Oberhuber T., Klinkovský J., Fučík R., TNL: Numerical library for modern parallel architectures, accepted to Acta Polytechnica, 2020.

Eichler P., Malík M., Oberhuber T., Fučík R., Numerical investigation of the discrete solution of phase-field equation, Proceedings of Algoritmy 2020, pp. 111-120, 2020.

Škardová K., Eichler P., Oberhuber T., Fučík R., Investigation of Blood-Like Non-Newtonian Fluid Flow in Stenotic Arteries using the Lattice Boltzmann Method in 2D, Proceedings of Algoritmy 2020, pp. 91-100, 2020.

Škardová K., Oberhuber T., Tintěra J., Chabiniok R., Signed-distance function based non-rigid registration of image series with varying image intensity, accepted to Discrete and Continuous Dynamical Systems S, 2020. IF 1.233

Oberhuber T., Dytrych T., Launey, K. D., Langr D., Draayer, J.P., Transformation of a Nucleon-Nucleon potential operator into its SU(3) tensor form using GPUs, accepted to Discrete and Continuous Dynamical Systems S, 2020. IF 1.233

Knapp F., Dytrych T., Langr D., Oberhuber T., Importance Basis Truncation in the Symmetry-adapted No-core Shell Model,
Acta Physica Polonica B., vol. 50, no. 3, pp. 541--547, 2019, IF 0.904 (0.875).


Fučík R., Klinkovský J., Solovský J., Oberhuber T., Mikyška J., Multidimensional Mixed-Hybrid Finite Element Method for Compositional Two-Phase Flow in Heterogeneous Porous Media and its Parallel Implementation on GPU, Computer Physics Communications, vol. 238, pp. 165-180. IF 3.748 (4.284)

Fučík R., Eichler P., Straka R., Pauš P., Klinkovský J., Oberhuber T., On optimal node spacing for immersed boundary-lattice Boltzmann method in 2D and 3D, Computers and Mathematics with Applications, vol. 77, no. 4, pp. 1144-1162, 2019. IF 1.86 (2.08)

Langr D., Dytrych T., Oberhuber, T., Knapp, F., Efficient Parallel Generation of Many-Nucleon Basis for Large-Scale Ab Initio Nuclear Structure Calculations, Parallel Processing and Applied Mathematics Part II.. Cham: Springer International Publishing AG, 2018. pp. 341-350. Lecture Notes in Computer Science. vol. 10778, 2018.

Knapp F., Dytrych T., Langr D., Oberhuber T., Importance truncation in the SU(3) symmetry-adapted no-core shell model , Acta Physica Polonica B, vol. 11, no. 1, pp. 65--72, 2018. IF 0.904 (0.756).


Hanousek V., Oberhuber T., Efficient transfer of C++ objects on Intel Xeon Phi coprocessor on offload mode, Computer Methods in Material Science, vol. 17, no. 2, pp. 94-100, 2017, PDF.


Klement V., Oberhuber T., Ševčovič D., Application of the level-set model with constraints in image segmentation , Numerical Mathematics: Theory, Methods and Applications, vol. 9, no. 1, pp.147-168, 2016. IF 0.71 (0.83), PDF.


Bauer P., Klement V., Oberhuber T., Žabka V., Implementation of the Vanka-type multigrid solver for the finite element approximation of the Navier-Stokes equations on GPU, Computer Physics Communication, Vol.200, pp.50-56,2016.IF 3.112 (3.508).

Dytrych T., Hayes A. C., Launey K. D., Draayer J. P., Maris P., Vary J. P., Langr D., Oberhuber T., Electron-scattering form factors for 6Li in the ab initio symmetry-guided framework, Physical Review C, 91, 024326, IF 3.881, PDF.

Oberhuber T., Numerical solution for the anisotropic Willmore flow of graphs, Applied Numerical Mathematics, Vol. 88, pp.1--17, 2015. IF 1.036 (1.207), PDF.

Bauer, P., Beneš, M., Fučík, R., Hoang, H. D., Klement, V., Máca, R., Mach, J., Oberhuber, T., Strachota, P., Žabka, V., and Havlena, V. Numerical Simulation of Flow in Fluidized Beds, . Discrete. Cont. Dyn. S. S, issue 8, pages 833--846, 2015 IF 0.567.

Dytrych T., Launey K. D., Draayer J. P., Maris P., Vary J. P., Langr D., Oberhuber T., Emergence of Simple Patterns in Complex Atomic Nuclei from First Principles, Journal of Physics: Conference Series 639, 01200, 2015, IF 0.45.

Klement V., Oberhuber T., Multigrid Method for Linear Complementarity Problem and Its Implementation on GPU, International Journal of Applied Mathematics, Vol. 54, No. 3, 2015.


