainfall and evaporation, resulting in scale
and rate dependence of hydraulic and thermal effective parameters [97].

Remote sensing (i.e. non—contact observational methods) is often used
in hydrologic sciences to capture some of the spatial and temporal distribu-
tions of hydrologic processes which in turn can be used to model the inter-
actions between the land and the atmosphere. Many past remote sensing
studies focus on regression analysis between remotely sensed and observed
data and/or comparing aircraft/satellite observations and in-situ observa-
tions [101, 102]. However remote sensing alone cannot fully solve the issue
of cross-scale interaction as there is a requirement to understand the un-
certainties associated with measurements and model predictions from scale
to scale [103]. How can we use remotely sensed data at 10-20 km resolu-
tions to make predictions about processes occurring at a local scale? We
need to understand the effect of heterogeneity at a large scale as well as
a small pore scale to correctly develop methods to synthesize pore scale
physics with coarse—scale (e.g remote sensing) measurements. Researchers
have observed breaks or transitions in scaling of soil hydraulic properties
with spatial scales (e.g. [104, 105]). Nykanen and Foufoula—Georgiou [104]
found, for example, transitions between small scale soil moisture samples
and aircraft radiometer data, resulting in different relationships between
scales. However, uncertainty exists in explaining the reason for these tran-
sitions; are they a result of different data sets or are physical processes
involved that are not being accounted for at various scales [103]? In ad-
dition, how can models properly account for these transitions? Research
suggests that if we can properly account for hydrologic variables, like soil
moisture in hydrologic models, we can improve our ability to perform hy-
drologic forecasting (e.g., [106-108]).

10.6. Conclusions

Process up—scaling from pore to field systems still remains a challenge in
hydrogeological sciences and reservoirs engineering. In this chapter we iden-
tified some of these challenges specifically for emerging problems. The fol-
lowing conclusions are made to help develop future research plans to over
come some of these challenges.

Flow of multiple fluids in porous media is basic to the problems that
were presented in this chapter. The primary parameters that need up-—
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scaling in multiphase flow are the relationships between capillary pressure
vs saturation and relative permeability vs saturation. The parameter up-
scaling methods for these are fundamentally different from that of single
phase flow because of the non-linearity of these multiphase parameters.
Techniques based on percolation network models, stochastic homogeniza-
tion, large—scale volume averaging and methods based on pseudo—functions
had limited success and the need exist for the development of more general-
ized approaches that can be applicable to both two—phase and three-phase
systems.

The problem of dissolution of trapped non-aqueous liquids (NAPLs)
has received recent attention in relation to dissolution trapping of stored
supercritical CO9 in deep geologic formations. Methods have been devel-
oped to up—scale the mass transfer rate coefficients to simulate field scale
behavior by treating the effective dissolution as a mixing process controlled
by the architecture of the NAPL entrapment and geostatistical parameters
of the permeability field. This method provides a possible framework to
develop dissolution upscaling for supercritical CO5. However, whether rate
limited conditions exist in field settings requires additional evaluation prior
to developing such methods. The net mass loading from supercritical CO4
trapped zones will not only be controlled by dissolution, but also back diffu-
sion from low permeability zones in the heterogeneous formation. Methods
are needed to obtain effective parameters that capture both these processes
to predict long—term effectiveness of dissolution trapping.

Parameterization of processes that control land—atmospheric interac-
tions is at its early stages of development. The knowledge gaps in the un-
derstanding of these processes from pore scale to larger scales, have resulted
in models that rarely consider the strong coupling between the land and
the atmosphere. Until these knowledge gaps are filled through experimen-
tal studies conducted at multiple scales, any validation of such up—scaling
theories and methods are not possible.

Field data for validation of upscaling methods are often incomplete and
costly to obtain. In field settings, the degree of control that is needed to
obtain such data is not adequate. The intermediate laboratory scale offers
the ability to study, under controlled conditions, complicated processes in
the heterogeneous subsurface in multiple dimensions at different scales.

A conclusion can be made that scaling issues can only be resolved
through the integration of theory with experiments, requiring innovative,
multidisciplinary research efforts aimed at overcoming our current limited
understanding of the influence of small scale processes on larger scale flow
behavior.
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Notation  Units Description Page
Anw [L?] NAPL-water surface area within REV 183
C [ML—3] Aqueous phase solute concentration 182
Cs [ML=3] Aqueous phase solute concentration at solubility limit 182
dso [L] Median particle diameter 184
dp [L] Geometric mean of particle diameter 183
D, [L2T~1) Diffusion coefficient in free liquid 183
E [ML=2T-'] Evaporation rate 189
F, [ML=3T~'] Source/sink term of phase a 176
g [LT~2] Scalar gravitational acceleration constant 176
g [LT—2)3 Gravitational acceleration vector 176
J [ML=2T~'] Mass flux rate 182
J’ [ML=3T~'] Interface mass flux rate 183
K (LT Single phase porous medium hydraulic conductivity 178
K. [T-1 Lumped mass transfer rate coefficient 183
K [L2])3x3 Intrinsic permeability tensor 176
ke (LT Pore—scale mass transfer rate coefficient 182
ki o -] Relative permeability of phase « 176
L (L] Dissolution length 184
Mir,. -] Second distribution moment 186
Da [ML='T=2] Entry pressure 175
Pe [ML='T—2] Capillary pressure 174
Pa [ML='T=2] Wetting phase pressure 174
Pe -] Péclet number 185
qo [LT—13 Apparent macroscopic velocity of phase « 176
rs [L='T) Soil surface resistance for water vapor transport 189
Ty [L71T) Aerodynamic resistance for water vapor transport 189
Re -] Reynolds number 184
Se -] Wetting phase effective saturation 175
Sr.a -] Residual saturation of phase « 176
Sa -] Saturation of phase o 176
Sc -] Schmidt number 184
Sh -] Sherwood number 183
Sh’ -] Modified Sherwood number 183
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Notation  Units Description Page
0, =] NAPL volumetric content 184
A -] Brooks and Corey fitting parameter 175
Az [L] Vertical correlation length 186
Ho [ML='T—1] Dynamic viscosity of phase « 176
Po [ML=3] Density of phase « 176
T -] Toruosity factor 184
P -] Porosity 172
X -] Void space indicator function 172
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