Oberhuber T., Kučera S., Loucký J., Súkupová L., Tintěra J., Segmenting Tagged Cardiac MRI Data Using a Local Variance Filter, Acta Polytechnica, Vol. 54, No. 3, pp. 214--220,2014, PDF.

Hoang D. H., Beneš M., Oberhuber T., Numerical Simulation of Anisotropic Mean Curvature of Graphs in Relative Geometry, Acta Polytechnica Hungarica,
Vol. 10, No. 7, pp. 99--115, 2013, IF 0.588, PDF.


Handlovičová A., Mikula K., Oberhuber T., Comparison of finite volume schemes for the mean curvature flow level set equation, RIMS Kokyuroku Bessatsu, B35, pp. 9 -- 22, 2012, PDF.

Beneš M., Oberhuber T., Strachota P., Straka R., Havlena V., Mathematical modelling of combustion and biofuel co-firing in industrial steam generators, RIMS Kokyuroku Bessatsu, B35, pp. 9 -- 22, 2012.

Fabian D., Mařík R., Oberhuber T., Towards a Formalism of Configuration Properties Propagation, Proceedings of the Workshop on Configuration at ECAI 2012, 2012, Mayer W. and Albert P. (ed), pages 15-20, PDF

Heller M., Oberhuber T., Improved Row-grouped CSR Format for Storing of Sparse Matrices on GPU, Proceedings of Algoritmy 2012, 2012, Handlovičová A., Minarechová Z. and Ševčovič D. (ed.), pages 282-290, ISBN 978-80-227-3742-5, PDF

Loucký J., Oberhuber T., Graph cuts in segmentation of a left ventricle from MRI data, Proceedings of Czech-Japanese Seminar in Applied Mathematics 2010, editors Beneš M., Kimura M., Yazaki S., COE Lecture Note, 2012, vol. 36, pp 46-54, ISSN 1881-4042, PDF, BIB.

Oberhuber T., Suzuki A., Vacata J., New Row-grouped CSR format for storing the sparse matrices on GPU with implementation in CUDA, Acta Technica, 2011, vol. 56, no. 4, pp. 447-466, PDF, BIB.

Oberhuber T., Suzuki A., Vacata J., Žabka V., Image segmentation using CUDA implementations of the Runge-Kutta-Merson and GMRES methods, Journal of Math-for-Industry, 2011, vol. 3, pp. 73–79, PDF, BIB.

Oberhuber T., Suzuki A., Žabka V., The CUDA implementation of the method of lines for the curvature dependent flows, Kybernetika, 2011, vol. 47, num. 2, pages 251--272, IF 0.445 - PDF, BIB.

Oberhuber T., Complementary finite volume scheme for the anisotropic surface diffusion flow, Proceedings of Algoritmy 2009, 2009, Handlovičová A., Frolkovič P., Mikula K. and Ševčovič D. (ed.), pages 153-164, ISBN 978-80-227-3032-7, PDF BIB

Oberhuber T., Numerical Solution of Willmore Flow, PhD thesis, Department of Mathematics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, December 2009, PDF.

Beneš M., Mikula K., Oberhuber T. and Ševčovič D., Comparison study for Level set and Direct Lagrangian methods for computing Willmore flow of closed planar curves, Computing and Visualization in Science, 2009, vol. 12, pages 307-317, DOI 10.1007/s00791-008-0112-2, PDF BIB


Oberhuber T., Finite difference scheme for the Willmore flow of graphs, Kybernetika, vol. 43, 2007, pages 855-867, ISSN 0023-5954, IF 0.293 - PDF BIB

Beneš M., Mikula K., Ševčovič D., Oberhuber T., Method of Lines for the Level Set Method for Solving Willmore Flow Geometric Equation, In MAGIA 2007, Slovak University of Technology, Faculty of Civil Engineering, 2007, Vol. 1, pp. 37-44. ISBN 978-80-227-2796-9.


Oberhuber T., Numerical solution for the Willmore flow of graphs, Proceedings of Czech-Japanese Seminar in Applied Mathematics 2006, Beneš M., Kimura M. and Nakaki T. (ed.), Vol. 3, 2005, pages 126-138, ISSN 1881-4042, PDF BIB


Oberhuber T., Computational study of the Willmore flow on graphs, Proceedings of Equadiff-11, Fila M., Handlovičová A., Mikula K., Medved M., Quittner P. and Ševčovič D. (ed.), 2005, pages 321-331, ISBN 978-80-227-2624-5, PDF BIB

Oberhuber T., Numerical recovery of the signed distance function, Proceedings of Czech-Japanese Seminar in Applied Mathematics 2004, Vol. 3, 2004, pages 162-178, ISBN 80-01-03181-0, PDF BIB